Proceedings of PACLIC 19, the 19th Asia-Pacific Conferenckamguage, Information and Computation

LPath™: A First-Order Complete Language
for Linguistic Tree Query

Catherine Lai and Steven Bird

Department of Computer Science and Software Engineering
University of Melbourne, Victoria 3010, AUSTRALIA

Department of Linguistics and Linguistic Data Consortium
University of Pennsylvania, Philadelphia PA 19104, USA

laic@ling.upenn.edu ,Sb@csse.unimelb.edu.au

Abstract

Annotated linguistic databases are widely used in linguistsearch and in
language technology development. These annotations pieally hierarchical,
and represent the nested structure of syntactic and psodstituents. Recently,
the LPath language has been proposed as a convenient zaith-lamguage for
guerying linguistic trees. We establish the formal expuvesgess of LPath relative
to the XPath family of languages. We also extend LPath to piesimple clo-
sures, resulting in a first-order complete language whiclbaleve is sufficiently
expressive for the majority of linguistic tree query needs.

1. Introduction

In recent years, a great variety of linguistic query langsagave been proposed, most of them
specialised for linguistic trees (Lai and Bird, 2004), amglaed to corpora such as the Penn
Treebank (Marcus et al., 1993). Despite this considerdfuet erelatively little is known about
the formal expressiveness of these languages, or the catignal resources required to process
them as the size of the data grows. One reason for this is theh mof the work in this area
has taken place in isolation from well-understood dataljasey languages such as SQL and
XPath (Clark and DeRose, 1999).

Recently, the LPath language has been proposed as a camvpaib-based language for
guerying linguistic trees (Bird et al., 2006). It augmertts havigational axes of XPath with
three additional tree operators, and it can be translattanSQL for efficient execution. In this
paper we investigate the expressiveness of LPath with cegp€ore XPathand to a first-order
complete language callggionditional XPath We also extend LPath to permit simple closures,
and argue that this new language supports all the navigdtemd closure requirements of
linguistic tree query.

This paper is organised as follows. Section 2 reviews LP&®ath, and Conditional XPath,
and Section 3 examines the LPath operators to see which wof the be expressed in XPath
or Conditional XPath. Section 4 presents an extended laygg@onditional LPath, or LPath
and discusses its merits as a linguistic tree query language

NPg V5 Detg Ad]g N10 Preﬂg Det14 N15 N17
lex: lex: lex: lex: lex: lex: lex: lex: lex:
| saw the old man with a dog today

Figure 1: Tree Representation

2. Background: LPath and XPath

2.1. LPath

LPath was developed to be expressive enough for linguistérygbut also to take advantage
of relational database technology. As the name sugges&thliB an extension of XPath.
Bird et al. (2006) present three linguistically motivatgahtactic additions. These are the
immediate followingxis (and its converse), tree edge alignment, and a scopsgr. They
also present an efficient interpreter for LPath which cotsviePath expressions into equivalent
SQL expressions over annotation graphs (Bird and Liberr2@@1). Here are a selection of
examples intended to illustrate the syntax and interpogtatf LPath queries. When applied to
the tree in Figure 1 they return the specified node sets.

1. /IS[/I_[@lex=saw] {(S}
Find a sentence containing the waawn
2. IIN->NP {NPg, NP;}
Find noun phrases that are immediately following a verb.
3. INPIV-->N {Nyg, Ni5, Ni7}
Find nouns that follow a verb which is a child of a verb phrase.
4. IINP{IV-->N} {Nyo, Nj5}
Within a verb phrase, find nouns that follow a verb which is ddcbf the given verb
phrase.
5. IINP{INP$} {NPs}
Find noun phrases which are the rightmost child of a verbgghra
6. /IVP{/INP$} {NPs, NP3}
Find noun phrases which are rightmost descendants of a Zease.
7. INP[{/"V->NP->PP$}] {VP,}
Find verb phrases comprised of a verb, a noun phrase, angasitienal phrase.

