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Abstract 
How similar are two corpora? A measure of corpus 
similarity would be very useful for NLP for many pur­
poses, such as estimating the work involved in porting 
a system from one domain to another. First, we dis­
cuss difficulties in identifying what we mean by 'corpus 
similariti: human similarity judgements are not fine­
grained enough, corpus similarity is inherently multi­
dimensional, and similarity can only be interpreted in 
the light of corpus homogeneity. We then present an op­
erational definition of corpus similarity \vhich addresses 
or circumvents the problems, using purpose-built sets 
of aknown-similarity corpora". These KSC sets can be 
used to evaluate the measures. We evaluate the mea­
sures described in the literature, including three vari­
ants of the information theoretic measure 'perplexity'. 
A x2-based measure, using word frequencies, is shnwn 
to be the best of those tested. 

The Problem 

How similar arc two corpora? The question arises on 
many occasions. In NLP, many useful results can be 
generated from corpora, but when can the results de­
veloped using one corpus be applied to another? How 
much will it cost to port an NLP application from one 
domain, with one corpus, to another, with another? For 
linguistics, does it matter whether language researchers 
use this corpora or that, or are they similar enough for it 
to mal<e no difference? There are also questions of more 
general interest. Looking at British national newspa­
pers: is the Independent more like the Guardian or the 
Telegraph?' 

What are the constraints on a measure for corpus 
similarity? The first is simply that its findings cor­
respond to unequivocal human judgements. It must 

* Kilgarriff's part of the work was undertaken under EP­
SRC grant GR/K/18931 

1 The work presented here develops and extends that pre­
sented in Kilgarriff (1997). 

46 

Tony Rose 
Canon Research Centre Europe 

match our intuition that, eg, a corpus of syntax papers 
is more like one of semantics papers than one of shop­
ping lists. The constraint is key but is weak. Direct 
human intuitions on corpus similarity are not easy to 
come by, firstly 1 because large corpora, unlike coherent 
texts, are not the sorts of things people read, so people 
are not generally in a position to have any intuitions 
about them. Secondly, a human response to the ques­
tion, ((how similar are two objects)), where those objects 
are complex and multi-dimensional, will themselves be 
multi-dimensional: things will be similar in some ways 
and dissimilar in others. To ask a human to reduce a 
set of perceptions about the similarities and differences 
between two complex objects to a single figure is an 
exereise of dubious value. 

This serves t;o emphasise an underlying truth: corpus 
similarity is complex, and there is no absolute answer 
to "is Corpus 1 more like Corpus 2 than Corpus 3?". 
All there arc, are possible measures which serve par­
ticular purposes more or less well. Given the task of 
costing the customisation of an NLP system, produced 
for one domain, to another, a corpus similarity measure 
is of interest insofar as it predicts how long the porting 
will take. It could be that a measure which predicts 
well for one NLP system, predicts badly for another. 
It can only be established whether a measure correctly 
predicts actual costs, by investigating actual costs.2 

Having struck a note of caution, we now proceed on 
the hypothesis that there is a single measure which cor­
rc~sponds to pre-theoretieal intuitions about 'similarity' 
and which is a good indicator of many properties of 
interest ··- customisation costs, the likelihood that lin­
guistic findings based on one corpus apply to another, 
etc. We would expect the limitations of the hypothesis 
to show through at some point, when different measures 
arc shown to be suited to different purposes 1 but in the 
current situation, where there has been almost no work 

2Cf. Ucbcrla (1997), who looks in detail at the appro­
priateness of perplexity as a measure of task difficulty for 
spe(~ch recognition, and finds it wanting. 



Corpus I Corpus 2 Distance Interpretation 
·--

equal equal equal same language variety /ies 
equal equal high different language varieties 
high low high corpus 2 is homogeneous and falls within 

the range of 'general' corpus 1 
high low higher corpus 2 is homogeneous and falls outside 

the range of 'general' corpus 1 
high high low impossible 
low low a bit lower overlapping; share some varieties 
high high a bit lower similar varieties 

-

Table I: Interactions between homogeneity and similarity: a similarity measure can only be interpreted with 
respect to homogeneity. 
High means a large distance between corpora, or large within-corpus distances, so the corpus is heteroge­
neous/corpora are dissimilar; low, that the distances are low, so the corpus is homogeneous/corpora are similar. 
High, low and equal are relative to the other columns in the same row, so, in row 2, 'equar in the first two columns 
reads that the within-corpus distance (homogeneity) of Corpus I is roughly equal to the within-corpus distance of 
Corpus 2, and 'high' in the Distano~ column readt> that the distance between the corpora is substantially higher than 
these within-corpus distances. 

on the question, it is a good starting point. 

