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Abstract

Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars
(LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars
(HPSG) (Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is
knowledge-intensive, time-consuming and (often prohibitively) expensive. A number of
researchers have recently presented methods to automatically acquire wide-coverage,
probabilistic constraint-based grammatical resources from treebanks (Cahill et al., 2002, Cabhill
et al., 2003; Cahill et al., 2004; Miyao et al., 2003; Miyao et al., 2004; Hockenmaier and
Steedman, 2002; Hockenmaier, 2003), addressing the knowledge acquisition bottleneck in
constraint-based grammar development. Research to date has concentrated on English and
German. In this paper we report on an experiment to induce wide-coverage, probabilistic LFG
grammatical and lexical resources for Chinese from the Penn Chinese Treebank (CTB) (Xue et
al., 2002) based on an automatic f-structure annotation algorithm. Currently 96.751% of the
CTB trees receive a single, covering and connected f-structure, 0.112% do not receive an f-
structure due to feature clashes, while 3.137% are associated with multiple f-structure
fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical entries with
20 distinct subcategorisation frame types. Of these 3436 are verbal entries with a total of 11
different frame types. We extract a number of PCFG-based LFG approximations. Currently our
best automatically induced grammars achieve an f-score of 81.57% against the trees in unseen
articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against
the dependencies derived from the f-structures automatically generated for the original trees in
301-325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the
dependencies derived from the manually annotated gold-standard f-structures for 50 trees
randomly selected from articles 301-325.

1 Introduction

Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars (LFG)
(Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars (HPSG)
(Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is knowledge-
intensive, time-consuming and (often prohibitively) expensive, constituting an instance of the
knowledge acquisition bottleneck familiar from other traditional rule-based approaches in Al and
NLP.

Starting with Charniak (1996), many researchers have explored automatic grammar acquisition
methods where grammatical information is induced from treebanks. This approach incurs low
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development cost and produces wide-coverage, robust, state-of-art resources. However, (with few
exceptions) the grammars induced are mostly "shallow", i.e. without the deep syntactic (dependency)
or semantic information captured by deep, constraint-based grammar formalisms such as LFG or
HPSG.

A recent body of research had extended the basic paradigm of automatic PCFG acquisition from
treebanks to the extraction of deep, wide-coverage, constraint-based grammars and lexical resources
such as LFG (Cahill et al., 2002; Cahill et al., 2003; Cahill et al., 2004; O’Donovan et al., 2004),
HPSG (Miyao et al., 2003; Miyao et al., 2004) and CCG (Hockenmaier and Steedman, 2002;
Hockenmaier, 2003). Cahill et al. have developed a methodology for the automatic f-structure
annotation of treebanks from which LFG grammars and lexical resources are extracted. To date this
research has been applied to the Penn-II treebank (Marcus et al., 1994) for English and the TIGER
treebank (Brants et al., 2002) for German. In this paper, we report on an experiment to extend this
research to a new language—Mandarin Chinese—via the Penn Chinese Treebank (CTB) (Xue et al.,
2002).

In Section 2 we first give a brief review of Lexical-Functional Grammar. Section 3 provides a
short description of the CTB (Xue et al., 2002). We present an automatic f-structure annotation
algorithm for the CTB. The algorithm generates proto-f-structures (Cahill et al., 2002). Proto-f-
structures capture basic but possibly incomplete predicate-argument-adjunct structure as they do not
yet resolve long-distance dependencies. Section 4 outlines the architecture underlying the automatic f-
structure annotation algorithm and how it was applied to the CTB. Section 5 provides an evaluation of
the f-structures produced by the annotation algorithm against a gold-standard of f-structures for 50
randomly selected trees from articles 301-325 CTB. Section 6 details the process of extracting lexical
resources from the f-structure-annotated CTB. The extraction of PCFG- (Probabilistic Context Free
Phrase Structure Grammar-) based LFG approximations from the f-structure-annotated CTB is
presented and evaluated in Section 7. Conclusions and an outline of ongoing and future work are
provided in Section 8.