Proceedings of PACLIC 19, the 19th Asia-Pacific Conferenckamguage, Information and Computation

locpath ;= abspath | abspath '{" locpath '} |
locpath ’|' locpath
abspath = | locstep abspath
locstep = axis test | axis test '[fexpr]
fexpr = locpath | fexpr 'and’ fexpr | fexpr 'or’ fexpr
| 'not’ fexpr | '(fexpr ')
axis = VW N A B N B/ *
S IR I IS
= ks | e | k==
test = pl_|"pl|pP¥
Figure 2: LPath Syntaxy(is a node label; attribute syntax is omitted)
\ parent / child
\\ ancestor I descendant
\\ * ancestor or self I/l = descendant or self
-> immediate following <- immediate preceding
--> following <-- preceding
=> immediate following sibling <= immediate preceding sibling
==> following sibling <== preceding sibling

self

Figure 3: LPath Axes and their Interpretation

The syntax of LPath is described in Figure 2. Figure 3 givedithnslation of abbreviated
axes. We briefly review the syntax of LPath here, and referghder to (Bird et al., 2006) for
full details.

Scoping: The scopingoperator is denoted by pairs of brac@s, These braces represent
gueries constrained to a particular subtree rooted by theegkbnode immediately before the
opening brace. The location path inside the scoping bracegailuated as if this subtree were
the whole of the input. This allows us to write queries restd to a particular constituent.

Alignment. Left and right tree edge alignmerit,and $ respectively, together with the
scoping operator allow us to constrain a node to be leftnragitthost) edge in a constituent.
For example, the following query returns sentenc@$apelled nodes) that begin with a noun
phrase and end with a verb phrad&{[//"NP-->VP$]}

Horizontal axes. Theimmediate followingaxis,-> , is the natural one-step version of the
followingaxis,--> . We can consider this axis as taking a step to constituemieoirately right
of the current context node. LPath also includesnamediate following siblingelation.

These extensions to XPath give LPath the ability to expreasge of linguistic tree queries.
However, LPath cannot express closures of any sort, andhdtislear where LPath lies on the
hierarchy of XPath languages. Nor is it clear what extra esgiveness, if any, the LPath
operators offer to these path-based languages. The folipsé@ctions explore this question, and
indicate how LPath can be extended to express closures,amdurh an extension might be
efficiently implemented.

locpath = locstep | /locpath | locpath /" locpath |
locpath ’|' locpath

locstep = axis::test | axis::test[fexpr]...[fexpr]
fexpr = locpath | fexpr 'and’ fexpr |
fexpr ’'or’ fexpr | 'not’ fexpr | '(C fexpr ')
axis = ancestor | ancestor_or_self | parent | child |
descendant | descendant_or_self | self |
following | preceding |
following_sibling | preceding_sibling |
test = p | _

Figure 4: Syntax of Core XPath

Notation. The following sections take an incremental approach tostigating the expres-
siveness of Core XPath and LPath extensions. This involgesral languages constructed
and related by restrictions on closures and the LPath apsrakefined above. Subscripts
and superscripts denote the addition of a particular operat;” denotes Conditional XPath
extended with the scoping operator (but Fetor its converse)X’.,; represents Core XPath
with -> | => and their converses, scoping and edge alignment, that &hld? L. £ denotes
LPath extended with the conditional axis.

2.2. XPath and Conditional XPath

Marx (2004) presents a family of XPath languages that extieadavigational functionality of
XPath 1.0. Core XPathX) was originally presented by Gottlob et al. (2003). Thigjlaage
can be seen as XPath 1.0 stripped of non-navigational coemg®rsuch as attributes and
namespaces. The syntaxAfis shown in Figure 4.