Similarity and homogeneity 
How homogeneous is a corpus? The question is both 
of interest in its own right, and is a preliminary to any 
quantitative approach to corpus similarity. In its own 
right) because a sublanguage corpus) or one contain­
ing only a specific language variety, has very different 
characteristics to a general corpus (Biber, 1993) yet it is 
not obvious how a corpus's position on this scale can be 
assessed. As a preliminary to measuring corpf.ls similar­
ity, because it is not clear what a measure of similarity 
would mean if a homogeneous corpus (of, ,eg, software 
manuals) was being compared with a heterogeneous one 
(eg. Brown). Ideally, the same measure can be used 
for similarity and homogeneity, as then, Corpus !/Cor­
pus 2 distances will be directly comparable with het­
erogeneity (or "within-corpus distances") for Corpusl 
and Corpus2. This is the approach adopted here. 

Not all combinations of homogeneity and similar­
ity scores are logically possible. A corpus cannot be 
much more similar to something else than it is to itself. 
Some of the permutations) and their interpretations) 
are shown in Table 1. 

The last two lines in the table point to the differences 
between general corpora and specific corpora. High 
within-corpus distance scores will be for general cor­
pora) which embrace a number of language varieties. 
Corpus similarity between general corpora will be a 
matter of whether all the same language varieties are 
represented in each corpus) and in what proportions. 
Low within-corpus distance scores will typieally relate 
to corpora of a single language variety) so here, scores 
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may be interpreted as a measure of the distance between 
the two varieties. 

Related Work 
There is very little work which explicitly aims to 
measure similarity between corpora. Johansson and 
Hofland (1989) aim to find which genres, within the 
LOB corpus, most resemble each other. They take the 
89 most common words in the corpus) find their rank 
within each genre, and calculate the Spearman rank 
correlation statistic ('spearman,). 

Rose, Haddock, and Tucker (1997) explore how per-
' formance of a speech recognition system varies with the 

size and specificity of the training data used to build the 
language model. They have a small corpus of the target 
text type 1 and experiment with 'growing) their seed cor­
pus by adding more same-text-type material. They use 
spearman and log-likelihood (Dunning, 1993) as mea­
sures to identify same-text-type corpora. Spearman is 
evaluated below. 

There is a large body of work aiming to find words 
which are particularly characteristic of one text, or cor­
pus) in contrast to another, in various fields including 
linguistic variation studies (Rayson, Leech, and Hodges, 
1997), author identification (Mosteller and Wallace, 
1964) and information retrieval (Salton, 1989; Dun­
ning, 1993). Biber (1988, 1995) explores and quantifies 
the differences between corpora from a sociolinguistic 
perspective. While all of this work touches on corpus­
similarity, none looks at is as a topic of itself. 

Sekine (1997) explores the domain dependence of 
parsing. He parses corpora of various text genres and 
counts the number of occurrences of each subtree of 



depth one. This gives him a subtree frequency Jist 
for each corpus, and he is then able to investigate 
whieh subtrees arc markedly different in frequency be­
tween corpora. Such work is highly salient for cus­
tomising parsers for particular domains. Subtree fre­
quencies could readily replace word frequencies for the 
frequency-based measures below. 

In information-theoretic approaches, perplexity is a 
widely-used measure. Given a language model and a 
corpus, perplexity "is, crudely speaking, a measure of 
the size of the set of words from which the next word is 
chosen given that we observe the history of ... words'' • (Roukos, 1996). Perplexity is most often used to assess 
how good a language modelling strategy is) so is used 
with the corpus held constant. Achieving low perplex­
ity in the language model is critical for high-accuracy 
speech reeognition 1 as it means there are fewer high­
likelihood candidate words for the speech signal to be 
compared with. 