2 Lexical-Functional Grammar

Lexical-Functional Grammar (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) is an early member
of the family of constraint-based grammar formalisms (FUG, PATR-II, GPSG, HPSG, etc.). It enjoys
continued popularity in theoretical and computational linguistics and natural language processing
applications and research. At its most basic, an LFG involves two levels of representation: c-structure
(constituent structure) and f-structure (functional structure). C-structure represents surface
grammatical configurations such as word order and the grouping of linguistic units into larger phrases.
The c-structure component of an LFG is represented by a CF-PSG (context-free phrase structure
grammar). F-structure represents abstract syntactic functions such as sub(ject), obj(ect), pred(icate),
sentential comp(lement), open xcomp(lement), adj(unct), app(osition) etc. in terms of recursive
attribute-value structure representations approximating to basic predicate-argument-adjunct or
dependency structure. These syntactic representations abstract away from the particulars of surface
configuration. The motivation is that while languages differ with respect to surface representation they
may still encode the same (or very similar) abstract syntactic functions (or predicate-argument
structure).

3 Penn Chinese Treebank version 3.0 (CTB)

The Penn Chinese Treebank (CTB) version 3.0 (Xue et al., 2002) consists of 4185 sentences of
Xinhua newswire text in Mandarin Chinese (with 99,529 words — about a tenth of the Penn-II treebank
(Marcus et al., 1994)) in 325 articles. Chinese is subject pro-drop and exhibits little morphological
marking. The CTB assumes that Mandarin Chinese is strictly configurational. The CTB annotation
scheme involves 33 POS-tags, 17 phrasal tags, 6 verb compound tags, 7 empty category tags and 26
functional tags. The CTB functional tags (Tag) can be attached to phrasal tags (Cat) to form Cat-Tag
pairs. Functional tags are used to identify statement type (e.g. -Q(uestion)), to classify adjuncts (e.g. -
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TMP temporal) and to indicate a basic distinction between subject and object grammatical function (-
SBJ, -OBJ). CTB annotation implements phrasal projection and configurational marking of adjuncts
and complements. For a detailed comparison between Penn-II (Marcus et al., 1994) and CTB
annotation conventions see (Levy and Manning, 2003). An example CTB tree is given in Figure 1.

(IP-HLN
(NP-PN-SBJ
(NR {LPERY)
(NR Z=19))
(vp
(VW HiIE)
(NP-OBJ
(NP-PN

(NR JE7HR))
(NP
(NN #itt)))))
YTV R L P 2 Se A

“Jiang Zemin and Li Peng condoled the bereavement of Nixon by a telegram.”
Figure 1: Example CTB tree.

4 Automatic F-Structure Annotation Algorithm

4.1 Introduction

This section outlines the architecture of the automatic LFG f-structure annotation algorithm of (Cahill
et al., 2002; Cahill et al., 2003; Cahill et al., 2004; O’Donovan et al., 2004). The generic algorithm is
modular, as outlined in Figure 2, and is language- and treebank-independent. The modules of the
annotation algorithm must be manually seeded with linguistic information for the specific
treebank/language pair, in this case the CTB for Mandarin Chinese.

v

Left/Right p| Co-ordination > Traces > Catch-All and
Annotation Matrices Clean-Up

Figure 2: Annotation Algorithm Modules

The left-right context annotation matrices are based on a bi-partition of local trees of depth one (i.e.
corresponding to CFG rules) into left context (Left) followed by the head (X) followed by right
context (Right): XP — Left X Right. Each left-hand-side category XP is associated with an annotation
matrix. For a given XP, the matrix states linguistic generalisations regarding the f-structure annotation
of constituents to the left of the local head X and to the right of X. Annotation matrices are constructed
by inspecting the most frequent rule types in a treebank expanding XP, so that the token occurrences
of these rule types cover 85% of the corpus instances of XP expansions. In the case of the Penn-II
treebank (Marcus et al., 1994) this means that instead of analysing >6000 NP rule types in the
treebank, we only look at the most frequently occurring 102 NP rule types.

