
EXTRACTING AND NORMALIZING TEMPORAL EXPRESSIONS

Lois C. Childs, Dav id Cassel

Lockheed Martin Corporation

P.O. Box 8048

Philadelphia, PA 19101

lois.childs @ lmco.com

(610) 354-5816

1. I N T R O D U C T I O N

As part of our TIPSTER III research program,
we have enhanced the NLToolset 's ~ capability to
extract temporal expressions from free text and
convert them into canonical form for accurate
comparison, sorting, and retrieval within a database
management system.

The date or time that an event occurs is often a
critical piece of information. Unfortunately, natural
language expressions that contain this information are
so numerous and varied that the interpretation of
temporal expressions within free text becomes a
challenging task for automatic text processing
systems.

This paper will look at the nature of the
problem, the extraction and computation tasks, the
use of a learning program, and the normalization
strategy. The concluding section will discuss possible
future endeavors related to time extraction.

The NLToolset

The NLToolset is a framework of tools,
techniques, and resources designed for building text
processing applications. It is a pattern based system
which uses world knowledge resident in a lexicon, a
location gazetteer, and lists of universal terms, such
as first names and the Fortune 500 companies. This
knowledge base is extensible with generic, as well as
domain-specific, information. It applies lexico-
semantic pattern matching in the form of basic
structural patterns (possible-title firstname middle-

J The NLToolset is a proprietary text processing
product, owned by Lockheed Martin Corporation.

initial lastname), as well as contextual knowledge
(possible-name, who is X years old). The NLToolset
has been applied to routing, indexing, name spotting,
information extraction, and document management.
It is an object-oriented system, implemented in C++
and ODBC to make it portable to both Unix and NT
platforms, as well as multiple databases.

2. PROBLEM DESCRIPTION

The task of automatically extracting temporal
information can be divided into four parts:

1) Recognize the temporal expression.

The event happened Saturday.

2) Extract its features.

Saturday is a day name and a relative
expression.

3) Compute its interval representation.

Based on the reference date of the
document and the features of the
expression, determine which
calendar day is meant. Represent
this as an interval: 2 08291998 -
08291998.

4) Normalize the interval for database
use.

Store each part of the interval
expression, i.e., day, month, year
for start and end points, into an

2 For the purpose of this paper, the interval will not
address smaller units of time than days, i.e. hours,
minutes, and seconds. An interval for a day will have
identical endpoints.

51

NLToolset structure. Final
output format varies according
to application requirements.

Feature Complexity

The greatest difficulty in building an automatic
system for interpreting time expressions is the
seemingly infinite variety of ways in which human
beings express time.

The term "feature" in this context refers to a
category of information that can be used to interpret
the expression. For example, the feature "unit of
time" refers to the terms month, day, year, century;
"interval endpoint" refers to an explicit reference to at
least one end of a time interval, such as before the end
of or from June to September.

Each of the following numbered examples
represents a different kind of time expression, based
on the features available for its interpretation.

1. before the end of the year

2. next April

3. March 1, 1992

4. from June to September

5. in the 90's

6. in two weeks

7. the f irstyear

8. beginning July 1

9. last Summer

10. next month

11. in the first quarter of fiscal 1992

12. the turn of the century

13. Saturday

14. yesterday

15. the previous April

Table 1 illustrates the relationship between a set
of features and the temporal expressions in which
they appear. This is often a many-to-many
relationship, which makes the manual construction of
a decision tree a formidable task.

Feature Available Example Nmuber

unit of time 1, 6, 7, 10

interval endpoint 1, 4, 5, 7, 8

relative to dateline 1, 2, 4, 6, 8, 9, 10, 13, 14

month name 2, 3, 4, 8, 15

relative direction 2, 9, 10, 15

day number 3, 8

year 3

decade number 5

ordinal 7

relative to event date 7

season name 9

fiscal year 11

fiscal year unit 11

idiom 12

relative to context 5, 12

day name 13

relative day term 4

Table 1: Feature/Expression Relationships

Each expression will require a unique
computation function, based on the features present
and their interaction. For example, the second
expression, next April, is different from April of next
year only if the reference date is within the interval
between January 1 and March 31.

There are many possible combinations of
features. Additionally, there are many idiomatic
temporal expressions, such as the turn of the century.
These possibilities must be captured within the
NLToolset's rule packages so that the expression can
be recognized.

Relative Expressions

Some time expressions are specific, e.g. March
1, 1992; others are relative expressions, either of a
contiguous or non-contiguous nature. For example,
expressions like yesterday or next month are non-
contiguous because they are relative to the dateline of
the message. But, expressions like the previous April
or the following day usually refer to the immediately
preceding time expression, and thus are thought of as
contiguous.

The CEO announced his retirement on March 5. The followinq
d ~ , the company's stock price rose.

52

In this example, on March 5 is a non-contiguous
expression and is calculated from the document
reference date, while the following day is contiguous
and is calculated using the previous temporal
expression, March 5, as the reference date.

Also to be factored in as a consideration in
relative expressions is the tense of the verb.

The ship sailed on Saturdav.

The ship will sail on Saturdav.

