
A L G O R I T H M S T H A T L E A R N T O E X T R A C T I N F O R M A T I O N m
B B N : T I P S T E R P H A S E III

Scott Miller, Michael Crystal, Heidi Fox, Lance Ramshaw, Richard Schwartz,
Rebecca Stone, and Ralph Weischedel

BBN Technologies
70 Fawcett Street

Cambridge, MA 02138
weischedel @bbn.com

A B S T R A C T

All of BBN's research under the TIPSTER III
program has focused on doing extraction by
applying statistical models trained on annotated
data, rather than by using programs that execute
hand-written rules. Within the context of MUC-
7, the SIFT system for extraction of template
entities (TE) and template relations (TR) used a
novel, integrated syntactic/semantic language
model to extract sentence level information, and
then synthesized information across sentences
using in part a trained model for cross-sentence
relations. At the named entity (NE) level as well,
in both MET-1 and MUC-7, BBN employed a
trained, HMM-based model.

The results in these TIPSTER evaluations are
evidence that such trained systems, even at their
current level of development, can perform
roughly on a par with those based on rules hand-
tailored by experts. In addition, such trained
systems have some significant advantages:

• They can be easily ported to new domains
by simply annotating fresh data.

• The complex interactions that make rule-
based systems difficult to develop and
maintain can here be learned automatically
from the training data.

We believe that improved and extended versions
of such trained models have the potential for
significant further progress toward practical
systems for information extraction.

I N T R O D U C T I O N

We believe that trained statistical models offer
significant advantages for information extraction
tasks. In this report on BBN's research under the
TIPSTER III program, we describe a number of
research efforts that developed fully-trained

systems whose extraction performance was close
to the highest levels achieved by carefully
optimized systems based on hand-written rules.

SIFT, the first system described, extracts entities
and relations from text. On the sentence level, it
combines syntactic and semantic knowledge in a
novel way, thus taking advantage of the
significant recent progress in statistical parsing
and leveraging those techniques for information
extraction. Knowledge of English syntax
extracted from the Penn Treebank is
automatically combined with semantically
annotated training material in the target domain
that identifies how the entities and relations of
interest in the domain are signaled in text. At the
message level, the local entities and relations
identified within each sentence are then merged,
and cross-sentence relations are identified using
an additional trained model. The resulting
system achieved the second-best score of those
participating in the MUC-7 evaluation.

The second system described here is the
IdentiFinder T M system for locating named
entities. This system is a fully-trained, HMM-
based model that learns from examples the
contextual clues that help to identify names in
the text.

S T A T I S T I C A L E X T R A C T I O N O F

E N T I T I E S A N D R E L A T I O N S

The SIFT system ("Statistically-derived
Information From Text") combines a sentence-
level model with message-level processing to
merge elements and identify cross-sentence
relations.

At the sentence level, SIFT employs a unified
statistical process to map from words to semantic
structures. That is, part-of-speech determination,
name-finding, parsing, and relationship-finding

7 5

all happen as part of the same process. This
allows each element of the model to influence
the others, and avoids the assembly-line trap of
having to commit to a particular part-of-speech
choice, say, early on in the process, when only
local information is available to inform the
choice.

The SIFT sentence-level model was trained from
two sources:

• General knowledge of English sentence
structure was learned from the Penn
Treebank corpus of one million words of
Wall Street Journal text.

• Specific knowledge about how the target
entities and relations are expressed in
English was learned from about 500 K
words of on-domain text annotated with
named entities, descriptors, and semantic
relations.

In the on-domain training data, the names and
descriptors of relevant items (persons,
organizations, locations, and artifacts) are
marked, as well as the target relationships
between them that are signaled syntactically. For
example, in the phrase "GTE Corp. of
Stamford", the annotation would record a
"location-of" connection between the company
and the city. The model can thus learn the
structures that are typically used in English to
convey the target relationships. Doing extraction
in a new domain would require fresh
semantically annotated training data appropriate
to the new domain, but the general syntactic
knowledge acquired from the Penn Treebank
would still be applicable.

After the sentence-level model has identified
names, descriptors, and relationships that are
syntactially signaled within each sentence,
further message-level processing is required to
link up entities mentioned more than once or in
different sentences, and to try to identify cross-
sentence relationships or those not syntactically
signaled. After the names, descriptors, and local
relationships have been extracted from the
sentence-level decoder's output, a merging
process is applied to link multiple occurrences of
the same name or of alternative forms of the
name from different sentences. A second, cross-
sentence model is then invoked to try to identify
relationships that were not picked up by the
decoder, such as when the two entities do not
occur in the same sentence. Finally, some

additional fields required by the MUC answer
specification are filled in using heuristic tests and
a gazetteer database, and output filters are
applied to select which of the proposed internal
structures should be included in the output. We
are actively exploring ways of integrating this
message-level processing more closely with the
sentence-level model, since an integrated
statistical model is the only way in which to
make every choice in a nuanced way, based on
all the available information.

The following sections describe the sentence-
level and message-level processing of the SIFT
system in more detail.

SIFT's Sentence-Level Model
Figure 1 is a block diagram of the sentence-level
model showing the main components and data
paths. Two types of annotations are used to train
the model: syntactic annotations for learning
about the general structure of English, and
semantic annotations for learning about the
target entities and relations. From these
annotations, the training program estimates the
parameters of a unified statistical model that
accounts for both syntax and semantics. Later,
when presented with a new sentence, the search
program explores the statistical model to find the
most likely combined semantic and syntactic
interpretation.