Co-ordination is treated in a separate component, as treebanks often encode co-ordination in a very flat
manner. Separating out co-ordination in this way simplifies the statement of generalisations in the
annotation matrices, supporting modularity and maintainability of the algorithm. The co-ordination
component may reuse Left/Right annotation matrices to annotate local constituents outside the co-
ordinate constituents of a parent category.
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The Trace component of the algorithm exploits the treebank encoding on long-distance dependencies
and translates such dependencies into corresponding re-entrancies in the f-structures. If the trace
component is skipped, the resulting f-structures will be proto-f-structures, i.e. possibly partial
representations of basic predicate-argument-adjunct structure with long-distance dependencies
unresolved.

The first two components of the annotation algorithm sometimes overgeneralise to support the concise
statement of linguistic generalisations. Such overgeneralisation is detected and corrected by the final
Catch-All and Clean-Up component of the algorithm. Here we also provide a set of default annotations
for any remaining unannotated nodes.

4.2 Seeding the LFG Annotation Algorithm with Chinese Linguistic Information

For a recent overview on LFG-based analyses of Chinese see e.g. (Bodomo and Luke, 2003). For
LFG-based analyses of Cantonese Chinese see (Bodomo et al., 2004; Lam 2004). For LFG-based
analyses of Mandarin Chinese see (Chief, 1996; Her, 2003; Sun, 2003).

The first module of the automatic f-structure annotation algorithm, Left-Right Annotation
Matrices, head-lexicalises the CTB using the head-lexicalisation rules of (Levy and Manning, 2003).
This process creates a bi-partition of each local subtree, with nodes lying in either the left or right
context of the head. An annotation matrix is manually constructed for each parent category in the
CTB. In order to seed the matrices, for each parent category in the CTB we extract the most frequent
rule types expanding that category with joint coverage of >=85% of total rule token occurrences for
the parent category. We distinguish between identical parent categories bearing different CTB
functional tags. This results in 645 seed rule types in total. We then automatically provide partial
annotations for these seed rule types based on the CTB functional tags found with daughter categories
in the right-hand side of the rule types: to give a simple example, an —OBJ CTB tag triggers an
1OBJ=| annotation. F-structure annotation of the partially automatically annotated seed rule types is
then manually completed by the research team in Hong Kong. Annotation matrices are then
constructed from the fully annotated seed rule set by the research team in Dublin.

The annotation of co-ordinate structures is handled by a separate module in the annotation
algorithm, because the relatively flat analysis of co-ordination in the CTB would complicate the Left-
Right Context Rules module, making them harder to maintain and extend. Once the elements of the
co-ordination set have been identified, the Left-Right Context Rules module may be re-used to provide
default annotations for any remaining unannotated nodes in a co-ordinate construction.

Currently our annotation algorithm does not include a trace component resolving long-distance
dependencies, so that the annotation algorithm generates proto-f-structures for the CTB. Resolving
long-distance dependencies in the manner of (Cahill et al., 2004) constitutes an avenue for future
work.

The Catch-All and Clean-Up module provides default annotations for remaining unannotated
nodes that are labelled with CTB functional tags. The functional tag —SBJ, for example, would be
annotated 1SUBJ=|, while phrasal categories bearing —-LOC or -TMP tags are annotated as elements
of adjunct sets |€TADJN. A small amount of over generation is accepted within the first two
annotation algorithm modules to allow a concise statement of linguistic generalisations. Some
annotations are overwritten to counter this problem and to systematically correct other potential
feature clashes.
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5  Annotation Algorithm Evaluation

The annotation algorithm is applied to each CTB tree and assigns functional annotations to nodes in
CTB trees. The resulting annotations are collected, passed to a constraint solver and LFG f-structures
are generated. The f-structures are evaluated for quantity and quality.

