
I

Intranet learning tools for NLP

William J BLACK
Centre for Computational

Linguistics, UMIST
PO Box 88, Manchester

M60 I QD, United Kingdom
bill@ccl,umist.ac.uk

Simon HILL
Department of

Computation, UMIST
PO Box 88, Manchester

M60 1QD, United
Kingdom,

Mahmoud KASSAEI
Centre for Computational

Linguistics, UMIST
PO Box 88, Manchester

M60 1QD, United Kingdom
mahmoud @ccl.umist.ac.uk

Abstract

This paper describes experience with the
developed of tools for CL education using Java.
Some are standalone Java applets and others are
clients which connect to a parsing server using a
LISP-based backend. The principal benefits are
platform independence and reusability rather
than world-wide web access, although intranet
technology reduces the need for special purpose
labs.

Introduction

Networked computers can be used to support
learning in various ways. In computational
linguistics, the predominant pattern of use is
twofold: Learning materials are distributed using
hypertext, and laboratories are conducted in
which students work directly with computational
linguistics processors such as parsers and
generators.

The 'authorware' approach to developing
learning materials has not been popular in the
teaching of computational linguistics because of
the extensive labour involved in encoding
content. Since CL is all about the use of
powerful general mechanisms and expressive
formalisms, the idea of writing learning
materials using less expressive tools has little
appeal.

However, the new technologies of the internet
make it easier to combine media to produce
integrated learning environments in which
pedagogical materials can be intimately
connected to mechanisms and resources.

Using such approaches can produce payoffs
whether or not distance learning is involved. A
better integrated set of resources for laboratory
activities makes fewer demands on support staff
such as graduate demonstrators. The ability to
encapsulate mechanisms and tools in applets
also means that the need to maintain special
purpose laboratories is diminished, and it is also
possible to promote CL to potential students in
schools.

This paper reports experience with the use of
web browsers to provide practical activities to an
introductory class of computational linguistics
students. We concentrate on the tools developed
locally, although we make use of others where
appropriate. Much of the discussion focuses on
what is possible with the constraints imposed by
current network software.

1 Learning Objectives

Behind the practical work reported in the rest of
this paper is an assumption that introductory CL
education should provide learning environments
both for the linguistic and computational aspects
of CL.

For the former aspect, a simplified grammar
development environment is required; for the
latter, an interactive exploratory tool which can
step through processes like constructing a
derivation, applying a specific search algorithm,
relating the data structures to the representations
produced as the result of analysis.

,~ The Pa,ser - Netseape I~1~] E
_File _Edit View Go Communicator Help

~i Back Forv,,~rd Reload.. Home Seamh N e t s c a p e P,int Seeuhl.~ S t o p ~ I
"~! v . |' . . , T

.:::l ' . J ,, ,,,,,,- " , ,, - , ,i;
ii];;;,i~,~ ~ Bookma,ks ...~ L o c a t o n " s t ac uk/webparser/cl,entl 0/chent html ~ ~ 'V,/ha[sRelated

Type string to be parsed - no punctuation:

IAn airline took american hotel chain over an J Parse I

Clear 1

Prevl
Nell

TO(

VP ..._f--,--,,,._.

CAT TV

I PREDICATE TOOK OVER'

SEM lARGO (1)

LARG1 (2)
ARGO (1)

ARG1 (2)

NP

DET N
I I

AN AIRLINE

IN

41 S V

Figure 1 The client-server parser running in Netscape browser

2 Tools fo r exp lo r ing g r a m m a r s and
l inguistic representat ions

In the preceding paragraph, we contended that
simplified grammar development environments
are required. Why not the real thing, like the
Alvey Tools, Geppetto, LFG workbench, Pleuk,
ProFit, ALEP et al? The target audience is the
introductory CL student, either in the first year
of a study programme or taking a CL module as
part of a cognate discipline. Tools used by
researchers are for later in the course, if we
manage to retain the interest of the students,
which we will only do if we make CL tools as
accessible as the generality of IT applications.

Graphical user interfaces are essential: to give a
student a graphics workstation and have them
interact with Prolog in a terminal window
conveys an unfavourable impression.

Some excellent learning software for CL is
available, such as the Linguistic Instruments
tools for CFGs DCGs, PATR and categorial
grammars. Their main drawback is that they are
tied to the MacOS platform.

2.1 Software p lat forms for portabi l i ty

There are implementations of the programming
languages considered suitable for NLP that hava
graphical user interface (GUI) development
tools, but unfortunately these are not standard.
The ideal would be to use programming

languages and G U I development tools that are
available on different computer systems. The
two most widely known platform-independent
GUI development tools are Tcl/TK and Java.. Of
the two, Tcl/TK is simpler, but Java has the
crucial advantage that it can 'run anywhere' in a
web browser, whereas for Tcl/TK, the user has
to obtain a plug-in.