Conditional XPath &' *) extendsY’ primarily by adding a conditional axis. This expresses
conditional paths where every node in that path satisfiestecpkar condition represented as a
filter expressionX'* replaces the definition @fxis in Figure 4 as follows:

axis = primaxis | '[fexpr T primaxis |
primaxis [fexpr T | axis ’ *
primaxis := self | child | parent |

immediate_following_sibling |
immediate_preceding_sibling

Primary axesfrimaxis) represent the smallest steps that can be taken in each direc
tion from nodes in a tree. Note} does not include the one-step sibling akismediate
following sibling or its converse. However, it does include its transitivesales,following
sibling. In fact, the transitive closures of each primary axis aduited in X’ so we will
use these axis names for non-conditional closures. For gheahild =* is equivalent to
descendant_or_self . We also defineaxis+ as the non-reflexive transitive closure of
an axis agaxis::_/(axis) * . Again, we will denotechild+ asdescendant

Xt is a first-order complete language. However, it is not alwegsy translate first-order
formulas into path expressions. For example, there is @fteaed to distinguish first and last
constituents in a phrase or to find the next constituent. bae linguistic phenomena are often

Proceedings of PACLIC 19, the 19th Asia-Pacific Conferenckamguage, Information and Computation

Figure 5: Scoping induced cycleNP{//PP-->N\\VP}

restricted to particular types of constituents and themnteots. In order to express scoping we
need expressions that have some way of remembering thesubay should be in. However,
path-based, variable-free languages like have no explicit memory and so can only do this
implicitly.

3. TheRédationship between L Path, XPath and Conditional XPath

How does the expressiveness of LPafh,compare with that oft and X'+, existing well-
understood languages? Perhaps LPath is just a syntadgantvaf one of them, in which case
we could build an interpreter to conveitexpressions t&” or X+ expressions. We take up this
guestion in the next two subsections.

3.1. LPath Operatorsand Core XPath

To begin, it is easy to see that edge alignment can be exprasseé. We note the following
equivalences’A = A[not <--] andA$=A[not -->]

The scoping operator can be thought of as the assertion tt@haance relation between
the scoping node and those appearing within the scoping®rddis is illustrated in Figure 5.
Here, the querWNP{//PP-->NP\\VP} is drawn as a cyclic graph where edges are labelled
with the axes relating pairs of nodes. The scoping congtcaimesponds to the extra dashed
edges.

The difficulty implementing the scoping operator in patlsdhlanguages such asis that
they have no memory of previous steps. In general, it is nesipe to return to a particular
node unless every node in the tree is uniquely labelled. iSlulgarly not the case for linguistic
trees. In order to to transform a ‘scoped’ expression info expression we need to convert
cyclic queries into a disjunction of acyclic ones. An algom that does exactly this for the
positive fragment oft’ has been presented by Gottlob et al. (2004). Pos#iivs the set oft
expressions that do not include negation in filter expressidHowever, note that positivE&
cannot express the edge alignment operators.

Lemma 1. The scoping operator adds no expressiveness to Pogditive

Proof. Let L be anC expression that uses the scoping operator. We simply degutéry graph
of L addingdescendant labelled edges between scoping and scoped nodes. Nowgtirélain

of Gottlob et al. (2004) results in a disjunctiai,of acyclic query trees that is equivalent to the
original (cyclic) query. Each query tree in the disjunctias a node that represents the target
node set of of the original expressi@n Thus each query tree iR is equivalent to a finite set

VP

PP N PP N

Figure 6: Acyclic version oNP{//PP-->N \\VP}

of filter expressions}” = {F;}, based at. ThusL is equivalent to & expression of the form
Il [A] whereA =\/F,. O

The result of applying this transformation on theexpressiorNP{//PP-->N\\VP} IS
shown in Figure 6. The equivaleAt expression is as follows.

JIN\WP_<=\\NP[// «PP] or W +_<= [// +PP]\WWP\NP or
\WP<= [/l *PP]\NP]

Unfortunately, this technique does not extendiaexpressions with negation. Negation
within the scoping braces only holds inside the scoped sabfrhis is not a problem for negated
paths that do not involve thewcestor axis because such paths cannot escape the scoped subtree.
However, the effects of negation and scoping ondhe:stor axis give the following lemma.