5.1 Quantitative Evaluation: Fragmentation

The annotation algorithm achieves good coverage for the CTB with 96.75% of the 3570 trees in
the CTB training set (we follow the split into development, training and test sets in (Levy and
Manning, 2003)) receiving a single connected and covering f-structure. Table 1 provides a quantitative
evaluation of the f-structures produced by the annotation algorithm. Feature clashes in the annotation
of 4 trees (0.112%) result in no f-structure being produced for those sentences. Nodes left unannotated
by the annotation algorithm in 112 trees (3.137%) resulted in separate, disjoint f-structure fragments
being produced for each of those sentences.

#Fragments | #Sentences | % Treebank
0 4 0.112
1 3454 96.751
2 105 2.941
3 4 0.112
4 1 0.028
7 1 0.028
9 1 0.028

Table 1: Annotation Coverage
5.2 Qualitative Evaluation against a Gold-Standard

While achieving such wide coverage is important, the annotation quality must be of a high
standard, particularly as the annotation algorithm plays a vital role in the extraction of wide-coverage,
probabilistic LFG parsing technology and lexical resources. Annotation quality is measured in terms
of precision and recall against the dependencies derived from a set of manually constructed, gold-
standard f-structures for 50 randomly selected sentences from the CTB test set. Following the
methodology in (Cahill et al., 2002; King et al., 2003), the 50 CTB trees were automatically annotated
with the f-structure annotation algorithm. The f-structure annotations were then manually corrected,
extended and checked over a number of iterations.

Using the evaluation methodology and software presented in (Crouch et al., 2002) and (Riezler et
al., 2002), the gold-standard f-structures and the f-structures generated by annotation algorithm were
then translated into dependency triples and evaluated. Currently the automatic f-structure annotation
algorithm achieves an f-score of 92.52% for complete f-structures and 85.92% for preds-only f-
structures (Table 2).!

All Grammatical Functions| Preds Only
Precision 92.41 85.96
Recall 92.63 85.88
F-Score 92.52 85.92

Table 2: Annotation Quality

! Preds-only f-structures consider only paths in f-structures ending in a pred feature-value pair.
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Table 3 provides a breakdown of annotation results by feature name. Note that a number of features
(classifier and obl) have been added manually to the gold-standard but are currently not supported by
the automatic annotation algorithm, while obj2 is produced by the annotation algorithm but does not
occur in the gold-standard.

Precision | Recall | F-Score
adjunct 93 86 90
app 75 100 86
classifier 0 0 0
comp 23 39 23
coord 92 99 96
det 100 100 100
noun_type 100 100 100
number type 33 67 44
obj 78 92 84
obj2 0 0 0
obl 0 0 0
pers 100 100 100
poss 98 90 94
quant 95 64 77
subj 91 87 89
topic 100 100 100
xcomp 80 80 80

Table 3: Annotation Quality Results by feature name

6 Extraction of Lexical Resources

In LFG, subcategorisation requirements are expressed at the level of f-structure and represented in
terms of semantic forms. For example, a semantic form of type pred[subj,obj] states that the predicate
pred locally requires a subj(ect) and an obj(ect) grammatical function. We refer to [subj,obj] as a
frame type.

LFG distinguishes between subcategorisable (arguments: subj, obj, obj2, comp, xcomp etc.) and non-
subcategorisable grammatical functions (adjuncts: adjn, xadjn, app etc.). If the f-structures generated
by the automatic f-structure annotation algorithm on the treebank trees are of good quality, then
reliable semantic forms can be extracted following the method presented in (O’Donovan et al., 2004):
for each f-structure, for each level of embedding, determine the local pred and collect all
subcategorisable grammatical functions present at that level (cf. Figure 3).

