
Robust N-gram Based Syntactic Analysis
Using Segmentation Words

Nobuo INUI	 Yoshiyuki KOTANI
Department of Computer Science

Tokyo University of Agriculture and Technology
2-24-16 Nakacho Koganei

Tokyo Japan
{nobu, kotani}@cc.tuat.ac.jp

Abstract
We describe an N-gram based syntactic analysis using a dependency grammar. Instead of

generalizing syntactic rules, N-gram information of parts of speech is used to segment a
sequence of words into two clauses. A special part of speech, called segmentation word,
which corresponds to the beginning or end symbol of clauses is introduced to express a
sentence structure. Segmentation words for each clause were learned using the hill climbing
method and a small bracketed corpus. Experimental results for Japanese sentences showed that
N-gram based syntactic parser achieved 72.2% recall, which is about the same level of
performance as a probabilistic context-free grammar based parser with human-made
language-dependent information.

1 Introduction

Almost all stochastic syntactic parsers are based on context free grammars (especially, probabilistic
context free grammar) (Bell et al. (1999); Charniak (1997); Liu and Soo (1994)) or its extensions, e.g.
HPSG (Kanayama et al. (1999)) or LFG (Bod and Kaplan (1998)). Several researchers have tried to
acquire syntactic rules from corpus automatically (Zhou and Ren (1999); Chelba and Jelinek (1998);
Shirai et al. (1997); Pereira and Shabes (1992)). There are several issues in automatic rule acquisition:

(1) Erroneous inputs,
(2) The size of the training corpus,
(3) The number of syntactic rules.

A morphological analyzer normally passes words to a syntactic parser together with morphological
information, like parts of speech, inflection and so on. Though morphological parsers have achieved
high performance, using statistical information gathered from large corpora, syntactic parsers must
allow for erroneous information about words, especially word segmentation error and tagging error.
The available corpora with syntactic information are usually smaller than the corpora with
morphological information and are not sufficient to acquire syntactic rules directly. In addition, many
syntactic rules consisting of parts of speech and words are generated. It is necessary to generalize rules
to process various sentences by sacrificing the performance. Human-made syntactic rules are only a
portion of the rules needed in such a grammar. We think that information in the morphological corpus
should be used for syntactic analysis.

Introducing language-dependent rules is a key to solving the above issues. But if we add such ad
hoc rules, the performance of parser would improve only for the sentences based on which the rules
were derived. We think that a parser should guarantee that it would process all sentences. To achieve
this, the grammar model should not be constructed from a priori knowledge alone.
This paper proposes a method of handling these issues by using N-gram information of word or part

of speech:

333



(1) N-gram information is collected from the corpus, which is generated by a morphological
parser. Tagging errors and word segmentation errors are accounted in the N-gram
information.

(2) The corpus is large enough for N-gram information to be very reliable.
(3) N-gram information calculated using a linear interpolation method which estimates N-gram

information from under N-gram information approximates occurrence probabilities of various
sentences.

To apply N-gram information to syntactic analysis, we describe here a model of syntactic analysis,
some approximations of real world information and experimental results.

2 N-gram Based Model of Syntax

2.1 Formal Description of the Binary Dependency Grammar

For free-order languages like Japanese, dependency analysis, which focuses on modification
relationships between phrases, is more suitable for the syntactic analysis. Unlike a context-free
grammar, usually, a dependency grammar does not define non-terminal symbols like noun clauses,
verb clauses and so on. The dependency grammar we use is formally denoted as shown below:

S(s) = im(p , p 1 ) 1 a clause p; modifies p i , pi is a sequence of words or a word }• (1)

The following is an example of a dependency structure.

S (time _ flies _like _an _arrow)
(Ex.1)

= {m(an, arrow), m(an _arrow,like),m(like _an _arrow, flies), m(time , flies)}

A dependency grammar cannot specify the order of words and generates many possible parse trees.
To reduce the number of parse trees, the following principles (Nagao (1996)) are usually assumed in
Japanese:

(1) Backward Referent: A modificand follows a modifier.
(2) No Crossing: Modification relations are not allowed to cross each other.
(3) Uniqueness of Modification: A modifier can modify only one word or clause.
(4) The Nearest Referent: A modifier modifies the nearest modificand.
(5) One Case for One Sentence: A verb takes restricted cases, which occur at most once.

