
A Pregroup Analysis of Japanese Causatives *

Kumi Cardinal

Keio University, Shonan-Fujisawa Campus,
Graduate School of Media and Governance

5322 Endo, Fujisawa-shi, Kanagawa 252-8520, Japan
cardinal@sfc.keio.ac.jp

Abstract. We explore a computational algebraic approach to grammar via pregroups. We
examine how the structures of Japanese causatives can be treated in the framework of a
pregroup grammar. In our grammar, the dictionary assigns one or more syntactic types to
each word and the grammar rules are used to infer types to strings of words. We developed
a practical parser representing our pregroup grammar, which validates our analysis.

Keywords: pregroup grammar, Japanese causatives.

1. Introduction
Japanese causatives have been analyzed from a number of points of view: transformational,
lexical, and movement approaches among others. Here, I propose a computational method for
analyzing the different types of causative constructions. Our analysis is based on the notion of
pregroup grammar, which has been developed as an algebraic tool to recognize grammatically
well-formed sentences in natural languages (Lambek, 1999).

This paper is organized as follows: section 2 introduces the pregroup formalism; section 3
describes the properties and characteristics of Japanese causatives; section 4 presents the
analysis of Japanese causatives based on pregroup grammar; and finally, section 5 discusses
about the implementation of a practical parser.

2. Pregroup grammar
The main idea of a pregroup grammar, which is shared with other categorial grammars, is to
assign one (or more) compound types to each word of the language and to check the
grammaticality of sentences by doing a calculation on strings of types.
 We construct the compound types in the following way: we begin with a partially ordered set
(A, →) of basic types, the partial order being denoted by the arrow. From the basic types we
build simple types by taking adjoints or repeated adjoints. Thus from the basic type a, we obtain
the simple types

…, all, al, a, ar, arr, …

 Compound types are strings of simple types. We then form the free pregroup generated by A,
whose elements are compound types.
 The only computations required are contractions ala → 1, aar → 1, and expansions 1 → aal, 1 →
ara, where a is a simple type.

* Copyright 2007 by Kumi Cardinal

 96

 One can extend the operation ()l and ()r to compound types, by defining

1l = 1 = 1r,
(a・b)l = bl・al,
(a・b)r = br・ar.

 The symbol 1 stands for the empty string of types and will be usually omitted, as will be the
dot that stands for multiplication.
 What makes free pregroups particularly suitable for computation is the following observation:
 SWITCHING LEMMA (Lambek, 1999) When showing that x1… xm → y1 … yn for simple types xi
and yi, one may assume without loss of generality that all contractions ala → 1 and aar → 1
precede all expansions 1 → aal and 1 → ara.
 The importance of the Switching Lemma is that it offers a deciding procedure, by a sequence
of contractions, when a string of simple types can be rewritten as a single simple type. If
expansions were needed in addition to contractions, we could for instance compute a number of
expansions, followed by a number of contractions, followed by another series of expansions,
and continue and so on in an ever-ending process.
 So, for the purpose of sentence verification, expansions are not needed, but only contractions,
combined with some rewriting by the partial order of A. Expansions are useful for theoretical
purposes, for example to prove the following:

arl = a = alr,
a → b ⇒ bl → al,
a → b ⇒ br → ar.

3. The structure of causative verbs
In Japanese, the causative is formed by attaching the bound causative morpheme –(s)ase to the
stem of a verb. If the verb to which it attaches ends in a consonant, the initial consonant s of the
morpheme is deleted.
 In (1b), the causative morpheme is attached to a transitive verb stem, kak ‘write’. Hanako, the
original agent of the transitive verb is designated with the dative particle ni.

(1)

a. Hanako ga tegami o kaita.
 Hanako NOM letter ACC wrote
 ‘Hanako wrote a letter.’
b. Taroo ga Hanako ni tegami o kak-ase-ta.
 Taro NOM Hanako DAT letter ACC write-CAUS-PAST

‘Taro made Hanako write a letter.’

The Japanese causative is well known for having two types, the so-called o-causative and the
ni-causative. When the causative morpheme is attached to an intransitive verb, as in (2), the
original agent of the verb stem can take either the accusative o or the dative ni.

(2)

a. Hanako ga aruita.
 Hanako NOM walked.
 ‘Hanako walked.’

b. Taroo ga Hanako o aruk-ase-ta.
Taro NOM Hanako ACC walk-CAUS-PAST

 ‘Taro made Hanako walk.’