From the automatically f-structure-annotated CTB we extract a total of 10479 semantic form tokens

with 26 distinct frame types. Of these 2510 are verbal semantic forms which occur with all 26 distinct
frame types.
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subj :

pred :
gloss :

obj :
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coord form : null
coord : 1 : pred : VLFRY

pers : 3

noun type : proper

gloss : ’Jiang Zemin’
2 1 pred : B ZWW

pers : 3

noun type : proper
gloss : "Li Peng’
P
condole by a telegram
adjunct : 3 : pred : BTy

pers : 3
noun type : proper
gloss : “Nixon’
pred : ~HItH’
pers : 3
noun_type : common
gloss : ‘bereavement’

Semantic form: HiFG ([subj, objl)

LR R U JE oRA it

“Jiang Zemin and Li Peng condoled the bereavement of Nixon by a telegram.”

Figure 3: An example of an automatically-generated f-structure and extracted semantic form.

Tokens Types
All forms 10469 26
Verbal 2510 26
Nominal 6227 4
Adjectival 715 1
Adverbial 579 1

Table 4: Semantic forms extracted from CTB

7  PCFG-Based LFG Approximations and Parsing Architectures

7.1 Methodology

Following the methodology presented in (Cahill et al., 2004) we extracted a number of PCFG-based
LFG approximations in both the pipeline and integrated processing architectures.

In the pipeline architecture we first extract a PCFG from the CTB, use the PCFG to parse unseen text
and send the trees generated for the unseen text to the automatic f-structure annotation algorithm to

generate f-structures.

In the integrated architecture we first annotate the CTB with our automatic f-structure annotation
algorithm, associating nodes in the treebank trees with one or more f-structure equations. We then
extract an annotated PCFG (PCFG-A) where CFG categories (such as XP, YP, ZP) followed by (one
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or more) f-structure equations of the form [up... = down... ] are interpreted as monadic categories for
grammar extraction and parsing: XP[up... = down...] => YP[up... = down...] ZP[up... = down...].
We parse unseen text with the PCFG-A, retrieve the functional annotations from the parse trees and
send them to a constraint solver to generate an f-structure.

The integrated architecture can, in fact, be understood as an instance of a grammar transformation
(Johnson, 1999). In the case of a PCFG-A, the transformation is provided by the f-structure annotation
algorithm.

In the experiments reported below, we furthermore study the effect of the parent transformation
(Johnson, 1999) and its interaction with our two parsing architectures. The parent transformation
annotates each non-preterminal node in a treebank tree with its parent category (thus encoding a
limited, but useful, amount of contextual information not available to the original PCFG). In addition,
we also study the effects of either preserving or deleting CTB functional tags in our extracted
probabilistic grammars. CTB functional tags are different from the functional annotations (f-structure
equations) generated by the f-structure annotation algorithm and consist of (possibly sequences of)
functional tags of the form —TAG associated with CTB CFG categories.

In total, we extract the following probabilistic grammars:

PCFG: a PCFG with all CTB functional tag annotations (F) stripped.

PCFG-F: a PCFG with CTB functional tag annotations (F) preserved.

PCFG-P: a PCFG with the parent transformation (P) but without CTB functional tags (F).
PCFG-P-F: a PCFG with the parent transformation (P) and with CTB functional tags (F).
PCFG-A: a PCFG without CTB functional tags (F) but with f-structure annotations (A).
PCFG-A-P: a PCFG without CTB functional tags (F) but with f-structure annotations (A) and
with parent transformation (P).

In each case, the experiments replicate the experimental set-up reported in (Levy and Manning, 2003)
as regards split between training, development and test set. We use the BitPar parsing software
(Schmid, 2004). Results of the parsing experiments are described and interpreted below.