Training Data
Our source for syntactically annotated training
data was the Penn Treebank (Marcus et al.,
1993). Significantly, we do not require that
syntactic annotations be from the same source, or
cover the same domain, as the target task. For
example, while the Penn Treebank consists of
Wall Street Journal text, the target source for this
evaluation was New York Times newswire.
Similarly, although the Penn Treebank domain
covers general and financial news, the target
domain for the MUC-7 evaluation was space
technology. The ability to use syntactic training
from a different source and domain than the
target is an important feature of our model.

Since the Penn Treebank serves as our
syntactically annotated training corpus, we need
only create a semantically annotated corpus.
Stated generally, semantic annotations serve to
denote the entities and relations of interest in the

76

syntactic annotations ,[
(Penn Treebank) ~ training

program
semantic annotations "1

. ~... s.t.a.d s.t.i.c.a.1...~ tr.m.'.n!.n.g
L model j decoding

sentences , search ~ combined semantic-
"[program syntactic interpretations

Figure 1: Block diagram of sentence-level model.

target domain. More specifically, entities are
marked as either names or descriptors, with co-
reference between entities marked as well.
Figure 2 shows a semantically annotated
fragment of a typical sentence.

From only these simple semantic annotations,
the system can be trained to work in a new
domain. To train SIFT for MUC-7, we
annotated approximately 500,000 words of New
York Times newswire text, covering the domains
of air disasters and space technology. (We have
not yet run experiments to see how performance
varies with more/less training data.)

Semantic/Syntactic Structure
While our semantic annotations are quite simple,
the internal model of sentence structure is
substantially more complicated, since this
combined model must account for syntactic
structure as well as for entities and semantic
relations. Our underlying training algorithm
requires examples of these internal structures in
order to estimate the parameters of the unified
semantic/syntactic model. However, we do not

wish to incur the high cost of annotating parse
trees. Instead, we use the following multi-step
training procedure, exploiting the Penn
Treebank:

1) Train the sentence-level model on the purely
syntactic parse trees in the Treebank. Once
this step is complete, the model will function
as a state-of-the-art statistical parser.

2) For each sentence in the semantically
annotated corpus:

a) Apply the sentence level model to
syntactically parse the sentence,
constraining the model to produce only
parses that are consistent with the
semantic annotation.

b) Augment the resulting parse tree to
reflect semantic structure as well as
syntactic structure.

3) Retrain the sentence-level model on the
augmented parse trees produced in step 2.
Once this step is complete, we have an
integrated model of semantics and syntax.

Details of the statistical model will be discussed

J
Nance , who

coreference ~ employee
~ ~ relation ~

person-descriptor

i-organization 7

is also a paid consultant to ABC News , said

Figure 2: An example of semantic annotation.

77

later. For now, we turn our attention to (a)
constraining the decoder and (b) augmenting the
parse trees with semantic structure.

Constraints are simply bracketing boundaries
that may not be crossed by any parse constituent.
There are two types of constraints: hard
constraints that cannot be violated under any
conditions, and soft constraints, that may be
violated only if enforcing them would result in
no plausible parse. All named entities and
descriptors are treated as hard constraints; the
model is prohibited from producing any
constituents that overlap either edge of the span
of these elements. In addition, we attempt to
keep possible appositives together through soft
constraints. Whenever there is a co-referential
relation between two entities that are either
adjacent or separated by only a comma, we posit
an appositive and introduce a soft constraint to
encourage the parser to keep the elements
together.

Once a constrained parse is found, it must be
augmented to reflect the semantic structure.
Augmentation is a five step process.

1) Nodes are inserted into the parse tree to
distinguish names and descriptors that are
not bracketed in the parse. For example, the
parser produces a single noun phrase with
no internal structure for "Lt. Cmdr. David
Edwin Lewis". Additional nodes must be
inserted to distinguish the descriptor, "Lt.
Cmdr.," and the name, "David Edwin
Lewis."

2) Semantic labels are attached to all nodes that
correspond to names or descriptors. These
labels reflect the entity type, such as person,
organization, or location, as well as whether
the node is a proper name or a descriptor.

3) For relations between entities, where one
entity is not a syntactic modifier of the
other, the lowermost parse node that spans
both entities is identified. A semantic tag is
then added to that node denoting the
relationship. For example, in the sentence
"Mary Fackler Schiavo is the inspector
general of the U.S. Department of
Transportation," a co-reference semantic
label is added to the S node spanning the
name, "Mary Fackler Schiavo," and the
descriptor, "the inspector general of the U.S.
Department of Transportation."

4) Nodes are inserted into the parse tree to
distinguish the arguments to each relation.
In cases where there is a relation between
two entities, and one of the entities is a
syntactic modifier of the other, the inserted
node serves to indicate the relation as well
as the argument. For example, in the phrase
"Lt. Cmdr. David Edwin Lewis," a node is
inserted to indicate that "Lt. Cmdr." is a
descriptor for "David Edwin Lewis."

5) Whenever a relation involves an entity that
is not a direct descendant of that relation in
the parse tree, semantic pointer labels are
attached to all of the intermediate nodes.
These labels serve to form a continuous
chain between the relation and its argument.