Based on the above principles, we use a binary dependency grammar defined as follows:

S(s) = in(p p E pi ., ) I a clause p modifies a clause p that is in the next clause p i+1 }. • • (2)

Since a binary dependency grammar expresses only the relations between clauses which are side by
side, the above principles are almost satisfied. For example, p1 is a modifier and p2 is a modificand in
m(p1,p2) from principle (1). Though, in this case, a head word is in p2, we only solve
modifier-modificand relation. In addition, since syntactic structures are usually denoted by a tree, they
can easily be converted to binary dependency expressions. The difference between a binary
dependency tree and the Chomsky normal form, which is a kind of binary context-free grammar, is the
existence of non-terminal symbols. Consider a sequence of words 'I like it'. The Chomsky normal
form assigns T to N, 'like' to V, 'it' to N, then 'like it' to VP and, finally, 'I like it' to S. In this case, a

334



P9

P7	p8

/\ A
pl p2 p3 p4	 1315

I	 I	 I	 I

p6

kyou wa yoku hareta ichinichi desu

parser knows `S->N VP' and `VP->V N". In a binary dependency grammar, on the other hand, T
modifies `like it', i.e. m(T, `likeit').

The following is an example of applying a binary dependency structure in Japanese.

(Ex. 2) Kyou wa	 yoku hareta ichinichi desu
today (subject) very	 fine	 all day be	 (It is very fine all day today)

(1) Expression like the context-free grammar (bracketed structure)
(((kyou) (wa) ((((yoku) (hareta)) (ichinichi)) (desu))

m(kyou,wa),m(yoku,hareta),m(yoku _hareta,ichinichi),
S(s) =

m(yoku _hareta _ichinichi,desu),m(kyou _wa _yoku _hareta _ichinichi,desu)

(2) Expression using a traditional dependency grammar
(kyou wa) (yoku) (hareta) (ichinichi) (desu)

{

m(kyou,wa),m(yoku,hareta),m(ichinichi,desu),

S(s) = m(hareta,ichinichi E ichinichi _desu),

m(kyou _wa,desu E yoku _hareta _ichinichi _desu)

pl 1

Fig.1 The binary dependency structure
pi means a clause or word. Thick lines show heads of phrase.

m(pl, p2) = p7,m(p3, p4) = p8,m(p8, p5) = p9, m(p9, p6) = p10,m(p7, p10) = pll

There are units, called "phrases", which are the minimum meaningful clauses in a traditional
dependency grammar. In Japanese, we do not divide a noun "kyou" and a particle "wa", because "wa"
cannot be used alone. A traditional dependency grammar forms sentence structures from phrases. For
the above expression, a binary dependency structure can express both a context-free grammar style
and a traditional dependency grammar style. The model shown in (2) was often used in previous
research in which a decision tree was used to estimate a modification probability. In this paper, we use
expression (1) in ex.2 which EDR corpus adopts, though our method is defined apart from structures
of sentences.

2.2 A Probability Model of the Binary Dependency Grammar

The issue of finding an optimal structure can be identical with finding the most probable structure.
We use the expression described below:

1 Of course, there are variations of rules in the Chomsky normal form. For example, each rule might include two
words, as in 1/1->like it' and `,51->I V/'. In this case, a Chomsky normal form is the same as a binary
dependency grammar, if the left-hand side of rule is uniquly determined by its right-hand side and the
non-terminal symbols are different from each other when the right-hand sides of rules are different.

335



Probability of optimal segmentation w1 • w =

arg max P(P k)13(1 i)P(m(P k ,P; E .191 )IPk 12/) ... (3)
.1,• • •,n-1

where pk =	 , Pi =wi+i---wn

The above expression contains two probabilities, the phrase occurrence probability P(17k )P(Pi ) and
the modification probability P( ll (P k E P 1)1Pk,P1) • The phrase occurrence probability reflects the

strength of clauses. Ex.3 shows one way of segmenting a sentence. The syntactic parser finds the
strongest clause and creates a syntactic structure. If longer N-gram information is available, it is
sufficient to count only the modification probability, because it can express both the modification
relation and the phrase occurrence. But we assume that both probabilities are required for syntactic
parse when bigram or trigram information is used.