Lemma 2. &) is strictly more expressive thaki.

Proof. Consider thel expression/B/A{//A[not (_[not .A])]} . This finds A-
labelled nodes such that there isgpath of nodes whose labels conform to the regular expres-
sion AT B. Now, Marx and de Rijke (2004) have shown that.&llqueries can be expressed
in first order logic over trees using at most two variableseeaed withchild andimmediate
following sibling However, the regular expression above cannot be expressad signature

in less than three variables (Marx, 2005). O

A similar linguistic example is th&€ query//NP{//VP[not \\PP]} . This expression
selects VPs that are dominated by NPs with no interveningN@Pcan express this iA'*
as/INP(/_[not PP)) * [VP . However, as we have seen, this closure cannot be expressed
in X.

The other additions of to X are the one-step horizontal axes. The next lemma follows
from Marx (2005).

Lemma 3. Theimmediate following siblingand immediate followingaxes, and their con-
verses, cannot be expressedtin

Thus, X, Is strictly more expressive thati, and sal is also strictly more expressive thah
We proceed to incrementally adtoperators tot’ as primitives to gain a further idea of the
expressiveness they provide. Consider. Since edge alignment can be expressedl it is
equivalent tof without the scoping operator. Now, if scoping was redundait.. , then X,
would be expressively equivalenttb However, we can show that this is not the case.

Proceedings of PACLIC 19, the 19th Asia-Pacific Conferenckamguage, Information and Computation

Vv NP PP

Figure 7: Scoping and immediate following. Dashed linescaie the path of the query.

Lemmad4. L is strictly more expressive thakti. .

Proof. The additional axes express sequential relations and sotdgve X, any more ability
to express queries of the forffB/A{//A[not (\\ [not .A]D]} . Thus, the scoping
operator is not expressible ii. . O

In fact, the interaction ofZ operators results in queries that require other closuras th
are inexpressible iX’. First, consider the interaction of the scoping and edggnaient
operators. As noted previously, this allows us to exprebtree edge alignment. The query
IIS{[/'NP-->VP$]} is equivalent to constraining tidP (VP) to be a leftmost (rightmost)
descendant of th8. This requires us to be able to state that every node oh-beth between
theS andNPhas no left sibling. This is just the conditional axis, whislinexpressible it

Second, consider the scoping operator andritaediate followingxis. This axis allows
the current context node to move outside of the scoped subfras is demonstrated in Figure 7.
Consider a situation where we wish to find verb phrases (VR)aoing a noun phrase (NP)
immediately followed by a prepositional phrase (PP). TeatMP{//NP->PP} . From the
point of view of the NP node, there is no way to tell if an imnagdifollowing PP is dominated
by the same VP originally being tested. If order to constrainto be within a subtree, we
need to phrase this constraint using other axes. (Note hledbllowing axis, --> , can be
alternatively defined as:> t[F| =\ *_==> [/ *{[F].)

Now, the only chance that we may leave the scope is if the &oceart of the expression
takes us above the scoping node. As long as we constrain hap the ancestor is chosen, we
are assured of staying within the scope. The cycle-remaadggrithm of Gottlob et al. (2004)
enumerates the possible positions such an ancestor can take

Although-> has a similar form to its closure> it requires further constraints that are
inexpressible int'. Specifically, we need to to be able to identify ancestorsdharightmost
and descendants that are leftmost. This is much the samebtasesedge alignment. As in
the previous example, these constraints cannot be exgrasde Importantly, this means that
the only way we can represent the immediate following retats with the primitive. Without
some sort of memory device there is no way to force this prmnib stay within a scope. Ina
first-order formulas such a memory device would come in theafof extra variables.