Figure 3 shows an augmented parse tree
corresponding to the semantic annotation in
Figure 2. Note that nodes with semantic labels
ending in "-r" mark MUC reportable names and
descriptors.

Statistical Model
In SIFT's statistical model, augmented parse
trees are generated according to a process similar
to that described in Collins (1996, 1997). For
each constituent, the head is generated first,
followed by the modifiers, which are generated
from the head outward. Head words, along with
their part-of-speech tags and features, are
generated for each modifier as soon as the
modifier is created. Word features are
introduced primarily to help with unknown
words, as in Weischedel et al. (1993).

We illustrate the generation process by walking
through a few of the steps of the parse shown in
Figure 3. At each step in the process, a choice is
made from a statistical distribution, with the
probability of each possible selection dependent
on particular features of previously-generated
elements. We pick up the derivation just after the
topmost S and its head word, said, have been
produced. The next steps are to generate in
order:

1. A head constituent for the S, in this case a
VP.

2. Pre-modifier constituents for the S. In this
case, there is only one: a PER/NP.

3. A head part-of-speech tag for the PER/NP,
in this case PER/NNP.

78

pednp

per-desc-of/sbar-lnk

I
per-desc-ptr/sbar

per-r/np

I
per/nnp

I I
Nance ,

vp

/ per~_desc.ptr/v p

~ - - - - - - - - - ~ g s c - r / n p

//
/

wp vbz rb det vbn per-desc/nn to org'/nnporg/nnp

I I I I I I I I I
who is also a paid consultant to ABC News

Figure 3: An augmented parse tree.

, vbd

I I
, said

4. A head word for the PER/NP, in this case
nance.

5. Word features for the head word of the
PER/NP, in this case capitalized.

6. A head constituent for the PER/NP, in this
case a PER-R/NP.

7. Pre-modifier constituents for the PER/NP.
In this case, there are none.

8. Post-modifier constituents for the PER/NP.
First a comma, then an SBAR structure, and
then a second comma are each generated in
turn.

This generation process is continued until the
entire tree has been produced.

We now briefly summarize the probability
structure of the model. The categories for head
constituents, Ch, are predicted based solely on the
category of the parent node, Cp:

e (c h I Cp), e.g. P(vp I s)

Modifier constituent categories, Cm, are
predicted based on their parent node, cp, the head
constituent of their parent node, Chp, the
previously generated modifier, Cm-1, and the head
word of their parent, Wp. Separate probabilities
are maintained for left (pre) and right (post)
modifiers:

PL(Cm I Cp,Chp,Cm_l,Wp), e.g.
PL (per / n p I s, vp, null, said)

PR(Cm I Cp,Chp,Cm_l,Wp), e.g.
PR(null I s, vp, null, said)

Part-of-speech tags, tin, for modifiers are
predicted based on the modifier, Cm, the part-of-
speech tag of the head word , th, and the head
word itself, wh:

P(t m I c m, t h , w h), e.g.
P(per / nnp I per /np, vbd, said)

Head words, win, for modifiers are predicted
based on the modifier, Cm, the part-of-speech tag

79

of the modifier word, tin, the part-of-speech tag
of the head word , th, and the head word itself,
Wh:

e (w m] Cm, tm,th, Wh) , e.g.
P(nance I per I np, per I nnp, vbd, said)

Finally, word features, fro, for modifiers are
predicted based on the modifier, Cm, the part-of-
speech tag of the modifier word, tm, the part-of-
speech tag of the head word, th, the head word
itself, wh, and whether or not the modifier head
word, Win, is known or unknown.

P(]m I Cm, tra,th, Wh, k n o w n (w m)), e.g.
P(cap I per / np, per / nnp, vbd, said, true)

The probability of a complete tree is the product
of the probabilities of generating each element in
the tree. If we generalize the tree components
(constituent labels, words, tags, etc.) and treat
them all as simply elements, e, and treat all the
conditioning factors as the history, h, we can
write:

P(tree) = H P(e I h)
• ~ tree

Tra in ing the M o d e l

Maximum likelihood estimates for all model
probabilities are obtained by observing
frequencies in the training corpus. However,
because these estimates are too sparse to be
relied upon, they must be smoothed by mixing in
lower-dimensional estimates. We determine the
mixture weights using the Witten-Bell
smoothing method.

For modifier constituents, the mixture
components are:

P ' (c m ICp,Chp,Cm_l,Wp)=

21 P (c m I Cp,Chp,Cm_l,Wp)

-I-~, 2 P (c m ICp,Chp,Cm-l)

For part-of-speech tags, the mixture components
are:

P'(t m I Cm, t h, w h) = 21 P(t m I cm, w h)

+ 2 2 P(t m]Cm,th)

+2 3 P(t m I c m)

For head words, the mixture components are:

P'(W m I Cm,tm,th,Wh) = 21 P(W m I cm,tm,W h)

+ 2 2 P(W m ICm,tm,t h)

+ 2 3 P (w m I Cm,t m)

-1"2 4 e (w m It m)

Finally, for word features, the mixture
components are:

P ' (fm I c m , t m , t h , w h , k n o w n (w m)) =

21 P (f m ICm, tm ,Wh ,known(w ,))

+22 P (f m ICm, tm' th 'known(wm))

+23 P (f m Icm, tm,kn°wn(Wm))

+24 P (f m I tm ,kn°wn(Wm))

Search ing the M o d e l

Given a sentence to be analyzed, the search
program must find the most likely semantic and
syntactic interpretation. More concretely, it must
find the most likely augmented parse tree.
Although mathematically the model predicts tree
elements in a top-down fashion, we search the
space bottom-up using a chart based search. The
search is kept tractable through a combination of
CKY-style dynamic programming and pruning
of low probability elements.