The EDR corpus (EDR (1996)) uses a context-free grammar-like structure. With this expression,
both a word and a clause with a modifier must be explicitly displayed to express a sentence's structure.
A traditional dependency grammar only shows the modified clause in its output. The context-free
grammar-like structure expresses the original word order. In using a context-free grammar-like
structure, the modification probability which means that a modifier modifies a modificand word or
clause must be shown. To calculate this probability, our parser searches the tree structure of a sentence
to find the optimal modificand. For example, the clause "kyou wa" directly modifies the
clause "ichinichi desu" in the clause "yoku hareta ichinichi desu" in ex.3. If a sufficiently large corpus
is available, the above two probabilities can be directly calculated as follows:

(Ex.3) kyou wa yoku hareta ichinichi desu
pl p2 p3 p4	 p5 p6
today (Subj) very fine	 all day be

yoku hareta
	

(yoku hareta)
yoku hareta ichinichi

	
((yoku hareta) ichinichi)

yoku hareta ichinichi desu
	

(((yoku hareta) ichinichi) desu)
kyou wa yoku hareta ichinichi desu

	
((kyou wa) (((yoku hareta) ichinichi) desu))

Constraints:
P(p3p4), P(plp 2) > P(p2p3),P(p4p5), P(p5, p6)

P(p3p4p5) > P(plp2p3p4),P(p5p6)

P(p3p4p5p6) > P(p1p2p3p4p5)

the number of a clause p
P(Pi) = the total number of clause

P( n(13013 1 E Pi.1) 11)i,P;) (the number of clause p i )(the number of clause p

2.3 N-gram approximation of probabilities

It is hard to calculate the phrase occurrence probability and the modification probability from the
corpus directly without overgeneralization or language-dependent information inputted by humans,
since there are many phrases and relationships between clauses not recorded in a given corpus. To
avoid this problem, we use N-gram information gathered by calculating a tagged corpus. To calculate
the approximate phrase occurrence probability P(pi ) , we use the following expression using N-gram

information.

• • (4)

the number of p modifing p in p i4.1
(5)

336



n+1

P(Pi =w1 w2 .•*wn) EP(w0 w1 w2 • • wn wn.i) =	 w1'''w1-1)

=P(wilwo)P(w2Iwo—P(w..ilwowl'"wn)
	 • • (6)

where wo ,w,,,1 are special symbols denoting thebeginningand the end of a clause, respectively.

Two special symbols, wo and wn+1 are used to express the phrase occurrence probability. Since we
plan to acquire this probability from a tagged corpus, these two symbols are needed to show the
strength of phrases. These symbols play an important role in expressing, the sentence structure.
Intuitively, the beginning of a sentence and the end of a sentence seem to correspond to wo and
w.+1, respectively. We use wo and wn+/ for calculating the strength of phrases described in the
previous section. We call these special symbols segmentation words. For example, consider a
sequence of words w2w3 in w/w2w3. The frequency of w2w3 must be more than that of wiw2w3 in tagged
corpus, i.e. P(w2w3)>Nw1w2w3). If we choose a pair of segmentation words for these two phrases
carefully, we can change these probabilities to become P(w2w3)<Nw1w2w3), In Japanese, particles
seem to be wo. For example, we can recognize the end of a clause, i.e. the next word is the beginning
of the next clause, by "wa". A verb also seems wn+1 . The previous word of "desu" is usually the end of
a clause". What is optimal segmentation word for a clause is not clear, because segmentation words
can vary the style of sentence structure. So, we must determine segmentation words according to
clauses. A method for learning segmentation words is described in section 4.

For the modification probability between clauses, we also use an N-gram approximation under the
assumption that modified words or clauses are frequently placed next (or previous) to a modificand
clause. Using this assumption, the modification probability is calculated to be approximately:

P(111 (P i ' P i E P i+i)l Pi, Pi+i) = max P(P iP k) Pk E P 	 ...(7)

The following is an example from Ex.3.