 97

c. Taroo ga Hanako ni aruk-ase-ta.
Taro NOM Hanako DAT walk-CAUS-PAST
‘Taro let Hanako walk.’

Kuno (1973), Shibatani (1973), and Kitagawa (1974), among others, have commented on the

semantics difference between the o-causative and the ni-causative. O-causatives have been
characterized as coercive causatives whereas ni-causatives have been referred to as non-
coercive causatives. Note that this choice of o or ni exists only if the verb to which –(s)ase is
attached is intransitive. If the verb is transitive, the original agent of the verb can appear only
with the dative ni. This constraint against having two or more accusative cases in the same
clause is called the Double-o Constraint (Harada, 1973).

4. Computational approach to causative verbs
We shall assign one ore more (compound) types to Japanese words and verify whether a given
string of words is a grammatical sentence by performing a calculation in the pregroup.

First, we introduce the following basic types:
π = pronoun;
ñ = proper name;
n = noun;
si = sentence,

i = 1 for the present tense;
i = 2 for the past tense.

 c1 = nominative complement;
 c3 = dative complement;
 c4 = accusative complement;
 c6 = ablative complement.

Concepts describing the grammatical constructions of the language fragment help to choose
the basic types and the ordering. However, in selecting basic types, we are primarily interested
in their algebraic effectiveness, whether or not they correspond to traditional grammatical
categories.
 We also postulate n → ñ → π.
 We then assign the following types to some representative verbs:

aruku ‘walk’: c1
rs1

kaku ‘write’: c4
rc1

rs1
otiru ‘drop’: c6

rc1
rs1

aruk-ase-ru ‘walk-CAUS-PRES’: c4
rc1

rs1, c3
rc1

rs1
kak-ase-ru ‘write-CAUS-PRES’: c4

rc3
rc1

rs1
oti-sase-ru ‘drop-CAUS-PRES’: c6

rc4
rc1

rs1

 As Harada (1973) notes, ni-causatives are possible only when the causee holds control over
the action that he/she performs. Since ‘to drop’ is usually not considered as a self-controllable
action, the causative verb otisaseru has type c6

rc4
rc1

rs1 but not c6
rc3

rc1
rs1

1.
 The typing in the pregroup formalism assumes that the verb is the central point of the
sentence. The type of the verb may change depending on the order of the complements.

1 In the context such as where the causer is a film director and the causee an actor, we can imagine that
the film director makes the actor/actress act as he/she directs. In this case, we could consider the verb ‘to
drop’ as a self-controllable action and the causative verb otisaseru would also take the type c6

rc3
rc1

rs1.

 98

However, to keep our analysis within the scope of this paper, we will consider only the most
common word order and we will ignore cases of scrambling.
(3)

a. Hanako ga tegami o kaita.
ñ (πrc1) n (πrc4) (c4

rc1
rs2) → s2

Hanako NOM letter ACC wrote
‘Hanako wrote a letter.’

b. Taroo ga Hanako ni tegami o kak-ase-ta.
ñ (πrc1) ñ (πrc3) n (πrc4) (c4

rc3
rc1

rs2) → s2
Taro NOM Hanako DAT letter ACC write-CAUS-PAST
‘Taro made Hanako write a letter.’

c. *Taroo ga Hanako o tegami o kak-ase-ta.
ñ (πrc1) ñ (πrc4) n (πrc4) (c4

rc3
rc1

rs2)
Taro NOM Hanako ACC letter ACC write-CAUS-PAST

 The calculations are performed in the following steps. We take as an example the string of
types corresponding to the sentence (3a).

ñ (πrc1) n (πrc4) (c4
rc1

rs2) = (ñπr) c1 (nπr) (c4c4
r) c1

r s2

 → 1 • c1 • 1 • 1 • c1
rs2

 = c1c1
rs2

 → 1 • s2

 = s2

 Note that we used the partial order ñ →π and n →π for the contractions ñπr → ππr → 1
and nπr →ππr → 1.

(4)

a. Hanako ga aruita.
ñ (πrc1) (c1

rs2) → s2

Hanako NOM walked
‘Hanako walked.’

b. Taroo ga Hanako o aruk-ase-ta.
ñ (πrc1) ñ (πrc4) (c4

rc1
rs2) → s2

Taro NOM Hanako ACC walk-CAUS-PAST
‘Taro made Hanako walk.’

c. Taroo ga Hanako ni aruk-ase-ta.
ñ (πrc1) ñ (πrc3) (c3

rc1
rs2) → s2

Taro NOM Hanako DAT walk-CAUS-PAST
‘Taro let Hanako walk.’

