
A F L E X I B L E S H A L L O W A P P R O A C H

TO T E X T G E N E R A T I O N

Stephan Busemann and Helmut Horacek
DFKI GmbH

Stuhlsatzenhausweg 3, 66123 Saarbrficken , Germany
{busem~n~, horacek}¢dfki.de I

Abstract

In order to support the efficient development of NL generation systems, two orthogonal
• methods are currently pursued with emphasis: (i) reusable, general, and linguistically •motivated
surface realization components, and (2) Simple, task-oriented template-based techniques. In
this paper we argue that, from an application-oriented perspective, the benefits of both are still
limited, lax order to improve this situation, we suggest and evaluate shallow generation methods
associated with increased flexibility. We advise a close connection between domain-motivated
and linguistic ontologies that Supports the quick adaptation to new tasks and domains, rather
than the reuse of general resources. Our method is especially designed for •generating reports
with limited linguistic variations.

1 I n t r o d u c t i o n

in order to Support the efficient development of NL generation systems, two orthogonal methods
are currently pursued with emphasis: (1) reusable, general, and linguistically motivated surface re-
alization components, and (2) simple, task-oriented template-based techniques. Surface realization
components impose a layer of intermediate representations that has become fairly standard, such
as the Sentence Plan Language (SPL)[Kasper and Whitney, 1989]. This layer allows for the use of
existing software with well-defined interfaces, often reducing the development effort for surface re-
alization considerably. Template-based •techniques recently had some sort of revival through several
application-oriented projects such a s IDAS [Reiter et al.; 1995], that combine pre-defined surface
expressions with freely generated text in one or another way. However, the benefits of both surface
realization components and template-based techniques are still limited from an application-oriented
perspective. Surface realization components are difficult to use because of the differences between
domain-oriented a n d linguistically •motivated ontologies (as in SPL), and existing template-based
• techniques are too inflexible.

In this paper we Suggest and evaluate flexible shallow methods for report generation applica-
tions requiring limited linguistic resources that are adaptable with little effort. We advise a close
connection between domain-motivated and linguistic ontologies, and we suggest a layer of inter-
mediate representation that is oriented towards the domain and the given task. This layer may
contain representations of different granularity, some highly implicit, others very elaborate. We
show how this is used by the processing components in a beneficial way.

1This work has beensupported by a grant for theproject TEMSIS from the European Union (Telematics Appli-
cations Programme, Sector C9, contract no. 2945).

I

i
I

1
,I
I

,[I
I

238

The approach suggested does not only change the modularization generally assumed for NLG
systems drastically, it also renders the system much more application-dependent. At first glance,
however, such an approach seems to abandon generality and reusability completely, but, as we will
demonstrate, this is not necessarily the case.

The rest of this paper is organized as follows: Section•2 identifies deficits with current approaches
to surface realization tha t may occur for particular applications. In Section 3 we propose alternative
methods implemented into our sample application, the generation of air-quali•ty reports from current
environmental data. In Section 4 we discuss the pros and cons of our approach, and we summarize
the conditions for successful use.

2 In-Depth and Shallow Generat ion

2.1 S h a l l o w g e n e r a t i o n

Recently, the distinction between in-depth and Shallow approaches to language processing has
emerged from the need to build sensible applications. In language understanding deep analysis
attempts to "understand" every part of the input, while shallow analysis tries to identify only parts
of interest for a particular application. Shallow analysis is a key concept for information extraction
from huge text bases and many other real-world application types.

In language generation a corresponding distinction which we term in-depth vs. shallow genera.
tion 2 is becoming prominent. While in-depth generation is inherently knowledge-based and the-
oretically motivated, shallow generation quite opportunistically models only the parts of interest
for the application in hand. Often such models will turn out to be extremely shallow and simple,
but in other cases much more detail is required. Thus, developing techniques for varying model-
ing granularity according to the requirements posed by the application is a prerequisite for more
custom-tailored systems.