P(m(kyou _wa,yoku _haretta _ichinichi _desu))
(Ex.4) = max(P(kyou _wa,yoku),P(kyou _wa,hareta),P(kyou _wa,yoku _hareta),

P(kyou _wa,ichinichi),•• • , P(kyou _wa,yoku _hareta _ichinichi _desu))

In general, a few words at the end of pi and at the beginning of pi+i are important to judge the
modification relation. For example, the bigram information of "wa" and "desu" is important for
m("kyou_wa", "desu") in ex.4. So we use the following expression to calculate the modification
probability.

P(wip•••winwk1•••wkp)
P(PiPk(Pi2Pk)=

1)(wipwwin)P(wki-'wkg)

Pi =wil *••win)Pk = Pk1 .•" Plan ispsn,lsqsm	 (8)

3 Syntactic Analysis

We use the CKY algorithm that was developed for the Chomsky normal form to parse a sentence.
Unlike a context-free grammar, it is not necessary for a parser to keep information about non-terminal
symbols. Instead of non-terminal symbols, we extract a typical word in the modificand phrase. But this
information is dependent on the structure of a sentence. For example, we showed two types of
structures in Ex.2 in the last section. A typical word places the last phrase in structure (1), not in
structure (2). To avoid this problem, we use the structural distance between a modificand phrase and a
typical word in a modified phrase. This algorithm is described in Algorithm 1.

337



Algorithm 1 checks all possibilities of segmenting a sequence of words into two parts. The
segmentation with the highest probability is a solution of the parse in each sequence of words.

s = w1w2w3...wn
Initialize the phrase occurrence matrix pompHy=P(wi...wj) l<=i<n i<=j<=n
Initialize the modification probability matrix mpmjiffj]=P(wi-lwiwjwj +1) l<=i<=n-1, i<j<=n
Initialize the probability matrix pm[0]=0 l<=i<n, i<=j<=n
for(k=2; k<=n; k-H-)

for(i=1; i<=n-k; i++)
for(j=0; j<i-1; j++) {

prob=pom[illitil *pomp +j +11 [i+k+ I] *max mpm(i+j, i+j +1, i+k+1);
if(pm[i] [i+k+11<prob) {

pmjilli+k+ =prob;
separating_point[iffi+k+11=i+j;

}
Algorithm 1. Bottom Up Parsing Algrorithm

The matrix element pom[i] U.] contains the phrase occurrence probability for a phrase candidate
wiww; with segmentation words. A function max mpm0 searches for a phrase in	 which
is modified by the phrase recursively. This function finds the most plausible modificand and
returns the modification probability between two clauses. This function is needed, since the entire next
clause is not always a modificand. It is defined in Algorithm 2.

A function max_mpm(pre_end, post beg, post_end)
{

if(post_beg==post_end) return(mpm[pre_endllpost_begi),
probl=alpha*maxmpm(pre_end, post_beg,post_beg+separating_point[post_begilpost_endA
prob2=alpha*max mpm(pre_end,postbeg+separating_point[post_begllpost_end +1,post_end);
return(max(probl,prob2));

}
Algorithm 2 Find the Modificand Candidate with the Maximum Probability

In the function max mpm(), the structural distance between phrases is used to weigh probabilities. A
parameter alpha is heuristically determined for discounting ratio by the depth of a parsing tree. The
modification probability is calculated using N-gram information, not the modification structure in our
experiments.

4 Learning Segmentation Words

How segmentation words are determined is important in calculating the phrase occurrence
probabilities. Generally, the beginning of a sentence and the end of a sentence become segmentation
words explicitly as special symbols, but this is not an optimal solution. In English, a preposition which
is next to a noun or a verb is also a segmentation key. It seems that the relation between a verb and a
preposition is stronger than between a noun and a preposition. Therefore, the possibility of generating
V+ADV_P is higher than that of generating N+ADV_P. This is a language-dependent problem. We
use a small corpus to determine segmentation words for each word. Unfortunately, it is not known
how to assign segmentation words. Though all possibilities for the probability of a segmentation word
should be checked, it is impossible to do so because of computational complexity. Instead of the
optimal probability, we try to assign a specific part of speech to a segmentation word for each word.
The sub-optimal assignment can be found using the hill climbing method described in Algorithm 3.