 In (5), the noncausative verb otiru ‘to drop’ allows either an animate or an inanimate subject.
However, the causative counterpart otisaseru ‘cause to drop’ requires an animate object, as
shown by the examples in (6).

(5)

a. Taroo ga saka kara otita.
ñ (πrc1) n (πrc6) (c6

rc1
rs2) → s2

Taro NOM hill from fell
‘Taro fell from the hill.’

b. Hon ga tana kara otita.

 99

n (πrc1) n (πrc6) (c6
rc1

rs2) → s2

book NOM shelf from fell
‘The book dropped off the shelf.’

(6)

a. Ziroo ga Taroo o saka kara oti-sase-ta.
ñ (πrc1) ñ (πrc4) n (πrc6) (c6

rc4
rc1

rs2) → s2

Ziro NOM Taro ACC hill from fall-CAUS-PAST
‘Ziro caused Taro to fall from the hill.’

b. *Ziroo ga hon o tana kara oti-sase-ta.
ñ (πrc1) n (πrc4) n (πrc6) (c6

rc4
rc1

rs2) → s2

 Ziro NOM book ACC shelf from fall-CAUS-PAST
 ‘Ziro caused the book to drop from the shelf.’

 The sentence (6a) with the animate causee is grammatical; the causee (Taro) is understood to
have fallen of his own accord, and the causer (Ziro) caused this to happen indirectly. The
sentence (6b) is ungrammatical because the causee, hon ‘book’, being inanimate, cannot ‘drop
on his own accord’.
 Our current choice of typing accepts the ungrammatical sentence (6b). We must revise our
types and perhaps introduce new types so that our grammar rejects the sentence (6b).

4.1.The attribute
Pregroup grammar handles features such as agreement and number by a proliferation of basic
types. Consider the incorrect sentence I sleeps where the pronoun I has type π1 and the verb
sleeps the type π3

rs, whereπ3 stands for the third person singular. The sentence is incorrect
since there is no agreement between the subject and the verb.

(7) *I sleeps

π1 (π3
rs)

 However, if the attribute is dropped, the typing is interpreted as a subject followed by an
intransitive verb, and therefore the sentence I sleeps is accepted.

(8) *I sleeps

π (πrs) → s

 French nouns and adjectives vary in gender and number. Degeilh et al. (2005) introduce the
basic type ngn to denote a complete noun phrase, depending on its gender g and number n. They
postulate ngn → n. The type of a noun is indexed by g, which stands for 1 = masculine or 2 =
feminine, and by n, where n = 1 means singular and n = 2 means plural. Nouns are count nouns
or mass nouns; count nouns have type cgn and mass nouns have type mgn.
 Consider, for example, the noun phrase une étudiante ‘a student’, where the (feminine) article
une has type n21c21

l and the (feminine) noun étudiante has type c21.

(9) une étudiante

(n21c21
l) c21 → n21

We can treat the animacy restriction of sentences such as (6) in a similar way that Degeilh et

al. (2005) did to handle the gender and number attributes in the French noun phrases. Adding
the feature animate to our grammar will resolve the problem. We introduce the new basic types

 100

na and ña where a = 1 means animate, and a = 2 means inanimate. Further, we postulate na → n
and ña → n. The basic types π and c4 will also be indexed by a : πa and c4a. We also postulate
na →πa, ña →πa, πa →πand c4a → c4.

(10)

a. Ziroo ga Taroo o saka kara oti-sase-ta.
ñ (πrc1) ñ1 (π1

rc41) n (πrc6) (c6
rc41

rc1
rs2) → s2

Ziro NOM Taro ACC hill from fall-CAUS-PAST
‘Ziro caused Taro to fall from the hill.’

b. *Ziroo ga hon o tana kara oti-sase-ta.
ñ (πrc1) n2 (π2

rc42) n (πrc6) (c6
rc41

rc1
rs2)

Ziro NOM book ACC shelf from fall-CAUS-PAST
‘Ziro caused the book to drop from the shelf.’

 Although the types c42 and c41 differ only from one index, they are as different as n and c41.
The sequence c42c41

r does not contract to 1, and so the string of types corresponding to the
sentence Ziroo ga hon o tana kara otisaseta cannot reduce to the simple type s2.
 The following is another example similar to oti-sase-ru ‘cause to fall’. The intransitive verb
agaru ‘rise’ allows both animate and inanimate subject, but the causative verb agar-ase-ru
‘cause to rise’ requires an animate object.