Dynamic Programming: Whenever two or more
constituents are equivalent relative to all possible
later parsing decisions, we apply dynamic
programming, keeping only the most likely
constituent in the chart. Two constituents are
considered equivalent if:

1. They have identical category labels.

2. Their head constituents have identical labels.

3. They have the same head word.

4. Their leftmost modifiers have identical
labels.

5. Their rightmost modifiers have identical
labels.

Pruning: Given multiple constituents that cover
identical spans in the chart, only those
constituents with probabilities within a threshold
of the highest scoring constituent are maintained;
all others are pruned. For purposes of pruning,
and only for purposes of pruning, the prior
probability of each constituent category is
multiplied by the generative probability of that

80

constituent (Goodman, 1997). We can think of
this prior probability as an estimate of the
probability of generating a subtree with the
constituent category, starting at the topmost
node. Thus, the scores used in pruning can be
considered as the product of:

1. The probability of generating a constituent
of the specified category, starting at the
topmost node.

2. The probability of generating the structure
beneath that constituent, having already
generated a constituent of that category.

The outcome of the search process is a tree
structure that encodes both the syntactic and
semantic structure of the sentence, so that the TE
entities and local TR relations can be directly
extracted from these sentential trees.

SIFT's Message-Level Processing
The sentence-level model in SIFT predicts
names, descriptors, and relationships that are
cued by the local sentence structure, but it
considers each sentence in isolation. Merging
such information between sentences is an
important and difficult problem in information
extraction. The information that indicates the
presence of a template relation is often
distributed across multiple sentences, and this
merging problem would naturally become even
more severe when trying to extract more
complex structures like full scenario templates.
We have explored various approaches to this
merging problem in our TIPSTER research.

Our overall goal is to use trained and integrated
models where possible, particularly for all of the
language understanding. For some portions of
SIFT's message-level processing, we used hand-
written rules combined with external sources like
gazetteers. The MUC-7 deadlines caused us to
use an existing alias process for merging names
rather than implementing a statistical alias
procedure. In the current system, simple heuristic
code handles the filling of the type and country
fields that are required by the MUC
specification, and the distinction between
substantial and non-substantial descriptors. (The
MUC guidelines call for ignoring certain
descriptors like "the company".)

A trained cross-sentence relation model is used
to identify template relations that link entities
across different sentences. This model was

trained on 200 articles annotated with full MUC
answer keys, so that even non-local relations
were marked. (That level of semantic annotation
was available for only a small subset of the data
used to train the sentence-level model.) The
model applies a set of structural and contextual
features that help to indicate when such a
relation might be present. Feature counts from
the training data are used to estimate the
probability of a relationship between each
possible pair of entities mentioned in separate
sentences in the text.

While the cross-sentence model is currently
applied as a separate step after the sentence-level
decoding is complete, we are exploring various
approaches toward integrating the two models
more closely, and also toward doing more of the
named entity merging and type field prediction
by means of trained models.

Merging Named Entities
The first step in merging the results of the
sentence-level model is to group together the
different mentions of the same named entity. In
SIFT, a set of heuristic rules were used for this.
Different mentions of the same name (say,
different mentions of "IBM") would be grouped,
as would strings that were related in certain
predictable ways, for example, by initials
(linking "IBM" with "International Business
Machines") or by the addition of a corporate
designator (linking "International Business
Machines" with "International Business
Machines, Inc."). This merging process also
tested whether one name was a prefix of the
other, linking "Legg Mason Wood Walker, Inc."
with "Legg Mason".

The Cross-Sentence Relation Model
The cross-sentence model then uses structural
and contextual clues to hypothesize template
relations between two elements that are not
mentioned within the same sentence. Since 80-
90% of the relations found in the answer keys
connect two elements that are mentioned in the
same sentence, the cross sentence model has a
narrow target to shoot for. Very few of the pairs
of entities seen in different sentences turn out to
be actually related. This model uses features
extracted from related pairs in training data to try
to identify those cases.

81

It is a classifier model that considers all pairs of
entities in a message whose types are compatible
with a given relation; for example, a person and
an organization would suggest a possible
employment relation. For the three MUC-7
relations, it turned out to be somewhat
advantageous to build in a functional constraint,
so that the model would not consider, for
example, a possible employment relation for a
person already known from the sentence-level
model to be employed elsewhere.

Given the measured features for a possible
relation, the probability of a relation holding or
not holding can be computed as follows:

p(rel I feats) = p(feats l rel) p(rel)
p(feats)

p(feats l ~rel) p(~rel)
p(~rel l feats) =

p(feats)

If the ratio of those two probabilities, computed
as follows, is greater than 1, the model predicts a
relation:

p(rell feats) p(featsl rel)p(rel)
p(-re l l feats) p(featsl ~rel)p(-rel)

We approximate this ratio by assuming feature
independence and taking the product of the
contributions for each feature.

p(rel I feats) p(rel)FIi P(feati I rel)

p(~rel I feats) p (~re l)H p(feat, I ~rel)
I

The cross-sentence feature model applies to
entities found by the sentence-level model,
which is run over all of the sentence-like
portions of the text. An initial heuristic
procedure checks for sections of the preamble or
trailer that look like sentential material, that
should be treated like the body text. There is also
a separate handwritten procedure that searches
the preamble text for any byline, and, if one is
found, instantiates an appropriate employee
relationship.