An element of beginning[i] and end[i] is the beginning and end of a clause, i.e. segmentation words
for each part of speech, which begins with a part of speech i, respectively. The hill climbing method
tries to find the segmentation words which improve the performance of parsing. In this case, the hill

338



climbing method usually reaches a local maximum solution. To avoid this problem, (but not perfectly),
we first arrange the order of checked words randomly. Experimentally, this method is very effective.
The hill climbing method finds an optimal solution with slightly changed parameters. In our method,
one of beginning[i] or end[i] is changed before it is checked.

5 Experimental Results

Fig. 2 illustrates the experimental set up for evaluating our system. We use a morphological analyzer
(Inui and Kotani (1999)) to assign a part of speech to each word. The performance of this analyzer is
estimated to be about 98% recall and precision. Since this analyzer was constructed using tagged
corpora (Toyoura et.al. (1996)), it prefers to segment shorter words than the words in bracketed
corpora (EDR (1996)). We use the bigram and trigram information for the phrase occurrence
probability and the modification probability. The following interpolated expressions are used for them
based on equations (6) and (8):

P(Pi) = P(wi' " Iv.) s' P(wo)P(wil w0)Piiii(w2 I w0 wi)* ' ' Pint(wn.ilwn-iwn)

wi-2wi-1) = AP(wi wi-2wi-1) + – A)P(wi wi-1)
where

OzA, 51

P(PiPk 1 Pi,Pk) = POWl • • •Wi)(Wi+l • • •Wn)I(Wl..•Wi),(Wi+1•••Wn))

(P(Wi-lWi Wi+1 I Wi-lWi,Wi+1) +P(Wi Wi+1Wi+2 I WilWi+1Wi+2))2
+ (1– A)P(wiwi+iiwowi+1)

N(wi'wiwi+1)=	 (N (pi ) is the number of
where	 N(wi-iwi)N(wi+i)

0 s A sl	 a phrasein tagged corpus)

To determine segmentation words for each word is an ideal goal but somewhat unrealistic. So,
instead of words, we use parts of speech. RWC corpus's classification of parts of speech (Toyoura
et.al. (1996)) was used for our experiment. The following corpus is used to evaluate our method.

The bigram and trigram information: Gathered from RWC newspaper articles (55,565,314 words)
The number of parts of speech: 456
Training corpus: EDR bracketed corpus, 100, 500, 1000 sentences

(These sentences are used only to find segmentation words)
Testing corpus: EDR bracketed corpus 1000 sentences

As the modification probability, we use a sequence of the last two words of the previous phrase and
the first two words of the next phrase, since the statistics of the exact sequences of phrases is too
sparse to use. The reason we use the last words and the first words is that it is a good approximation of
a phrase in Japanese. Usually, we can judge the modification relation from them. We feel that the
same can be done in English.

We use only 1,000 sentences to find the optimal segmentation words. A reason for this is that the
hill climbing method is too slow to learn. This method checks all combination of segmentation words
( 456 x 456 ) in one generation cycle which is a period of the while-loop in algorithm 3. But
experimental results (graph 2) show that the number of these sentences is not such a big problem.

• (9)

- • • (10)

339



Unigram
Bigram
Tri ram,

Tagged Corpus
	

Bracketed Sentences

Extracted Sentences

sege me nta ion
words

Morphological Analyzer

Tagged Sentences

Syntactic Parser

Bracketed Sentences

Evaluator

Learning segmentation words	
Precision, Recall

Fig. 2 Evaluation System

n: the kind of words
Initialize beginning[ii, end[i] 0<i<n to a part of speech, appropriately.
Initialize maximum_probability =0
while(maximum_probability is updated) { 1/ increment generation

Initialize randamorder_of word random[i] 0<i<=2*n
for(i=1; i<=2*n; i++)

igrandam[i] is the beginning for a word j) {
maximum_pos=beginning[j] ;
for(k=1; k< =the number of part of speech; k++) {

beginning[j] =k;
prob=evaluation_of small_corpus();
if(maximum_prob<prob) {

Update maximum _probability to prob
maximum_pos=k;

}
beginning[j] =maximumpos;

} else {
maximum_pos=end[j] ;
for(k=1; k< =the number of part of speeh; k+ +) {

end[j]=k;
prob=evaluation_of small corpus();
igmaximum_prob<prob) {

Update maximum_probability to prob
maximum_pos=k;