7.2 Parsing Experiments

In order to assess the quality of the extracted grammars we carried out three types of parsing
experiments:

e In experiment 1 we evaluate the CFG tree output of our parsers against the original trees for
strings length <= 40 in articles 301-325 CTB, reporting f-scores for labelled and unlabelled
bracketings using evalb.

e In experiment 2 we evaluate the f-structures generated by our grammars against the manually
annotated 50 gold-standard f-structures for randomly selected trees from articles 301-325
using the triple-based dependency encoding and evaluation software from (Crouch et al.,
2002; Riezler et al., 2002).

e In experiment 3 we evaluate the f-structures generated by our grammars against the f-
structures for the full 318 test strings as generated by the automatic f-structure annotation
algorithm for the original trees in articles 301-325 CTB using the triple-based dependency
encoding and evaluation software from (Crouch et al., 2002; Riezler et al., 2002).
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7.2.1 Experiment 1 (Tree-Based Evaluation)

Table 5 describes the results obtained in experiment 1. In this experiment we evaluate the parse output
generated by our grammars against the original CTB trees in articles 301-325 (length <= 40) using
evalb, (cf. Sekine and Collins, 1997). Note that while coverage results in Table 5 are given for all 318
sentences (with no length restriction) in articles 301-325, f-scores are for the 271 sentences of length
<= 40. We carry out the usual preprocessing steps prior to grammar extraction: deletion of empty
nodes and cyclic unary productions (cf. Levy and Manning, 2003). PCFG is the grammar obtained by
also deleting any CTB functional tags. PCFG-P is the parent-transformed PCFG (Johnson, 1999),
while PCFG-A is the f-structure-annotated PCFG. Note the effect of the parent (P) and f-structure
annotation (A) grammar transformations on grammar size. PCFG-F is the grammar extracted with
CTB functional tags. PCFG-P (i.e. PCFG with parent transformation but without CTB functional tags)
outperforms PCFG-F (i.e. the PCFG with CTB functional tags preserved) even though the size of
PCFG-P is smaller than that of PCFG-F. This suggests that for Chinese and the given CTB tree
representations, the parent transformation captures more pertinent information than the CTB
functional tags. PCFG-P-F (i.e. PCFG with parent transformation and CTB functional tags)
outperforms both PCFG-F and PCFG-P. Significantly, PCFG-A (f-structure annotations on the raw
PCFG without CTB functional tags) outperforms PCFG-P-F (and, hence also PCFG-F and PCFG-P).
Our best results achieved to date are those of the combined f-structure-annotated and parent
transformed grammar PCFG-A-P with a labelled f-score of 81.57%, compared to the previous best
reported labelled f-scores of 76.1% by (Hearne and Way, 2004), 78.8% by (Levy and Manning, 2003)
and 79.9% by (Chiang and Bikel, 2002).

PCFG PCFG-F | PCFG-P PCFG-P-F PCFG-A PCFG-A-P
#Rules 1498 3313 2611 6105 3224 6303
#Parses 318 318 318 318 318 317
Labelled F-Score 72.52 75.95 77.52 79.17 79.60 81.57
Unlabelled F-Score 73.25 77.08 78.20 80.00 80.23 82.21

Table 5: Parsing results for sentences of length <= 40 against articles 301-325
7.2.2. Experiment 2 (Dependency Evaluation against Gold-Standard)

Table 6 describes the results obtained in experiment 2. In this experiment we evaluate the f-structures
generated by our grammars against the 50 gold-standard f-structures in terms of the triple encoding of
dependencies and the evaluation software in (Crouch et al., 2002; Riezler et al., 2002). Compared to
all grammatical functions, preds-only is the stricter measure as “minor” feature-value pairs such as
those for (say) person features tend to be associated with the correct local pred even if the pred itself is
misattached in the global f-structure (and corresponding dependency triple representation). It is
interesting to note that even though there is a general tendency for grammars with better f-scores on
trees (compare Table 5 above) to produce improved f-scores on dependency triples, the relative f-score
dependency ranking between grammars deviates from that established on trees with PCFG-P-F and
PCFG-A providing the best results against the gold-standard. The reason why PCFG-F and PCFG-P-F
perform well in the pipeline architecture is that these grammars preserve CTB functional tags. These
tags are exploited by the automatic annotation algorithm.