Model Features
Two classes of features were used in this model:
structural features that reflect properties of the
text surrounding references to the entities
involved in the suggested relation, and content

features based on the actual entities and relations
encountered in the training data.

Structural Features
The structural features exploit simple
characteristics of the text surrounding references
to the possibly-related entities. The most
powerful structural feature, not surprisingly, was
distance, reflecting the fact that related elements
tend to be mentioned in close proximity, even
when they are not mentioned in the same
sentence. Given a pair of entity references in the
text, the distance between them was quantized
into one of three possible values:

Code Distance Value
0 Within the same sentence
1 Neighboring sentences
2 More remote than neighboring

sentences

For each pair of possibly-related elements, the
distance feature value was defined as the
minimum distance between some reference in
the text to the first element and some reference to
the second.

A second structural feature grew out of the
intuition that entities mentioned in the first
sentence of an article often play a special topical
role throughout the article. The "Topic Sentence"
feature was defined to be true if some reference
to one of the two entities involved in the
suggested relation occurred in the first sentence
of the text-field body of the article.

Other structural features that were considered but
not implemented included the count of the
number of references to each entity.

Content Features
While the structural features learn general facts
about the patterns in which related references
occur and the text that surrounds them, the
content features learn about the actual names and
descriptors of entities seen to be related in the
training data. The three content features in
current use test for a similar relationship in
training by name or by descriptor or for a
conflicting relationship in training by name.

The simplest content feature tests using names
whether the entities in the proposed relationship
have ever been seen before to be related. To test

82

this feature, the model maintains a database of all
the entities seen to be related in training, and of
the names used to refer to them. The "by name"
content feature is true if, for example, a person in
some training message who shared at least one
name string with the person in the proposed
relationship was employed in that training
message by an organization that shared at least
one name string with the organization in the
proposed relationship,

A somewhat weaker feature makes the same kind
of test for a previously seen relationship using
descriptor strings. This feature fires when an
entity that shares a descriptor string with the first
argument of the suggested relation was related in
training to an entity that shares a name with the
second argument. Since titles like "General"
count as descriptor strings, one effect of this
feature is to increase the likelihood of generals
being employed by armies. Observing such
examples, but noting that the training didn't
include all the reasonable combinations of titles
and organizations, the training for this feature
was seeded by adding a virtual message
constructed from a list of such titles and
organizations, so that any reasonable such pair
would turn up in training.

The third content feature was a kind of inverse of
the first "by name" feature which was true if
some entity sharing a name with the first
argument of the proposed relation was related to
an entity that did no t share a name with the
second argument. Using the employment relation
again as an example, it is less likely (though still
possible) that a person who was known in
another message to be employed by a different
organization should be reported here as
employed by the suggested one.

Training
Given enough fully annotated data, with both
sentence-level semantic annotation and message-
level answer keys recorded along with the
connections between them, training the features
would be quite straightforward. For each
possibly-related pair of entities mentioned in a
document, one would just count up the 2x2 table
showing how many of them exhibited the given
structural feature and how many of them were
actually related. The training issues that did arise
stemmed from the limited supply of answer keys
and that the keys were not connected to the
sentence-level annotations.

The government training and dry run data
provided 200 messages' worth of TE and TR
answer keys, Those answer keys, however,
contained strings without recording where in the
text they were found. In order to train structural
features from that data, we needed the locations
of references within the text. A heuristic string
matching process was used to make that
connection, with a special check to ensure for
names that the shorter version of a name did not
match a string in the text that also matched a
longer version of the same name.

Training the content features, on the other hand,
did not require positional information about the
references. The plain answer keys could be used
in combination with a database of the name and
descriptor strings for entities related in training
to count up the feature probabilities for actually
related and non-related pairs. The string database
was collected first, and one-out training was then
used, so that the rest of the training corpus
provided the string database for training the
feature counts on each particular message. The
additional training data that was semantically
annotated for training the sentence-level model
but for which answer keys were not available
could still also be used in building up the string
database for the content features.

The probabilities based on the final feature
counts were smoothed by mixing them with
0.01% of a uniform model.

Other Message Level Processing
After the cross sentence model has been applied,
some further heuristic message-level processing
is done before generating the answers in MUC
template form. In one step, those portions of the
preamble of the message, which includes the title
and by-line, that are not English sentences are
searched for a possible employment relation
between the article author and the organization
holding the copyright. A limited form of voting
was also applied across messages, so that if the
same name was identified by the sentence-level
model as, say, an organization in one case and a
person in another, only the plurality type is
actually output. Heuristic models are used to fill
in some additional required fields,
distinguishing, for instance, between civilian,
military, and government organizations; this
could have been trained, but time did not permit
this. Identifying the type and country of locations

83

is a simple process, benefiting greatly from
gazetteer lookup.

Finally, a heuristic choice is made whether or not
to output each element. For example, a descriptor
that was not paired by the sentence-level
processing with any named entity could either
actually be an isolated descriptor or it could be
one where the true link with a named entity was
missed by the sentence-level model. Lacking at
this point any trained model to distinguish those
two cases, SIFT plays it safe by not outputting
such entities.