}
}
end[j] =maximum_pos;

Algorithm 3 The Hill Climbing Method for Finding Optimal Segmentation Words

340



0 noun

verb 

0 verb

▪ conjuction

O particle

0 aux

n space

otherwise

(c) w0 for Verbs
0 noun

1. verb

conjuction

0 particle

a aux

El space

otherwise

(d) wn+1 for Verbs

0 noun

IIII verb

CI pronoun

0 aux

Graph 2 Segmentation Words (examples)

(a) w0 for Nouns
	

(b) wn+1 for Nouns

6 Discussion

The performance of our method may not seem so high, compared with other methods that reported
over 80% recall and used hand-made syntactic rules. For example, Shirai et.al.'s (1997) system used
EDR corpus to learn syntactic rules, and reported 62.71% recall. To generalize the rules acquired from
EDR corpus directly, they introduced some heuristics dependent on Japanese. In addition, besides the
part of speech information they used word information. On the other hand, our system uses only part
of speech information. We believe our method has a potential to be equivalent to a context-free
grammar based system.

Collins (1996) proposed an N-gram based parser. He used Treebank to extract N-gram information
and the modification probability. We feel that the size of the available syntactic corpora is too small to
gather N-gram information. Our method would be improved if syntactic training data were used. But
our experimental results show that segmentation words can be used as a substitute for syntactic
information.

It is important to note that no language-oriented rules are introduced into our system. Our system
can analyze a sequence of words and generate a syntactic tree only from N-gram statistics. The only
assumption we made was that words situated side by side have relationships. Applying this hypothesis
to syntactic analysis, a system with no context-free grammar rules, can analyze sentences.

Selecting segmentation words is a key of our system. Our experiment shows that the system cannot
acquire the optimal set of segmentation words from a small set of training sentences. It seems that, as
while learning context-free grammar, the optimal set of segmentation words describes the training
sentences only approximately. The existing part of speech information is used as a substitution for
segmentation words in our experiments. Optimal segmentation words might be apart from the existing
parts of speech. Instead of the hill climbing method, we conjecture that a genetic algorithm might
improve the performance.
A part of speech system is not directly related to the syntactic analysis. Finding new word categories

for syntactic analysis is a challenging issue. Our previous research (Inui and Kotani (1999)) has shown
that an intermediate class of word categories, which exists between parts of speech and words was
effective for N-gram based morphological analysis. We conjecture that new categories of words, like
discourse information (Nasukawa (1995)), would improve our system.

341



Table 1 The size of data sets 
Traning Testing 

Sentences	 1,000	 1,000
Clauses	 37,306	 38,270
Words	 24,312	 23,328

Two factors, recall and precision, are used to evaluate the performance of the parser, similar to
Shirai et *1997). These are defined as followings.

the number of correct clauses
Recall = 	  • (11)

the number of clauses in a data set

the number of correct clauses
Precision =

	

	 (12)
the number of clauses in proposed trees

In this context, a clause means a sequence of words. In the case that the output bracketed clause is
different from the input bracketed clause, the result becomes correct, if the sequence of word is the
same.

Fig.3 shows the learning curve for the hill climbing method described in the last section. In drawing
this curve, the only phrase that consisted of more than two words was evaluated. Generation means the
count of while-loop in Algorithm 3. From fig.3, when a generation proceeds, we can find that recall is
going up and the hill climbing method for determining segmentation words is working. It seems that
performance is improved when the size of the training data becomes large. Since the recall
convergence is not so high, the hill climbing method seems to be in a local maximum solution.

The final result with 95% confidence limits is shown in Table 2. Precision is considerably lower
than recall. This is because our morphological analyzer prefers segmenting words into short segments.
To reduce the number of phrases in parsing trees, we can merge some words into one word as in the
unknown word estimation.

Graph 2 shows rough classifications of segmentation words. There are 34 kinds of nouns and 381
kinds of verbs in RWC corpus. Nouns and verbs prefer conjunctions and verbs as wo and wn+1,
respectively. This graph shows that nouns require various wo to improve the parsing performance.