(11)

a. Taroo ga butai ni agatta.
ñ (πrc1) n (πrc3) (c3

rc1
rs2) → s2

Taro NOM stage on rose
‘Taro rose onto the stage.’

b. Maku ga agatta.
n (πrc1) (c1

rs2) → s2

 curtain NOM rose
 ‘The curtain rose.’

(12)

a. Ziroo ga Taroo o butai ni agar-ase-ta.
ñ (πrc1) ñ1 (π1

rc41) n (πrc3) (c3
rc41

rc1
rs2) → s2

Ziro NOM Taro ACC stage on rise-CAUS-PAST
‘Ziro caused Taro to rise onto the stage.’

b. *Ziroo ga maku o agar-ase-ta.
ñ (πrc1) n2 (π2

rc42) (c41
rc1

rs2)
 Ziro NOM curtain ACC rise-CAUS-PAST
 ‘Ziro caused the curtain to rise.’

5. Parsing with pregroups
We implemented a parser to test and judge the accuracy of the proposed approach. We followed
the algorithm presented in Degeilh et al. (2005), which solves the decision problem of the
theory of pregroups as well as recognition by a pregroup grammar in time proportional to the
cube of the length of the input string.

Buszkowski (2001) has shown that pregroup grammars are weakly equivalent to context-free
grammars. Context-free parsing algorithms such as the ones proposed by Younger (1967) and
Earley (1970) also have complexity n3, however, the context-free grammar associated with a
pregroup grammar would include the whole dictionary in its set of rules. Furthermore, context-

 101

free algorithms use a constant factor which must bound the number of symbols and rules of the
grammar. In Degeilh et al.’s algorithm, however, the constant depends on a bound for the
number of types per word and a bound for their length, so there is no need to restrict oneself to
finite dictionaries.
 Before presenting their algorithm, let me introduce some technical definitions.

Definition 1. (Degeilh et al., 2005)
i) Let V be a non-empty set, A a partially ordered set and P the free pregroup generated by

A. A dictionary of vocabulary V with types in P is a map D from V to the set of subsets
of P.

ii) A dictionary D is bounded if there are constants k and l such that for every word v ∈ V
the set D(v) has at most k elements, and each type in D(v) has at most length l. A
dictionary D is locally finite if D(v) is finite for all v ∈ V. It is said to be finite if the
sets V, A, and D(v) are finite.

iii) A type-assignment for a string v1…vn of elements in V is a sequence t1…tn of types in P
such that ti ∈ D(vi), for i = 1,…, n.

iv) Let a be a simple type in P. A string v1…vn of elements in V is a-grammatical if it has a
type assignment t1…tn such that t1…tn → a. A sequence v1…vn is grammatical if it is a-
grammatical for some simple type a.

A type checking algorithm provides a solution to the problem of grammaticality for every

dictionary D in which the sets D(v) are finite. A type assignment algorithm provides v1…vn with
associated strings of types from the dictionary. Enumerating all the possible type assignments
would not be very efficient: if ki is the number of elements in D(vi) then there are k1k2…kn
different type assignments for v1…vn. Degeilh et al.’s recognition algorithm combines type
assignment and type checking.

The intuitive idea underlying the algorithm is as follows: we process the string of symbols W
= v1…vn from left to right, proceeding by stages. At each stage, we choose a symbol vi
represented by its index i, a type t in D(vi) and a position p in t. We examine the simple type(s)
placed just to the left of this position in some type assignment and store it (them) in the memory,
where they are kept as a ‘left parenthesis’ waiting to be contracted with a simple type that might
come later. Moreover, each of them could also be a ‘right parenthesis’ to some earlier simple
type, that is, a ‘left parenthesis’ ready for contraction. In this case, the two types are contracted;
this means that the ‘left parentheses’ awaiting contraction at the earlier stage become available
again, that is, they are stored in the memory at the present stage. This defines a function NlpDW
on the set of stages. For further details regarding the Nlp function, please refer to Degeilh et al.
(2005).

5.1.Experiment
Sentences of Japanese are written without word boundaries. The use of a morphological
analyzer is thus required to identify words and their grammatical category. This preprocessing
phase was realized by the use of the Japanese morphological analyzer system Mecab
(http://mecab.sourceforge.net/). Mecab’s output then served as input to our pregroup parser.
 Here, I confined my attention to a minuscule portion of Japanese grammar, focusing on
causative constructions. But as the syntactical analysis will become more exhaustive, the
introduction of new types will be needed. Hence, the data must be organized in an efficient
way; grammatical categories and their corresponding types were organized into a dictionary.
 We designed the dictionary so that a sequence of words is a grammatical construction if and
only if one of the corresponding strings of types reduces to a basic type, say α. In the case
where a word has more than one type, it is sufficient that one of the possible choices yields a
string reducing to the basic type α.