PCFG | PCFG-F | PCFG-P | PCFG-P-F | PCFG-A | PCFG-A-P
All Grammatical Functions | 66.56 79.55 66.77 82.79 81.22 76.99
Preds-only 52.30 61.36 52.17 67.74 64.80 62.35

Table 6: Parsing results against the gold-standard
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7.2.3. Experiment 3 (Dependency Evaluation against Automatically Annotated Treebank Trees)

Table 7 describes the results obtained in experiment 3. In this experiment we evaluate the f-structures
generated by our grammars against the f-structures generated by the automatic f-structure annotation
algorithm for the original 318 treebank trees in the test set. Evaluation uses the triple encoding of
dependencies and evaluation software of (Crouch et al., 2002; Riezler et al., 2002). Comparing Table 7
with Table 6 for experiment 2, above it is interesting to note that the dependency-based relative
ranking in experiment 3 almost preserves the ranking established in experiment 2. The main difference
is that that PCFG-A is now the best-performing grammar. Compared to experiment 2, overall results
in experiment 3 are higher. This is to be expected: evaluation against a manually corrected and
extended gold-standard is more taxing than evaluation against the automatically f-structure-annotated

original treebank trees.

PCFG | PCFG-F | PCFG-P | PCFG-P-F | PCFG-A | PCFG-A-P
All Grammatical Functions | 66.84 83.53 67.38 85.39 86.06 82.36
Preds-only 54.78 69.40 56.27 72.75 73.98 71.09

Table 7: Parsing results for the sentences in articles 301-325 in CCG style experiment

8 Conclusions and Ongoing Work

In this paper we have reported on a project on inducing wide-coverage Lexical-Functional
Grammar resources for Mandarin Chinese from treebanks. We estimate that to date we have spent
less than a total of 3 person months between the research groups at Hong Kong and Dublin on the
development of the automatic f-structure annotation algorithm for the CTB, the automatic
extraction of wide-coverage PCFG-based LFG approximations, the extraction of lexical resources,
the construction of a gold-standard for Chinese LFG resources and the evaluation experiments. In
particular, the (partly) manual construction of a gold-standard for evaluation is non-trivial and
time-consuming. We expect that our results to-date, while encouraging, can be improved
significantly given further concerted research effort. In particular, we will continue working on
refining the annotation algorithm, extending the gold-standard and including a treatment of long-
distance dependencies along the lines presented for English in (Cahill et al., 2004) to generate
proper rather than proto-f-structures for the CTB. Compared to our work on English (Cahill et al.,
2004; O’Donovan et al., 2004) and German (Cahill et al. 2003), our work on Mandarin Chinese
and the CTB to date uses a smaller feature set and a less fine-grained analysis. Currently 96.75%
of the CTB trees receive a covering and connected f-structure, while 2.94% are associated with
two f-structure fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical
entries with 20 distinct subcategorisation frame types. Of these, 3436 are verbal entries with a total
of 11 different frame types. We extract a number of PCFG-based LFG approximations. Currently
our best automatically-induced grammars achieve an f-score of 81.57% against the trees in unseen
articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against the
dependencies derived from the f-structures automatically generated from the original trees in 301-
325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the dependencies
derived from the manually-annotated gold-standard f-structures for 50 trees randomly selected
from articles 301-325.The experiments and results reported here were carried out on a 4.1K
sentence corpus, the CTB version 3.0 as described in (Xue et al, 2002). We will take this work as a
seed to automatically annotate and induce LFG resources from the recently released full CTB with
approximately 50K sentences. The results reported here and our previous experience with inducing
wide-coverage LFG resources for English and German suggests that the treebank-based,
constraint-based grammar induction method is attractive as it succeeds in generating multi-lingual
wide-coverage resources at a much faster rate than traditional hand-coding of similar resources.
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