Integrating tools with teaching material

Another use of Java running in a browser is to
embed the interactive elements into hypertext,
allowing a close linkage of textual learning
materials with practical activities. As well as
using Java to provide run-anywhere programs,
teaching materials can be enhanced by applets
which display linguistic analyses graphically,
and even have the displayed information open to
manipulation.

The grammat)cal resources used are the
grammars in PATR-II as presented in Gazdar
and Mellish, 1989.

The client-side itree and AVM-drawing programs
illustrated in Figure 1 can be used independently
of the server discussed below, to produce
animated teaching notes. The data to be
displayed and manipulated in this applet is
specified in applet's parameters, so it is possible
to use it to illustrate different analyses at
different parts of an educational hypertext. There
is one structured string parameter which encodes
the tree, and one further parameter for each
node, which encodes the content of the
respective AVMs.

The Thistle tree-editing suite (Calder, 1998) is a
well-developed interactive tool for working with
linguistic representations such as trees and
AVMs is a more sophisticated alternative.
However, the tree-drawing program described is
only a part of a more sophisticated mechanism
which links the linguistic information displays to
on-line parsing,

3 On-line Parsing

Having chosen to use Java for the development
of graphical displays of linguistic data, we have
to consider what is the most appropriate engine
for the analysis or generation behind them. One
possibility would be to re-write the code for

those algorithms in Java, but this ignores the
possibility of re-using existing programs written
in Prolog or LISP, which are documented in
various textbooks. These implementations are
more established than existing Java-based
parsers, which have not so far featured in
published learning materials.

There are several practical ways in which a
Prolog or LISP parser can have its output
displayed graphically in a browser. One is to
invoke the parser from within a CGI script on a
web server. This strategy has been adopted by
Ramsay (1999) for presenting the Parasite
project on the WWW.

A disadvantage is that each request involves the
overhead of starting a new Prolog process, and a
consequently inflated response time, as well as
complex arrangements to maintain dialogue state
information.

C l i en t - s e rve r p a r s i n g

In the CCL webparser system, the LISP-based
parsing program acts as a server which accepts
socket connections from the Java applet that
handles the display.

The intention was that the LISP parser should be
a black box, so we elected to build th server
using Expect. This is an extension of Tcl/TK
(Libes, 1995) that is specially designed to
'automate' interactive programs.

The Expect program spawns a LISP process and
then controls it by simulating the user with its
send and expect commands. It uses its send
command to load linguistic resources, and then
it opens a server socket, awaiting requests from
networked clients.

When socket connections are accepted from
users' browser clients, the expect program
passes these on to the LISP parser program, and
awaits the response, which it passes back to the
client.

The advantage of using Expect as an intermed-
iate layer is that it enables the LISP process to
react to different client programs without
having to restart to serve each of them. It also
lets the server save the results of a parse, e.g. a

chart, and let the user ask for information that is
stored in chart edges for some time after the
initial parse was done. When a parse request is
processed, a reference number is generated and
the chart is cached, indexed by that number. The
reference numbers are notified to the client as
part of the message summafising the result of
the analysis.

The client-server protocol

A simple protocol has been defined for
communication between the client and the
server, as shown in Table 1. The client prefixes
each request by one of the keywords parse, tree,
and avm.

Table 1 Client-server protocol for web parser

Client request

parse word*
tree p# tree#
avm p# edge#

Key:

Server response

parsecount p# num
showtreelp#1treenode*
showavmledge#1dagnode*/
dagedge*

p# reference number of the parse request
tree# nth analysis produced in parse p#
edge# nth edge from the chart of parse
p#
treenode is a triple node#, parent, label
dagnode is a number
dagedge is a triple fi'om, to, label

Figure 1 illustrates this client-server system
running in a Netscape browser.

Educational use of the client-server
parser

The version displayed is under development, and
still lacks some features it would need to be
really useful in an educational context. The
most important practical requirement is for the
user to be able to modify the grammars and
lexicons that the system uses. To make the
program useful for reinforcing different stages in
a course, the user has to be able to select
alternative grammars, and to be able to edit
his/her own. This is inconvenient to implement

when the interface is an applet, because an
applet is not normally permitted to save
programs on the local machine. However, we
expect to have a workaround for this in place for
the next academic year.

Being able to display the results of parsing in the
form of conventional diagrams is an advance on
textual interaction. When the student is
working on a grammar, the displays produced
give feedback which is much more readily
understood than textual output.

Students in the later years of the CL course have
been able to use the system to visualise the
results of parsing with grammars under
development in another window. The planned
file-management facilities will enable the
program to be used regularly with the target
users (students new to CL) in the next academic
year.

Tools to support the understanding of CL
processing

Understanding grammar notation is only part of
what a CL student needs to learn in practical
classes. Accordingly, we have started to develop
a suite of tools that animate parsing algorithms
using Java only, without the need for a server.

The first of these was developed in a day, and
lets the student step through the construction of
a derivation, either top-down or bottom-up. This
program is illustrated in Figure 2. It has been
extended so users can supply their own rules.
This program has been successfully deployed
with first-year students already and appears to
have enhanced their understanding of these basic
concepts of formal language theory and parsing
algorithms. The same program can be used,
with different data, to illustrate search
algorithms in general.