Computation of the correct interval depends on
whether the date is meant to indicate past or future.

Ambiguity
Some expressions are simply meant to be

ambiguous, indicating a general vicinity of time, but
not meant to be exact. When the expression, next
week, is used, does that mean the seven days
beginning on Sunday, or does it mean the five days of
the business week? There definitely is information
contained within the expression, but the problem is
capturing the information without overstating the
accuracy of its representation. The following
example further illustrates this point.

Basebafl season begins next week.

In this case, what is meant is that the season will
begin at some point during the interval that is next
week; however, the exact time is ambiguous.

The NLToolset 's current implementation will
arbitrarily decide what the interval of next week is. It
will make no attempt to resolve the ambiguity, nor to
note that such ambiguity exists. This is an area for
future research.

Specialized Calendars

Information extraction systems are often
developed for specialized domains. The following
examples illustrate the problem of specialized
calendars. The first example is from a business
domain from which the system must extract
information about joint ventures.

Profits durino the first year reached $5 million.

In this example, the reference point is the date
that the joint venture began operations. This is used
to calculate the interval represented by thefirst year.

The second example is from the automotive
domain.

Since the 1990 model year began on October 1, Buick sales
have plunged.

Introduction of world knowledge to the system
would be necessary to have it understand that the start
of the model year was in 1989.

The third example might appear in an
agricultural domain.

During the current crop year, Brazil will produce 7 million tons of
sugar.

This time period would depend on the crop
grown and the growing location.

3. E X T R A C T I O N A N D C O M P U T A T I O N

The NLToolset has a rule package that can
recognize common temporal expressions, both
absolute and relative; its accuracy has been measured
at above 90%. An important feature of the NLToolset
is the ability it affords the developer to add variables
to the rule patterns. In the case of temporal
expressions, the pattern variables capture the features,
such as month, day, or year, that make up the
expressions. These values are used in the
computation of the interval representation.

Computing the Interval

The computation stage involves determining the
reference point and using it, plus the feature
information and the information from the expression's
context to compute the interval. For example, if the
expression is next year, the system would find the
reference year and then add one; the interval would
extend from January 1 until December 31 of that year.

If the expression is Saturday, the system must
decide whether it refers to next Saturday or last
Saturday, based on the sentence tense. It must then
ascertain the weekday name of the reference date and
add or subtract the appropriate number of days to
reach the proper calendar date.

Arithmetic of calendar days across months can
be problematic. To avoid this problem, the
NLToolset converts each calendar day into a Julian
day number form. 3 This number is the count of days,

3 The Julian day number was introduced in 1581 by
the French scholar Joseph Justus Scaliger to define a
number from which all time could be reckoned. As a
starting point, Scaliger chose the last year that the
following cycles began simultaneously: the 28 year-
long Sun cycle in which the calendar dates repeat on
the same weekdays, the 19 year-long Metonic cycle in
which the phases of the Moon repeat on almost the
same calendar dates, and the 15 year-long cycle for
tax collection and census that was used in the Roman

53

starting with the day 0 on the 1st of January, 4713
BC. After the calculation is completed, the
NLToolset converts the Julian day back to its original
time scale.

For the majority of cases, it is a simple matter to
write a computation for a specific pattern that takes
into consideration all of the relevant features and then
determines the interval; however, the many-to-many
relationship between features and expressions,
coupled with a context dependency, complicates the
overall process.

Algorithm Complexity

The simplest approach would be to write a
package of rules, each of whose left hand side
matches a certain time expression and whose right
hand side is the relevant computation function. This
method, while simple to implement, would bog down
our pattern matcher by giving it too many possible
paths to check. The following example illustrates this
point.

Straightforward mapping of patterns to functions

< monthname > >> Function-1

< monthname day > >> Function-2

< monthname day year > >> Function -3

< monthname year > >> Function-4

In this example, if the pattern matcher finds a
monthname, it must check each of these patterns to
see which one is applicable. If, instead, we construct
one non-deterministic pattern, we can eliminate this
problem. The curly brackets indicate optional
elements.

Col lapse of four pat tems into one

< monthname { day } { year } > >> Call-correct-function

In this case, the complexity migrates to the right
side of the rule. The Call-correct-function function
now must compute the interval based on the features
that have matched. The difficult part, with a variety
of candidate features, is constructing a decision tree
that is efficient, and then, when new cases are added,
reconstructing the decision tree, while maintaining its
efficiency.

Identifying the Interval Type

Because the NLToolset represents dates as
intervals, the NLToolset must decide how to fill the
start and end points of each interval. A starting or

empire. This starting year for the Julian day was
4713 BC.

ending point could be unknown, a part of the date that
is being interpreted, or the dateline (or other reference
date). The decision as to what will fill each point of
the interval is based partly on the prepositions and
context, and partly on the date being interpreted. For
instance, next week will have a start date at the
beginning of the week following the dateline, and an
end date at the end of that week. However, by next
week will use the dateline as the start date.

There are, by our reckoning, twelve ways to fill
in the Start and end dates. By examining the context
in which the date appears, we can select one of these
ways rather than trying to work with the contextual
information directly as we fill in the interval. Table 2
enumerates the possibilities.