Perplexity can be used to measure a property akin 
to homogeneity if the language modelling strategy is 
held constant and the corpora arc varied. In this case) 
perplexity is taken to measure the intrinsic difficulty 
of the speech recognition task: the less constraint the 
domain corpus provides on what the next word might 
be, the harder the task. Thus Roukos (1996) presents 
a table in which different corpora are associated \vith 
different perplexities. 

Perplexity measures are evaluated below. 

"Known-Similarity Corpora" 
A "Known-Similarity Corpora11 (KSC) set is built as 
follows: two reasonably distinct text types 1 A and B1 

arc taken. Corpus 1 comprises 100% A; Corpus 2, 90% 
A and 10% B; Corpus 3, 80% A and 20% B; and so 
on. We now have at our disposal a set of fine-grained 
statements of corpus similarity: Corpus 1 is more like 
Corpus 2 than Corpus 1 is like Corpus 3. Corpus 2 is 
more like Corpus 3 than Corpus 1 is like Corpus 41 etc. 
Alternative measures can now be evaluated 1 by deter­
mining how many of these 'gold standard judgements 1 

they get right. For a set of n Known-Similarity Corpora 
there are 

n (.( .. l) ) . t 1- + .. 2_)n- ') -:2·-- 1 
t:::=l 

gold standard judgements (see Appendix for proof) and 
the ideal measure would get all of them right. Mea­
sures can be compared by seeing what percentage of 
gold standard judgements they get right. 

Two limitations on the validity of the method are, 
first 1 there are different ways in \'Vhich corpora can be 
different. They can be different because each represents 
one language variety, and these varieties are different 1 
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or because they contain different mixes, with some of 
the same varieties. The method oi1ly directly addresses 
the latter model. 

Second, if the corpora are small and the difference 
in proportions between the corpora is also small) it is 
not clear that all the 'gold standard) assertions are in 
fact true. There may be a finance supplement in one 
of the copies of the Guardian in the corpus, and one 
of the copies of AccC'lmtancy may be full of political 
stories: perhaps, then 1 Corpus 3 is more like Corpus 
5 than Corpus 4. This was addressed by selecting the 
two text types with care so they were similar enough 
so the measures were not 100% correct yet dissimilar 
enough to make it likely that all gold-standard judge· 
ments \Vere true 1 and by ensuring there was enough data 
and enough KSG·sets so that oddities of individual cor­
pora did not obscure the picture of the best overall mea­
sure. 

Measures 
All the measures use spelt forms of words. None make 
use of linguistic theories. Comments on an earlier ver­
sion of the paper included the suggestion that lemmas1 

or word senscs 1 or syntactic constituents) \vere more ap­
propriate objects to count and perform computations 
on than spclt forms. This would in many ways be 
desirable. However there are costs to be considered. 
To count 1 for example 1 syntactic constituents rcquires 1 

f1rstly1 a theory of what the syntactic constituents are; 
secondly) an account of how they can be recognised in 
running text; and thirdly1 a program which performs 
the recognition. Shortcomings or bugs in any of the 
three will tend to degrade performancc 1 and it will not 
be straightforward to allocate blame. Different theories 
and implementations are likely to have been developed 
with difl'erent varieties of text in focus 1 so the degrada­
tion may well effect different text types differentially. 
Moreover, practical users of a corpus-similarity mea­
sure cannot be expected to invest energy in particular 
linguistic modules and associated theory. To be of gen­
eral utility) a measure should be as theory-neutral as 
possible. 

While we are planning to explore counts of lemmas 
and part-of-speech catcgories 1 in these experiments we 
consider only raw word-counts. 

Word Frequency measures 

Two word frequency measures were considered. For 
each, the statistic did not dictate which words should be 
compared across the two corpora. In a preliminary in­
vestigation we had experimented with taking the most 
frequent 10, 20, 40 ... 640, 1280, 2560, 5120 words in 
the union of the two corpora as data points, and had 



achieved the best results with 320 or 640. For the ex­
periments below, we used the most frequent 500 words. 