S I F T S y s t e m E x a m p l e s

The main determinant of SIFT's performance is
the sentence-level model, and the semantic
structures that it produces. Secondary but still
significant effects on performance come from the
message-level processing steps that derive TE
and TR output from the sentence-level decoder
tree:

• Extracting elements and relations

• Merging TE elements

• Searching for additional relations with the
cross-sentence model

• Filtering candidate entities and relations for
output

This section will present examples from the
output for one of the MUC-7 test messages,
demonstrating the different effects that applied.

Example 1 shows a case where everything
worked as planned.

Here the decoder correctly recognized a person
name (PER/NPA) bound to a person descriptor
(PER-DESC/NP-R). That descriptor contains an
organization (ORG/NP) which in turn is linked
to a location. The LINK and PTR nodes connect
the descriptor with the person, the organization
with the person descriptor (and thus indirectly
with the person), and the location with the
organization. In the post-processing, the person
name is extracted, with the descriptor text is
linked to it, the organization name is extracted,
and the employment relationship noted. The
organization is also linked to the nested location;

(SINV

(VBD said))
(PER/NP

(PER/NPA
(PER/NPP

(NNP Eric)
(NNP Stallmer)))

(, ,)
(PER-DESC-OF/NP-LINK

(PER-DESC/NP-R
(PER-DESC/NPA

(NN spokesman))
(ORG-OF/NP-PP-LINK

(ORG-PTR/PP
(IN for)
(ORG/NP

(ORG/NPA
(DT the)
(ORG/NPP

(NNP Space)
(NNP Transportation)
(NNP Association)))

(LOC-OF/NP-PP-LINK
(LOC-PTR/PP

(IN of)
(LOC-PTR/NPA

(LOC/NPP
(LOC/NPP

(NNP Arlington))
(, ,)
(LOC/NPP

(NNP Virginia)))))))))))

Example 1

84

of the two location elements in the LOC phrase,
the first is taken as the LOCALE field filler,
while the second is looked up in the gazetteer to
identify a country in which the locale value is
then looked up.

Example 2 shows the effect of a decoder error.

(ORG/NP
(ORG/NPA

(ORG/NPP
(NNP Bloomberg)
(NNP Information)
(NNP Television)))

(ORG-DESC-OF/NP-LINK
(ORG-DESC/NP-R

(ORG-DESC/NPA
(DT a)
(NN unit))

(PP
(IN of)
(ORG/NPA

(ORG/NPP
(NNP Bloomberg)
(NNP L.P.))))))

(, ,)
(ORG-DESC-OF/NP-LINK

(ORG-DESC/NP-R
(ORG-DESC/NPA

(DT the)
(NN parent))

(PP
(IN of)
(ORG/NPA

(ORG/NPP
(NNP Bloomberg)
(NNP Business)
(NNP News))))))

(, ,))

Example 2

Here the sentence-level decoder linked both
organization descriptors back to the top-level
named organization, while the correct reading
would have attached the second descriptor to the
nested "Bloomberg L.P.". The post-processing
also therefore links both descriptor phrases to
"Bloomberg Information Television" internally.
Only the longest descriptor, however, is actually
output, which in this case results in output of
only the mistaken value.

Not surprisingly, a number of the decoder errors
that affected output stemmed from conjunctions.
In another paragraph, for example, the
manufacturer organization name "Lockheed
Space and Strategic Missiles" was incorrectly
broken at the conjunction, causing the location
relation with Bethesda to be missed.

The cross sentence model is the system
component that tries to find further relations

beyond those identified by the sentence-level
model. In the walk-through article, that
component did not happen to succeed in finding
any such relations. Example 3 shows the sort of
relation that we would like that model to be able
to get. There the sentence-level decoder did link
Rubenstein to the organization descriptor
"company", but since that descriptor was never
linked to "News Corporation", the employee
relation was missed. However, since News
Corporation is mentioned both in that sentence
and the following sentence, an improved cross
sentence model would be one way of attacking
such examples.

(PER-DESC/NP
(PER-DESC/NP

(PER-DESC/NPA-R
(ORG-DESC-OF/NP-LINK

(ORG-DESC/NP-R
(NN company)))

(NN spokesman))
(PER-OF/NPA-LINK

(PER-PTR/NPA
(PER/NPP

(NNP Howard)
(NNP J.)
(NNP Rubenstein)))))

Example 3

The last step in processing is the output filter,
which heuristically determines whether a
proposed constituent should be included in the
output. Example 4 shows two examples where
this filter overrode correct decoder structure.

(s
(ART-DESC/NP-R

(ART-DESC/NPA
(DT A)
(JJ Chinese)
(NN rocket))

(ART-PTR/VP
(VBG carrying)
(ART-DESC/NPA-R

(DT an)
(ORG/NPP

(NNP Intelsat))
(NN satellite))))

(VP
(VBD exploded)

Example 4

Here the decoder correctly identified both the
artifact descriptors "A Chinese rocket" and "an
Intelsat satellite", but the output filter chose not
to include them. That choice was made because
of frequent cases where an indefinite artifact
descriptor not linked to any named artifact
should not be output; an example from elsewhere
in this message is "the last rocket I 'd

85

recommend". But this example shows that this
decision not to output such cases sometimes cost
the system points.