Putting all this together gives a clear picture of the exgiveness is required to implement
L operators using members of the XPath family of languagess dkear the scoping and the
immediate following axes are more than syntactic sugar éncttintext ofX’. The interaction
between all thre€ operators as well as negation indicate thaéquires some of expressiveness

of the conditional axes. The next section looks at the afiéthese operators in the setting of
Conditional XPath.

3.2. LPath operatorsand Conditional XPath

The first thing to notice in moving to Conditional XPatk'{) is that the immediate following
relation is now expressible> = ([not(=> _)]\) * => ([[not(<=)]) *

Since X is contained inY'*, the definitions of edge alignment operators carry over from
X. Once again, the scoping operator requires more work. Heryéwe ability to express this
follows immediately from the first-order completenessiof queries (Marx, 2005). Consider
now X" with the scoping operator added to its syntax:.

Lemmab. X" is as expressive a¥;’.

Proof. Any X" with scoping braces deleted is jusf@& expression. Therefore we can write
any X" expression ignoring any scoping braces into a first-ordenfita¢(z, y). Let z be the
variable representing the scoping node andigt . . , w, be variables representing nodes in the
scoped location path. For eagh we conjoin the clausdescendant(z, w;) in the appropriate
variable scope. Since this does not change the number oVdrgles this has an equivalent
Xt expression. O

Thus all theL operators are expressible #7". Moreover, the first-order completeness of
X T means that the interactions betwe&nperators can add no extra expressiveness. However,
there is no Kleene star ifi so the reverse case is clearly not true. This gives us thewlp
theorem.

Theorem 6. L is strictly contained int'+.

That is, the expressiveness of LPaff) (ies strictly between Core XPatht]) and Con-
ditional XPath). ThusL is a new member of the XPath family of languages, and not a
notational variant of one of the existing languages.

4. Conditional LPath

4.1. The Expressiveness of Conditional L Path

The obvious question now is whethémwith conditional axis£*, is any more expressive than
XT. The main point of difference between the two languagesasthtus of the thenmediate
following (->) axis. This is elevated to rank of primitive axis ih Unfortunately, treating
-> as a primitive axis does not necessarily give it the sameepti@s as the one-step axes of
XT. Consider the relation®; wherei € {=>, <=,/,\ }. If (z,y) € R} there is a unique
i-path betweenr andy. This is not the case for the immediate following axis. Fheis

a many-to-many mapping and its converse, ithenediate precedingelation<-, is as well.
Consider theCt expressioB(->A)+ . We might express this in as:

following(x, y) A B(x) A A(y) A Vz(following(z, z) A following(z,y) — A(2))

The possibility of multiple> -paths betweem andy makes this formula too strong a statement.
The original L™ expression only requires tlexistenceof an-> -path between nodesandy

Proceedings of PACLIC 19, the 19th Asia-Pacific Conferenckamguage, Information and Computation

wherex has labelB and the other nodes are labellédThe formula above requires a# -paths
to have this property.

However, we can derive a formula that is equivalent to thedséihed byB(->A)+ as
follows. Letz andy be nodes such thétllowing(z, y), wherex andy are labelledB and A
respectively. Let be the first common ancestor #fandy and denote the subtree rootedvat
asT,. We also need the following to hold. For each |eaEtween: andy there is at least one
node:z labelled A on the each -path from al to v. This set ofz nodes gives us the required
-> -path. A first-order formula that expresses is as follows:

imf g+ (z,y) = following(x, y) A B(x) A A(y)A
Vz((following(x, z) A following(z, y) A leaf(z)
— Jw((z = w A A(w)) V (ancestor(z, w) A A(w) A = ancestor(w, x)))).

We can easily letd and B represent location paths instead of labels in the the farabbve.
So this formula can easily be modified to deal with the conddi-> axis in general. This
means that alC* expressions without scoping braces can be expressedriestiogic. As in

Lemma 5, we can trivially add the scoping operat6r. clearly containst* so we have the
following equivalence:

Theorem 7. LT has the same expressivenesstas As a result,.t path sets are first-order
complete.