Both word-frequency measures can be directly ap­
plied to pairs of corpora, but only indirectly to measure 
homogeneity. To measure homogeneity: 

L divide the eorpus into 'slices'; 

2. create two subc:orpora by randomly allocating half 
the slices to each; 

3. measure the similarity between the subcorpora; 

4. iterate with different random allocations of slices; 

5. calculate mean and standard deviation over a.ll iter­
ations. 

Wherever similarity and homogeneity figures were to 
be compared, the same method was adopting for calcu­
lating corpus similarity, with one subcorpus comprising 
a random half of Corpus 1, the other, a random half of 
Corpus 2. 

Spearman Rank Correlation Co-efficient 
Ranked wordlists are produced for Corpus 1 and Corpus 
2. For each of the n most common words! the difference 
in rank order between the two corpora is taken. The 
statistic is then the normalised sum of the squares of 
these differences, 

Comment Spearman is easy to compute anc~ds inde­
pendent of corpus size: one can directly compc\:re ranked 
lists for large and small corpora. However thpre was an 
a priori objection to the statistic. For very frequent 
words, a difference of rank order is highly significant: if 
the is the most common word in corpus 1 but only 3rd 
in corpus 2, this indicates a high degree of difference be­
tween the genres. At. the other end of the scale, if /!read 
is in 4.00th position in the one corpus and 500th in the 
other, this is of no significance, yet Spearman counts 
the latter as far more significant than the former. 

x2 
For each of the n most common words, we calculate 
the number of occurrences in each corpus that would 
be expected if both corpora were random samples from 
the same population. If the size of corpora 1 and 2 are 
N1, N2 and word w has observed frequencies Ow 1 , ow 2 , 

then expected value ew 1 :;:;;: N1 x~w~1;0 "'' 2 ) and l,il.;:ev.,ri,se 
, 1- 2 

for Cw,2; then 

2 ,~(o-e)2 
X ='"' e 
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Co1nn1ent The inspiration for the statistic comes 
from the x2-test for statistical independence. As Kil­
garriff (1996) shows, the statistic is not in general ap­
propriate for hypothesis-testing in corpus linguistics: a 
corpus is never a random sample of words, so the null 
hypothesis is of no interest. But once divested of the 
hypothesis-testing link, x2 is suitable. The (o- e) 2 je 
term gives a measure of the difference in a word's fre­
quency lx~t\veen two corpora, and, while the measure 
tends to increase with word frequency, in contrast to 
the raw frequencies it does not increase by orders of 
magnitude. 

The measure docs not directly permit comparison be­
tween corpora of different sizes. 

Perplexity and Cross-entropy 

From an information-theoretic point of view, prima fa­
cie, entropy is a well-defined term capturing the infor­
mal notion of homogeneity, and the cross-entropy be-· 
tween tvw corpora captures their similarity. Entropy 
is not a quantity that can be directly measured. The 
standard problem for statistical language rnodelling is 
to aim to find the model for which the cross-entropy 
of the model for the corpus is as low as possible. For 
a perfect language model, the cross-entropy would be 
the entropy of the corpus (Church and Mercer, 1993; 
Charniak, 1993). 

With language modelling strategy held constant, the 
cross-entropy of a language model (LM) trained on Cor­
pus 1: as applied to Corpus 2, is a similarity measure. 
The cross-entropy of the LM based on nine tenths of 
Corpus 1, as applied to the other 'held-out' tenth, is 
a measure of homogeneity. We standardised on the 
'teqfold cross-validation' method for measures of both 
similarity and homogeneity: that is, for each corpus, 
we dividE~d the corpus into ten parts3 and produced ten 
LMs, using nine tenths and leaving out a different tenth 
each time. (Perplexity is the log of the cross-entropy of 
a corpus with itself: measuring homogeneity as self­
similarity is standard practice in information theoretic 
approaches.) 

To measure homogeneity, we calculated the cross­
entropy of each of these LMs as applied to the left-out 
tenth, and took the mean of the ten values. To mea­
sure similarity, we calculated the cross-entropy of each 
of the Corpus 1 LMs as applied to a tenth of Corpus 2 
(using a different tenth each time). We then repeated 
the procedure with the roles of Corpus 1 and Corpus 2 
reversed, and took the mean of the 20 values. 