START END EXAMPLE

beg before last week

unk end through last week

unk dl until today

beg unk as of this week

beg end (during) next week

beg dl beginning last week

end unk after next week

end dl since last week

dl unk after today

dl beg until next week

dl end through next week

dl dl today

KEY:

unk = unknown

beg = beginning of the interpreted date

end = end of the interpreted date

dl = dateline (or other reference date)

Table 2: Interval Type Algorithm

4. L E A R N I N G T H E D E C I S I O N T R E E

We decided to try using machine learning to
help generate the Call-correct-function code. We
chose Quinlan's C4.5 software because it has been
successfully applied to many problems requiring
decision trees. C4.5 uses training examples to build a
classification system, which, in this case, will
comprise a decision tree which lays outs a feature-
based path to each correct computation. As new cases

54

are added to the rule package, the tree can be quickly
regenerated by adding more training examples.

Using C4.5

We will describe our experiment with C4.5. For
a complete description of C4.5, see Quinlan's own
publication. 4

To use C4.5, the developer specifies: 1) the
classes of interest; these will become the leaves of the
decision tree and 2) the features and their possible
values; these are the nodes of the tree. A set of
training examples is provided and, when the tree has
been generated, each path can be considered a rule.

The C4.5 specification builds a description space
whose dimensions correspond to the number of
features describing the problem. Each training
example is a point within the space. The decision tree
is a classifier that divides the description space into
regions, each one labelled with classification type.
C4.5 decides which feature is the best one to use as a
first discriminator, and then starts to divide the region
based on that feature. This is a key element of C4.5.
It provides the most efficient tree that it can discover.
It also includes heuristics for simplifying the tree. In
general, C4.5 generates a decision tree by ordering
the testing of features according to how much
information each feature will provide. Each decision
splits the region into smaller pieces, until finally the
classification is reached.

According to Quinlan's guidelines, the best
classifier will have few classes, few regions per class,
many training cases relative to the volume of the
regions, and no misclassification of the training cases.

Failed Attempt

Our first attempt at describing the problem in
C4.5 syntax resulted in something like the following
model.

Classes: one class for each
computation function

Features and Values:

Month (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov,
Dec)

Day (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 ,
12, 13, 14, 15, 16, 17, 18, 19, 20,

4 Quinlan, J. Ross. C4.5: Programs for Machine
Learning, Morgan Kaufmann Publishers, 1993.

21, 22, 23, 24, 25, 26, 27, 28, 29,
30,31)

Year (continuous values)

This approach failed because it does not abide
by Quinlan's guidelines. We are trying to classify
into many categories, one for each computation
function. Our preliminary working set consists of
fifteen classes. We also have many features with
many possible values, and not all of the features are
relevant in every case. In fact, in all cases, only a
subset of the features is relevant. As a result, C4.5 has
difficulty in generating a good decision tree, even
with several hundred training examples.

Different Approach

To remedy this situation, we transformed the
description space by converting the feature values to
boolean -- Y or N -- because the value of the feature
does not matter as much to the decision as whether
the feature is present.

Classes: one class for each
computation function

Features and Values:

Month (Y, N)

Day (Y , N)

Year (Y , N)

This change, although it maintains the large
number of classes, allows us to reduce the volume of
the regions and avoid the fragmentation of the
previous model. Additionally, this model produces a
binary tree, which is a simple if-then-else algorithm to
implement. In fact, we can automatically convert the
generated decision tree to C++ code, using a Perl
script.

This is an unusual use of C4.5 in that it does not
follow Quinlan's guidelines for developing a good
classifier; however, it does work for our purposes. It
has alleviated the tedious and time-consuming
problem of generating and re-generating an efficient
decision tree in C++ code.

5. N O R M A L I Z A T I O N

The NLToolset gives a temporal expression an
interval representation. The temporal interval
currently abides by the time standard of the original
temporal expression; however, in future, the temporal
interval will be normalized into Coordinated
Universal Time (UTC), which is considered the
modern implementation of Greenwich Mean Time.

55

This time standard is used worldwide and will allow
for greater interactivity between databases and within
visualization tools.

The interval representation is stored within an
NLToolset structure in its component parts; that is,
the year, month, day, hour, minute, and second for the
beginning and endpoint of each interval are stored
separately. The original values of the text are also
stored. This affords flexibility as the NLToolset is
applied to various domains. The application
requirements can dictate which parts of the time
representation will be stored and displayed.

6. C O N C L U S I O N S A N D F U T U R E

W O R K

This paper has examined the task of extracting
and normalizing temporal expressions, and h a s
described the NLToolset 's approach to accomplishing
this task. It has also described the use of a learning
program to deal with the complexity of developing
such a system, as well as the methodology for
normalizing temporal information for database use.

As the time extraction process is exercised
across applications, it will be expanded to cover more
and more cases.

Future research work may address the issue of
ambiguous temporal expressions. Statistical means
may be appropriate for representing the uncertainty of
an interval representation. Comparisons across
languages may also prove enlightening. In the near
future, an existing prototype application will be
translated into the Spanish language.

56