In fact, we can find an equivaleAt™ expression for the conditional immediate following
axis using the fact thak’* is closed under intersection and complementation (Mar@520
First note that the formulanfz 4+ (z, y), hence the* query//B(->A)+ , is equivalent to the
following:

imf g4+ (x,y) =following(x, y) A B(z) A A(y)A
—3z((following(z, z) A following(z, y) A leaf(z)
A —=Jw((z =w A A(w)) V (ancestor(z, w) A A(w) A = ancestor(w, x))))

We can write this using intersections and complements ofpath well-formed formulas. Let
d(x,y) = (?B/ancestor [(child?-A)* [?leaf) N following.
Now we can write an expression equivalent/@&(->A)+

imfga+ (z,y) = (?B/ following? A) N ¢/ following.

Along with the proof, Marx (2005, Theorem 2) provides a metifar finding the comple-
ment of anyX'* path set. Thus, we now have a concrete method for translétirexpressions
into X'+,

4.2. Conditional LPath asLinguistic Tree Query Language

LT is capable of expressing a large range of linguistic treaigsieincluding all the basic
subtree matching queries identified in our requirementlysisg(Lai and Bird, 2004).

The only other current linguistic treebank query languagt this level of expressiveness
is fsq (Kepser, 2003). However, fsq only allows boolean gserMoreoverL*’s path-based

syntax is much more intuitive and more closely aligned taalctiescriptions of structure in
the linguistics literature (Palm, 1999). However, therstil a price to pay for choosing this
path-based variable-free approach over the variablesraditates of classical first-order logic.

The major advantage of the classical approach of fsq is tréthles can be used to identify
specific nodes throughout a query. The scoping operatouatstor cases where there is a need
to identify the root of a particular subtree, the scopingeat every step in a path expression.
However, althoughC™ is first-order complete, it is not always clear how a firstesrtbrmula
can be converted into a (variable-fre&) expression.

First-order completeness tells us that the following quelxpressibleFind the first com-
mon ancestor of noun phrases immediately followed by a verasg This can be expressed
as follows:

¢(x) =3y3z descendant(x, y) A descendant(x, z) A NP(y) A VP(z)
A following(y, z) A =32 (following(z, ') A following (2, y))
A —3w(descendant (w, y) A descendant(w, z)).

However, even with thenmediate followingxis and the scoping operator it is not very obvious
how this can be expressed . Note that the following query is incorrect,

Il_[{/INP->VP} and not(//_{//NP->VP})]

This is because ead¥P (or VP) may refer to completely different nodes. We can express thi
query by using thet'+ definition of theimmediate followingelation rather than the primitive
-> axis.

Il _[I_[(NP or (/_[not(=>)]) * INP[not(=>_)) and
=> (VP or (/_[not(<=)]) * [VP[not(<=)])]

However, this is a very different approach to representimgydort of query than suggested by the
first-order formula above. These problems are inherenttto-pased, variable-free languages.
As an example of how sequential closures are expressedieoiise following queryFind
words consisting of consonant-vowel-consonant sequérogtsvords, consonants and vowels
be represented by the labal¢ C, andV respectively. We can express this querydn as

follows: //W{[/"C(->C) * (->V)+(->C)+_$]}

Here, the> axis allows us to capture the case where the consonants amtsvmay not all
be at the same depth. Moreover, the scoping operator pegidenvenient way of specifying
subtree edge alignment. This allows us to specify completbhat a node dominates.

We can express more hierarchical closures too, for exangdied NPnodes that conform to
the simple grammar fragmemMiP — Adj NP ; NP— Nas://NP[({/"Adj=>NP$}) * [N]

The addition of themmediate followingandimmediate following siblingxes completes
the set ofX axes for navigating trees. Ifit, each axis has a corresponding one-step axis. The
LT axis set accounts for both hierarchical, sequential arohgibrderings on unranked ordered
trees. As such, there do not appear to be any such (uncamajti@lations lacking in th&™
axis set. ThusL* appears to have the complete set of axes necessary fordtiwnee query.