 102

http://mecab.sourceforge.net/

 Every dictionary that respects this equivalence is said to be correct (it recognizes only
grammatical constructions) and complete (it recognizes all grammatical constructions of the
language fragment) (Degeilh et al., 2005).
 A correct and complete dictionary satisfies the following robustness properties (Degeilh et al.,
2005):

i) Assigning new types to words:

Suppose a word w has type β and we also give it type α such that α → β, then every
string of words that is accepted using β for w is also accepted using α.

ii) Extensions by new basic types:
One can extend a given set A of basic types, by declaring new types and adding
inequalities involving the new types, thus obtaining a larger set of basic types A′. Then
the free pregroup P′ generated by A′ includes the free pregroup P generated by A.

 This signifies that we can increase the language fragment by adding new types to the
dictionary, without having to repeat verification of correctness and completeness performed
before the extension.

6. Conclusion
We proposed a computational approach based on pregroup grammar to analyze causative
constructions in Japanese. We introduced basic types and have assigned types to words which
allowed us to account for the linguistic data, recognizing grammatically well-formed sentences.
 Using the pregroup algorithm proposed by Degeilh et al. (2005), we developed a parser to
confirm the validity and the efficiency of our grammar. Furthermore, it would be easy to add
new types in the dictionary to cover other grammatical constructions.
 Pregroup grammars are particularly well suited for investigating the computational aspect of
language processing. The grammar rules are universal: they are the same whatever the language,
only the dictionary changes. Moreover, pregroup grammars gain in expressive power by the
introduction of a higher number of basic types.
 The pregroup formalism may not be as expressive as other formalisms such as the HPSG
framework, as it does not provide any structure for the phonological and semantic information,
however, it enables us to parse sentences by means of simple calculations. Furthermore, in
analyzing a sentence, we go from left to right, imitating the way a human hearer might proceed.

References
Buszkowski, W. 2001. Lambek Grammars Based on Pregroups. In P. de Groote, G. Morrill, and

C. Retoré, ed., Logical Aspects of Computational Linguistics, 95-109. Springer LNAI
2099.

Cardinal, K. 2002. An Algebraic Study of Japanese Grammar. Master’s thesis, McGill
University.

Degeilh , S. and Preller, A. 2005. Efficiency of Pregroups and the French Noun Phrase. Journal
of Logic, Language and Information, 14, 423-444.

Earley, J. 1970. An Efficient Context-Free Parsing Algorithm. Communications of the AMC,
13(2), 94-102.

Harada, S.I. 1973. Counter-Equi NP Deletion. Research Institute of Logopedics and Phoniatrics,
Annual Bulletin, University of Tokyo, 7.

Kitagawa. C. 1974. Case Marking and Causativization. Papers in Japanese Linguistics, 4, 43-
57.

Kuno, S. 1973. The Structure of the Japanese Language. No. 3 of Current Studies in Linguistics.
The MIT Press, Cambridge, Massachusetts.

 103

Lambek, J. 1999. Type Grammar Revisited. In A. Lecomte, F. Lamarche, and G. Perier, ed.,
Logical Aspects of Computational Linguistics, pp. 1-27. Springer LNAI 1582.

Miyagawa, S. 1980. Complex Verbs and the Lexicon. In Coyote Papers, 1. University of
Arizona, Tucson.

Miyagawa, S. 1984. Blocking and Japanese Causatives. Lingua, 64, 177-207.
Miyagawa, S. 1986. Restructuring in Japanese. In T. Imai and M. Saito, ed., Issues in Japanese

Linguistics. Foris, Dordrecht, 1986.
Miyagawa, S. 1989. Structure and Case Marking in Japanese, volume 22 of Syntax and

Semantics. Academic Press, San Diego.
Shibatani, M. 1973. Semantics of Japanese Causativization. Foundation of Language, 9, 327-

373.
Younger, D. 1967. Recognition and Parsing of Context-Free Languages in Time n3.

Information and control, 10(2).

 104

	1. Introduction
	2. Pregroup grammar
	3. The structure of causative verbs
	4. Computational approach to causative verbs
	4.1. The attribute
	5. Parsing with pregroups
	5.1. Experiment

	6. Conclusion
	References