SIFT System Results and Summary
The SIFT system worked by first applying the
sentence-level model to each sentence in the
message and then extracting entities, descriptors,
and relations from the resulting trees,
heuristically merging TE elements, applying the
cross-sentence model to identify non-local
relations, and finally filtering and formatting TE
and TR templates for output. In the MUC-7
evaluation, the system's score on the TE task
was 83% recall with 84% precision, for an F of
83.49%. Its score on TR was 64% recall with
81% precision, for an F of 71.23%.

Because most of the relations in the answer keys
were locally signaled, the cross sentence model
in this application adds only a small boost to the
performance of the sentence-level model. When
measured before the evaluation on 10 randomly-
selected messages from the airplane crash
domain training, the cross sentence model
improved TR scores by 5 points. It proved a bit
less effective on the 100 messages of the MUC-7
test set, improving scores there by only 2 points.
(The F score on the formal test set with the cross
sentence model component disabled was
69.33%.)

A S T A T I S T I C A L N A M E - F I N D E R

Overv iew of the Ident iFinder H M M

M o d e l

For identifying named entities in text, BBN has
developed the IdentiFinder T M trained named
entity extraction system (Bikel, et. al., 1997),
which utilizes an HMM to recognize the entities
present in the text.

The HMM labels each word either with one of
the desired classes (e.g., person, organization,
etc.) or with the label NOT-A-NAME (to
represent "none of the desired classes"). The
states of the HMM fall into regions, one region
for each desired class plus one for NOT-A-
NAME. (See Figure 4.) The HMM thus has a
model of each desired class and of the other text.
Note that the implementation is not confined to
the seven name classes used in the NE task; the
particular classes to be recognized can be easily
changed via a parameter.

Within each of the regions, we use a statistical
bigram language model, and emit exactly one
word upon entering each state. Therefore, the
number of states in each of the name-class

regions is equal to the vocabulary size, Ivl.
Additionally, there are two special states, the
START-OF-SENTENCE and END-OF-SENTENCE

states. In addition to generating the word, states
may also generate features of that word.
Features used in the MUC-7 version of the
system include several features pertaining to
numeric expressions, capitalization, and
membership in lists of important words (e.g.

START-OF SENTENCE END.OF SENTENCE

Figure 4: Pictorial representation of conceptual model

86

known corporate designators).

The generation of words and name-classes
proceeds in the following steps:

1. Select a name-class NC, conditioning on the
previous name-class and the previous word.

. Generate the first word inside that name-
class, conditioning on the current and
previous name-classes.

. Generate all subsequent words inside the
current name-class, where each subsequent
word is conditioned on its immediate
predecessor.

4. If not at the end of a sentence, go to 1.

Whenever a person or organization name is
recognized, the vocabulary of the system is
dynamically updated to include possible aliases
for that name. Using the Viterbi algorithm, we
search the entire space of all possible name-class
assignments, maximizing Pr(W,F,NC), the joint
probability of words, features, and name classes.

This model allows each type of "name" to have
its own language, with separate bigram
probabilities for generating its words. This
reflects our intuition that:

There is generally predictive internal
evidence regarding the class of a desired
entity. Consider the following evidence:
Organization names tend to be stereotypical
for airlines, utilities, law firms, insurance
companies, other corporations, and
government organizations. Organizations
tend to select names to suggest the purpose
or type of the organization. For person
names, first person names are stereotypical
in many cultures; in Chinese, family names
are stereotypical. In Chinese and Japanese,
special characters are used to transliterate
foreign names. Monetary amounts typically
include a unit term, e.g., Taiwan dollars,
yen, German marks, etc.

• Local evidence often suggests the
boundaries and class of one of the desired

expressions. Titles signal beginnings of
person names. Closed class words, such as
determiners, pronouns, and prepositions
often signal a boundary. Corporate
designators (Inc., Ltd., Corp., etc.) often
end a corporation name.

While the number of word-states within each

name-class is equal to Ivl, this "interior" bigram
language model is ergodic, i.e., there is a non-
zero probability associated with every one of the

[VI 2 transitions. As a parameterized, trained
model, for transitions that were never observed,
the model "backs off ' to a less-powerful model
which allows for the possibility of unknown
words.

Training
The model as used for the MUC-7 NE evaluation
was trained on a total of approximately 790,000
words of NYT newswire data, annotated with
approximately 65,500 named entities. In order
to increase the size of our training set beyond the
90,000 words of training of airline crash
documents provided by the Government, we
selected additional training data from the North
American News Text corpus. We annotated full
articles before discovering a more effective
annotation strategy. Since the test domain was to
be similar to the dry-run domain of air crashes,
we used the University of Massachusetts
INQUERY system to select 2000 articles which
were similar to the 200 dry run training and test
documents. About half of our training data
consisted of full messages; this portion included
the 200 messages provided by the Government
as well as 319 messages from the 2000 retrieved
by INQUERY. The second half of the data
consisted of sample sentences selected from the
remainder of the 2000 messages with the hope of
increasing the variety of training data. This
sampling strategy proved more effective than
annotating full messages. Improvement in
performance as measured on the (dry run) airline
crash test set is shown in Figure 5.