3For the KSC corpora, we ensured that each tenth had 
an appropriate mix of text types, so that, eg, each tenth of a 
corpus comprising 70% Guardian, 30% BMJ, also comprised 
70% Guardian, 30% BMJ. 



All LMs were trigram models. All LMs were 
produced and calculations performed using the 
CMU /Cambridge toolkit (Rosenfeld, 1995). 

The treatment of words in the test material but not in 
the training material was critical to our procedure. It is 
typical in the language modelliug community to repre­
sent such words with the symbol UNK, and to calculate 
the probability for the occurrence of UNK in the test 
corpus using one of three main strategies. 

Closed vocabulary The vocabulary is defined to in-· 
elude all items in training and test data. Probabili­
ties for those items that occur in training but not test 
data) the 'zerotons\ are estimated by sharing out the 
probability mass initially assigned to the singletons 
and doubletons to include tbe zerotons. 

Open, type 1 The vocabulary is chosen indepen­
dently of the training and test data, so the probability 
of UNK may be estimated by counting the occurrence 
of unknown words in the training data and dividing 
by N (the total number of words). 

Open, type 2 The vocabulary is defined to include all 
and only the training data, so the probability of UNK 
cannot be estimated directly from the training data. 
It is estimated instead using the discount mass cre­
ated by the normalisation procedure. 

All three strategies were evaluated. 

Data 
All KSC sets were subsets of the British National Cor­
pus (BNC)'. A number of sets were prepared as follows. 

For those newspapers or periodicals for which the 
BNC contained over 300,000 running words of text, 
word frequency lists were generated and similarity and 
homogeneity were calculated (using x2 ). We then se­
lected pairs of text types which were modemtely dis­
tinct, but not too distinct, to use to generate KSC sets. 
(In initial experiments, more highly distinct text types 
had been used, but then both Spearman a.nd x' had 
scored 100%, so 'harder' tests involving more similar 
text types were selected.) 

For each pair a and b, all the text in the BNC for 
each of a and b was divided into 10,000-vwrd tranche:=L 
These tranches were randomly shuff-led and allocated as 
follows: 

first 10 of a into bOa 
next 9 of a, first 1 of b into b1a 
next 8 of a, next 2 of b into b2a 
next 7 of a, next 3 of b into b3a 

4 http:/ /info.ox.ac.ukjbnc 
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until either the tranches of a orb ran out, or a complete 
11-corpus KSC-set was formed. A sample of KSC sets 
are available on the web.5 There were 21 sets containing 
between 5 and 11 corpora. The method ensured that 
the same piece of text never occurred in more than one 
of the corpora in a KSC set. 

The text types used were: 
Accountancy (ace); The Art Newspaper (art); British 
Medical Journal (bmj); Environment Digest (env); The 
Guardian (gua); The Scotsman (sco); and Today ('low­
brow' daily newspaper, tod). 

To the extent that some text types differ in content, 
whereas others differ in style, both sources of variation 
are captured here. Accountancy and The Art News­
paper are both trade journals, though in very different 
domains, while The Guardian and Today are both gen­
eral national newspapers, of different styles. 

Results 

For each KSC-set, for each gold-standard judgement 
the 1Correct answer' was known, eg., 11the similarity 1,2 
is greater than the similarity 0,3". A given measurE 
either agreed with this gold-standard statement, or dis­
agreed. The percentage of times it agreed is a measun 
of the quality of the measure. Results for the caseE 
where all four measures were investigated are presented 
in Table 2. 

-
spear x" closed type 1 type 2 

KSC-set 
accgua 93.33 91.33 82.22 81.11 80.44 
art_gua 95.60 93.03 84.00 83.77 84.00 
brnj_gua 95.57 97.27 88.77 89.11 88.77 
env_gua 99.65 99.31 87.07 84.35 86.73 

Table 2: Comparison of four measures 

The word frequency measures outperformed the per· 
plexity ones. It is also salient that the perplexity mea· 
sures required far more computation: ca. 12 hours on c 
Sun, a ... s opposed to around a minute. 