1This is slightly harder version of the query in Cassidy (2002

Proceedings of PACLIC 19, the 19th Asia-Pacific Conferenckamguage, Information and Computation

5. Conclusion

LPath was proposed as a new query language which augmeastad\lyational axes of XPath
with three additional tree operators. The analysis of Legirators shows that they are more
than just syntactic sugar. In fact, LPath takes up a new rumthe expressiveness hierarchy
strictly between Core and Conditional XPath. ConditionBath, LPath extended with the
conditional axis, has the same expressiveness as Coradi¥étath. This provides evidence
that the closures required for linguistic query can be igstl to conditional paths, and supports
the argument that first-order logic provides enough expressss for our linguistic tree query
needs.

6. Acknowledgements

This research has been supported by an Australian Postdeadward (Lai) and by the US
National Science Foundation project 0317&2éerying Linguistic Databasg®ird). We are
grateful to Marcus Kracht and Maarten Marx for helpful dissions of this work. A substan-
tially expanded version of this work may be found in the firsth@r's masters thesis (Lai,
2005).

References

Bird, S., Chen, Y., Davidson, S. B., Lee, H., and Zheng, YO@O0 Designing and evaluating an XPath
dialect for linguistic queries. 182nd International Conference on Data Engineering

Bird, S. and Liberman, M. (2001). A formal framework for linigtic annotationSpeech
Communication33:23-60.

Cassidy, S. (2002). XQuery as an annotation query languagse case analysis. Rroceedings of
LREC 2002, Las Palmas, Spain, May

Clark, J. and DeRose, S. (1999%ML Path language (XPath)W3C.
http://www.w3.0rg/TR/xpath

Gottlob, G., Koch, C., and Pichler, R. (2003). The compiegit XPath query evaluation. In
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-STG&RIposium on Principles of
Database Systems, POD#ges 179-190, San Diego, CA, USA. ACM.

Gottlob, G., Koch, C., and Schulz, K. U. (2004). Conjunctixeeries over trees. IRroceedings of the
Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on i of Database Systemages
189-200, Paris, France. ACM.

Kepser, S. (2003). Finite structure query: A tool for quegysyntactically annotated corpora. BACL
2003: The 10th Conference of the European Chapter of thecfetgm for Computational
Linguistics pages 179-186.

Lai, C. (2005). A formal framework for linguistic tree queylaster’s thesis, Department of Computer
Science and Software Engineering, University of Melbourne

Lai, C. and Bird, S. (2004). Querying and updating treebaaksritical survey and requirements
analysis. InProceedings of the Australasian Language Technology Wogkpages 139-146.
http://eprints.unimelb.edu.au/archive/00000774/

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (199Building a large annotated corpus of
English: The Penn Treebanomputational Linguistics19(2):313-30.
http://www.cis.upenn.edu/treebank/home.html

Marx, M. (2004). XPath with conditional axis relations. Adlvances in Database Technology - EDBT
2004, 9th International Conference on Extending Databasghiiology, Proceedingsolume 2992
of Lecture Notes in Computer Sciengages 477-494, Heraklion, Crete, Greece. Springetr.

Marx, M. (2005). First order paths in ordered trees. In Eifeand Libkin, L., editorsPatabase
Theory - ICDT 2005, 10th International Conference, EdigbyrUK, January 5-7, 2005,
Proceedingsvolume 3363 of.ecture Notes in Computer Scienpages 114-128. Springetr.

Marx, M. and de Rijke, M. (2004). Semantic characterizatibnavigational XPath. Ifroceedings of
TDM’'04 Workshop on XML Databases and Information RetrieValente, The Netherlands.

Palm, A. (1999). Propositional tense logic for treesPhceedings of the Sixth Meeting on
Mathematics of Language: MOL.Bniversity of Central Florida, Orlando, Florida.