87

NYT Aidlne Crash Domain

96

[95

93

92
10000 100000 1000000

NO. of Words

Figure 5: F-Measure Increases With Size of Training Set

IdentiFinder Results under Varying
Test and Training Conditions
Our F-measure for the official MUC-7 test,
90.44, is shown as "Text Baseline" in Figure 6.
In addition to this baseline condition, we
performed some unofficial experiments to
measure the accuracy of the system under more
difficult conditions. Specifically, we evaluated
the system on the test data modified to remove
all case information ("Upper Case" in Figure 6),
and also on the test data in SNOR (Speech
Normalized Orthographic Representation) format
("SNOR" in Figure 6). By converting the text to
all upper case characters, information useful for
recognizing names in English is removed.
Automatically transcribed speech, even with no
recognition errors, is harder due to the lack of
punctuation, spelling numbers out as words, and
upper case in SNOR format.

The degradation in performance from mixed case
to all upper case is somewhat greater than that
previously observed in similar tests run on
generic newswire data (about 2 points). One
possible explanation is that case information is
more useful in instances where the test domain is
different than the domain of the training set. The
degradation from all upper case to SNOR is
similar to that previously observed.

We also measured the effect of the training set
size on the performance of the system in the air
crash domain of the dry run. As is to be
expected, increasing the amount of training data
results in improved system performance.

Figure 5 shows an almost two point increase in
F-measure as the training set size was doubled
from 91,000 words to 176,000 words. However,
the next doubling of the number of words in the
training set only resulted in a one point increase

in F-measure. This is most likely due to the fact
that as training set size increases, the likelihood
of seeing a unique name or construction
decreases. Though performance might not have
peaked, adding more training data will have a
progressively smaller effect since the system will
not be seeing many constructions which it has
not already seen in previous training.

MUC-7 NYT Test

g

- - O

J~

Input Conditions

Figure 6: IdentiFinder Named Entity Results

C O N C L U S I O N S

Throughout its extraction research under the
TIPSTER III program, BBN's goal has been to
apply statistical models trained from data in as
integrated a fashion as possible. We believe that
this approach is fully capable of matching the
performance of systems based on rules
handwritten by experts, and that it further offers
significant advantages in applicability to new
problems and new domains, and to degraded
input (e.g., from a speech recognizer, from OCR,
or from sources less polished than newspaper
text).

88

The SIPI" system successfully uses an integrated
syntactic/semantic model to extract entities and
relations. It employs the Penn Treebank as its
source of syntactic information, and thus requires
for its training data only the semantic annotation
of entities, descriptors, and relationships. Its
sentence-level model determines parts of speech,
parses, finds names, and identifies semantic
relationships in a single, integrated process, with
a separate merging model then used to connect
information between sentences. Given the
current early stage of development of the SIFT
system, we believe that significant performance
improvements are still possible. We are also
interested in measuring performance as a
function of training set size, and have begun
applying SIFT to the broadcast news domain.

IdentiFinder is BBN's trained system for
identifying named entities. Its performance in the
MUC-7 evaluation demonstrates the robustness
of the learning algorithm used, even when the
testing is in a different though similar domain to
that of the training material. Further tests also
showed its robustness to all upper case input, and
input with no punctuation. Our future plans for
IdentiFinder include:

• evaluation in the broadcast news domain,
which requires speech input in a much
broader domain,

• applying IdentiFinder to unsegmented
languages, and

• working on performance improvements and
improvements in the training process.

A C K N O W L E D G E M E N T S

The work reported here was supported in part by
the Defense Advanced Research Projects
Agency. Technical agents for part of this work
were Fort Huachucha and AFRL under contract
numbers DABT63-94-C-0062, F30602-97-C-
0096, and 4132-BBN-001. The views and
conclusions contained in this document are those
of the authors and should not be interpreted as
necessarily representing the official policies,
either expressed or implied, of the Defense
Advanced Research Projects Agency or the
United States Government.

We appreciate the contributions of the
Annotation Group at BBN: Ann Albrect,
Elizabeth Arentzen, Rachel Bers, Ada Brunstein,
Georgina Garcia, Maia Mesnil, and Hugh Walsh.

We thank Michael Collins of the University of
Pennsylvania for his valuable suggestions.

R E F E R E N C E S

Bikel, Dan; S. Miller; R. Schwartz; and R.
Weischedel. (1997) "NYMBLE: A High-
Performance Learning Name-finder." In
Proceedings of the Fifth Conference on Applied
Natural Language Processing, Association for
Computational Linguistics, pp. 194-201.

Collins, Michael. (1996) "A New Statistical
Parser Based on Bigram Lexical Dependencies."
In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, pp.
184-191.

Collins, Michael. (1997) "Three Generative,
Lexicalised Models for Statistical Parsing." In
Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics, pp.
16-23.

Marcus, M.; B. Santorini;
Marcinkiewicz. (1993) "Building
Annotated Corpus of English:
Treebank." Computational
19(2):313-330.

and M.
a Large

the Penn
Linguistics,

Goodman, Joshua. (1997) "Global Thresholding
and Multiple-Pass Parsing." In Proceedings of
the Second Conference on Empirical Methods in
Natural Language Processing, Association for
Computational Linguistics, pp. 11-25.

Weischedel, Ralph; Marie Meteer; Richard
Schwartz; Lance Ramshaw; and Jeff Palmucci.
(1993) "Coping with Ambiguity and Unknown
Words through Probabilistic Models."
Computational Linguistics, 19(2):359-382.

89