Spearman and x 2 were tested on all 21 KSC-sets, anc 
x' performed better for 13 of them, as shown in Table 3 

spear :;?"tie total 
Highest score 5 13 3 21 

Table 3: Spearman/x' comparison on all KSCs 

5 http' I I www' itri' bton. a c. uk r Adam. Kilgarriff /KSC I 



The difference was significant (related t-test: t=4.47, 
20DF, significant at 99.9% level). x2 was the best of 
the measures compared. 

Conclusions and further work 
\Ve have argued that computational linguistics is in ur~ 
gent need of measures for corpus similarity and homo­
geneity. Without one, it is very difficult to talk ac­
curately about the relevance of findings based on one 
corpus) to another, or to predict the costs of porting 
an application to a new domain. We note that corpus 
simila.rity is complex and multif<lceted, and that differ­
ent measures might be required for different purposes. 
However, given the paucity of other work in the Held, 
at this stage it is enough to seek a single measure which 
performs reasonably. 

The Known-Similarity Corpon.t method for evaluat­
ing corpus-similarity measures was presented, and rnen­
sures discussed in the literature were compa.red using it. 
For the corpus-size used and this approach to <Walua­
tion, x2 and Speannan both perfon:ned better than auy 
of three cross-entropy measures. These measures have 
the advantage that they are cheap and straightforward 
to compute. x2 outperformed Spearman. 

Further work is to include: 

0 developing a scale-independent x2-based statistic 

e investigating a 2-dimensional measure for simila.rity1 

with one dimension for closed-class \vords and an­
other for open-class words 1 to see whether differences 
in style and in domain can be distinguished 

f1l evaluation of a log-likelihood-bttsed measj,lY~~' and of 
different vocabulary-sizes for open models. Then it 
will be possible to eompare the 500-word {ncasure for 
spearman and x2 more directly with the perplQxity 
measures 

e gathering data on the actual costs of porting systems, 
for correlation with results given by similarit.y mea­
sures 

$ comparing the method with Biber 1S feature-set and 
analysis. 
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Appendix 
The proof is based on the fact that the number of simi­
larity judgements is the triangle number of the number 
of corpora in the set (less one), and that each new sim­
ilarity judgement introduces a triangle number of gold 
standard judgements (once an ordering which rules out 
duplicates is imposed on gold standard judgements). 

• A KSC set is ordered according to the proportion of 
text of type 1. Call the corpora in the set I. .. n. 

• A similarity judgement ('sim') between a and b (a, b) 
compares two corpora. To avoid duplication, we 
stipulate that a<b. Each sim is associated with a 
number of steps of difference between the corpora: 
dif(a,b)=b-a. 

• A gold standard judgement ('gold') compares two 
sims; there is only a gold between a, b and c,d if 
a<b and c<d (as stipulatNI above) and also if a<=c, 
b>=d, and not (a=c and b=d). Each four-way com­
parison can only give rise to zero or one gold, as en­
forced by the ordering constraints. Each gold has 
a difference of difs ('difdif') of (b-a)-(d-c) (so, if we 
compare 3,5 with 3A, difdif=l, but where we com­
pare 2,7 with 3,4, difclif = 4). difdif(X,Y) = dif(X)· 
dif(Y). 

• Adding an nth corpus to a KSC set introduces n-1 
sims. Their difs vary from 1 (for (n-1),n) to n-1 (for 
1,n). 

• The number of golds with a sim of dif rn as first term 
is a triangle number less one, 2:;:2 i. or m(n~.-J-l) - 1 
For example, for 2,6 ( dif=4) there are 2 golds of difdif 
1 (eg with 2,5 and 3,6), 3 of difdif 2 (with 2,4, 3,5, 
4,6), and 4 of difdif 3 (with 2,3, 3,4, 4,5, 5,6). 

• With the addition of the nth corpus, we intro­
duce n-1 sims with difs from 1 to n-1, so we add 
2::;~~1 i(iil) - 1 golds. For the ·whole set, there 

are 2::;~ 1 I:;:;\ iU~Il ··· 1 and collecting up repeated 

terms gives 2::;~ 1 (n- i)('(i;-rl - 1) 
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