I

, r ~ ~ : : . i ~ " ~ ;~%>7 , ' " *~ 3 : : "~ "~ !~ '

ii! L ~ Bookmarks ...1~`L~cat~:~http:~www.cc~um'~t~a~uk~tea~h~ng~mate~a~.~;3~iat%Re~ated~
To actavate, Chck m the Start state box after <s> and press the return key. Then
choose rutes from the "Productions" list. For additi0nal help, click here. j

Goal: Start state:

I < s >

(~ Top down (" Bottom up Productions:

Derivation

Starting new derivation at state: <s>

<rap> <vp> by rule 0
<det> <n> <vp> by rule $

<det> <n> <vp>: Rule 7 :not applicable.

<det> <n> <vp>: Rule 7 mot applicable.

< p r o p e r > - - > " F i d o " ~"

<proper>--> "John"

<proper>--> "MarT"
<pronoun>--> "it"

<det>--> "the"

<det>--> "a"

<n>--> "dog"
<n>--> "girl"

• i •i. i ̧. " : i i : i ~

Help is available on the following topics:
. - - •

Figure 2 Interactive tool for constructing derivations

We are modifying this program so that it can
show the agenda at each step of an automatic
derivation to enhance the student's
understanding of search algorithms in general.
At some point, this program will be integrated
with the graphical presentation elements.

Discussion

The software described in this paper is still
under development. It has been used by
students, but not yet extensively. It will be
difficult to get objective information on what

difference such accessible interactive learning
tools make to the students' learning, but a study
of usability will be conducted during the next
academic session.

The main advantage (for the teacher) in using a
WWW-based environment for delivering natural
language processing practical work to students is
that once developed, the laboratory needs less
specialist provision and staffing than before.
Students can also work in their own time in
campus-wide computer facilities without having
to have NLP software installed.

Planned developments

The software described is at a rather immature
phase of deyelopment, but most of the hard work
has been done. Planned future developments
after the file management facilities are
completed include:
• graphical viewers for the chart in chart

parsing
• dependency tree viewers
• discourse representation viewers

incremental tracing of generation algorithms

Also on the agenda is to make on-line access to
a range of well-known NLP programs an
integral feature of all the teaching materials for
introductory NLP. Using the same Expect-based
meachnism, we can put user interfaces around
taggers, morphological analysers, dictionaries
and corpus-analysis programs and link to them
all with hypertext.

Conclusion

We have described recent work on the
implementation of student-oriented tools for
natural language processing.

Three kinds of tool have been developed, which
complement those available elsewhere. Firstly a
parameterisable applet which enables the
lecturer to incorporate syntax trees with
embedded attribute-value matrices into
hypertext teaching materials. Second, a portable
HTML-Java interface to a parsing server
residing on a departmental intranet server.
Finally, we have developed a tool that lets the
student explore the process of analysis step-by-
step, to reinforce understanding of the basic
algorithms for NLP.

Both the second and the third tool are now being
enhanced to enable them to be used by students
to develop their own resources, and effort is also
under way to complete graphical viewers for a
more complete inventory of linguistic
representations.

The client-server method of constructing an on-
line parser with a user interface is an attractive
approach because it allows us to re-use existing
tools, for example those which are featured in
teaching materials, such as Gazdar and Mellish

(1989). The Expect plus Java technology
provides a good solution for developing user
interfaces for local use; the possibility of
deploying these within hypermedia provides an
additional opportunity to package the practical
work within course materials.

Tools used

The client-server program was developed using
JDK1.1.7, Allegro Common Lisp TM, version 5.0,
Expect version 1.5, and the Apache Web server,
under Solaris TM 2.6. The client programs have
been tested on Netscape 4.0 and 4.5, and on
Internet Explorer TM 4.0. It is planned to verify
that the LISP portion can run under a freely
available LISP, with a view to making the tools
available to anyone interested in using them.

Availability

The client-server parser can be tried out at
http://bermuda.ccl.umist.ac.uk/webparser/client !

0/client.html
When the software is available for download it
will be announced at
http://www.ccl.umist.ac.uk.

Acknowledgements

Simon Hill was supported by a EPSRC
studentship, and some further financial support
has been provided by ELSNET

References
Calder, J. (1998) How to build a (quite general)

linguistic diagram editor. In Thinking with
Diagrams (TwD98), Aberystwyth, UK.

Gazdar, G. and Mellish, C.S..(1989) Natural
Language Processing in LISP. Reading, MA:
.Addison Wesley

Libes. D. (1995), Exploring Expect. Cambridge, MA:
O'Reilly,

Ramsay, A.M. (1999) Weak lexical semantics and
multiple views. In H.C. Bunt and E.G.C. Thijsse,
Eds, 3rd International Workshop on
Computational Semantics, pages 205--218,
Tilburg, The Netherlands.