Graph 1 The Leaning Curves (Recall) for each
Training Data Set

..-= 0.6
4-- 1000 sentencesU	 -- 

	

14') 0.5	 --E— 500 sentences

	

0.4	 '	 , --II— 100 sentences

0	 2	 4	 6	 8
Generation

Table 2 Recall and Precision
Traning Sentences

Recall LB95-UB95 Precision LB95-UB95
77.20% 76.6%-77.8%	 60.7%	 60.1%-61.2%

Testing Sentences
Recall LB95-UB95 Precision LB95-UB95
72.90% 72.2%-73.5%	 61.60%	 61.0%-62.2%

	111

342



7 Conclusions

A binary dependency grammar was introduced to describe syntactic structures and build a
probabilistic model in this paper. The probabilistic model is composed of two probabilities, the phrase
occurrence probability and the modification probability. A method of approximating both of these is
introduced using N-gram statistics. The segmentation word, which describes the strength of a phrase,
is learnt by the hill climbing method using an existing small bracketed corpus. We found that our
method parsed sentences without language-dependent knowledge. This method is always successful in
analyze a sentence, if the N-gram information is sufficient.

Acknowledgement
This study is supported by the ministry of education, science, sports and culture of Japan under grant

in aid No.12780266. We would like to thank Professor Bipin Indurkhya of Tokyo University of
Agriculture and Technology and Beryl Nelson for their advice and correcting of this paper.

References

Beil, F., Carrol, G., Prescher, D., Riezler, S. and Rooth, M. 1999. Inside-Outside Estimation of Lexicalized
PCFG for German. Proceedings of 37th ACL: 269-266

Bod, R. and Kaplan, R. 1998. A Probabilistic Corpus-Driven Model for the Lexical-Functional Analysis.
Proceeding of the COLING-ACL'98: 145-151 .

Charniak, E. 1997. Statistical Parsing with a Context-free Grammar and Word Statistics. Proceedings of
AAAI'97: 598-603.

Chelba, C. and Jelinek, F. 1998. Exploiting Syntactic Structure for Language Modeling. Proceeding of the
COLING-ACL '98: 225-231.

Collins, M. 1996. A New Statistical Parser Based on Bigram Lexical Dependency. Proceeding of the 34th ACL:
184-191.

EDR. 1996. EDR Electric Dictionary Manual Ver. 1.5
Kanayama, H., Torisawa, K., Mitsuishi, Y. and Tsujii, J. 1999. Statistical Dependency Analysis with an

HPSG-based Japanese Grammar. Proceedings of 5th NLPRS: 138-143.
Liu, R. and L., Soo, V. W. 1994. A Corpus-based Learning Techniques for Building a Self-Extensible Parser.

Proceedings of COLING'94: 441-446
Inui, I. and Kotani Y. 1999. Finding the Best State for HMM Morphological Analyzer. Proceeding of 5th NLPRS:

44-49.
Nagao, M. (Ed.) 1996. SHIZENGENGOSYORI (Natural Language Processing), Iwanami Pub (In Japanese)
Nasukawa, T. 1995. Robust Parsing Based on Discourse Information. Proceedings of 33rd ACL: 39-46
Pereira F. and Shabes, Y. 1992. Inside-Outside Reestimation from Partially Bracketed Corpora. Proceedings of

the 30th ACL: 128-135
Shirai, K., Tokunaga, T. and Tanaka H. 1997. Automatic Extraction of Japanese Probabilistic Context Free

Grammar From a Bracketed Corpus. Journal of Natural Language Processing, 4(1): 125-146. (In Japanese)
Toyoura, J., Tokunaga, T. and Isahara, H. 1996. Development of RWC Text Database Tagged with

Classification Code. IPSJ Technical Report, NL-114-5 (In Japanese)
Zhou, Q. and Ren, F. 1999. Automatic Inference for Chinese Probabilistic Context-Free Grammar. Proceeding

of 5th NLPRS: 73-78.

343



344


	PACLIC15-333.pdf
	PACLIC15-334.pdf
	PACLIC15-335.pdf
	PACLIC15-336.pdf
	PACLIC15-337.pdf
	PACLIC15-338.pdf
	PACLIC15-339.pdf
	PACLIC15-340.pdf
	PACLIC15-341.pdf
	PACLIC15-342.pdf
	PACLIC15-343.pdf
	PACLIC15-344.pdf