According to Reiter and Mellish, shallow techniques (which they call "intermediate") are ap-
propriate as long as corresponding in-depth approaches are poorly understood, less efficient, or
more costly to develop [Reiter and Mellish, 1993]] While our motivation for shallow techniques
is in essence based on the cost factor,• our assessment is even more pronounced t h a n Reiter's and
Mellish's in that we claim that shallow approaches combining different granularity in a flexible way
are better suited for small applications. We are convinced that shallow generation systems will
have a similar impact on the development of feasible applications as shallow analyzers.

2.2 P o t e n t i a l s h o r t c o m i n g s o f a p p r o a c h e s t o s u r f a c e r e a l i z a t i o n

Current approaches to surface realization are mostly in-depth, based on general, linguistically moti-
vated, and widely reusable realization components, such as Penman [Penman, 1989], KPML [Bate-
man, 1997], and SURGE [Elhadad and Robin, 1996]. These components are domain-independent

• and based on Sound linguistic principles. KPML and SURGE also exhibit a broad coverage of
English, while sevhral other language models are also available or under development. Despite
their being reusable in general, the fact that the modularization of grammatical knowledge follows
linguistic criteria rather than the needs of different types of applications may cause a number of
problems for an efficient development of concrete applications:

2"vVe thus avoid confusion with the common distinction between deep and surface generation.

239

• The substantial differences between domain- and linguistically motivated ontologies may ren-
der the mapping between them difficult; for instance, the use of case relations such as "agent"
or "objective" requires compatible models of deep case semantics.

• The need to encapsulate grammar knowledge within the surface realizer may require de-
tails in the intermediate representation to be spelled out that are irrelevant to the intended
application, even for rather Small systems.

• The fixed granularity of grammatical modeling requires a realizer to cover many more lan-
guages, language fragments, or stylistic variations than would be needed for one particular
application, which can lead to a considerable inefficiency of the realizer.

In addition, there may be linguistic constructs needed for some applications that are still outside
the scope of the general tool. Their inclusion may require the intermediate representation layer• to
bemodi f ied .

2 . 3 P o t e n t i a l s h o r t c o m i n g s o f s h a l l o w g e n e r a t i o n m e t h o d s

A prominent example for an early shallow generation system is Ana [Kukich, 1983], which reports
about stock market developments. While the kind of texts it produces can still be considered
valuable today, Ana is implemented as a Widely unstructured rule-based system, which does not
seem to be easily •extendable and portable. Since then, various shallow methods including canned
text parts and some template-based techniques have been utilized, e.g. in CogentHelp [White and
Caldwell, 1997], in the system described in [Cawsey et al., 1995], and in IDAS [Reiter et al., 1995].
They feature simplicity where the intended application does not require fine-grained distinctions,
such as the following techniques used in IDAS:

• canned text wi th embedded KB references ("Carefully slide [x] out along its guide"),

• case frames with textual slot fillers, ("gent ly" in (manner : " g e n t l y ")) .

Although these techniques seem to be able to provide the necessary distinctions for many practical
applications in a much simpler way than in-depth surface realization components can do, a serious
limitation lies in their inflexibility. The first example above requires the realization of Ix] to agree
in number with the canned part; as this is not explicitly •treated, the system seems to implicitly
"know" that only singular descriptions will be inserted. Moreover, canned texts as case role fillers
may bear contextual influence, too, such as pronominals, or word order phenomena. Thus, the
flexibility of shallow generation techniques should be increased significantly.

3 Shal low G e n e r a t i o n in T E M S I S

I n order to tailor-the design of a generation system towards an application, we must account for
different levels of granularity. We need a formalism capable of adapting to the expressivity of the
domain-oriented information. Parts o f the texts to be generated may be canned, some require
templates, others require a more elaborate grammatical model.

In this section we first introduce an instance of the kind of applications we have in mind. We
then •proceed by discussing aspects of different granularity from the point of view of the intermediate

240

representation (IR) layer and the components it interfaces. These include text organization and
text realization. The text organizer is also responsible for content selection. It retrieves the relevant
data from the TEMSIS database. It combines fixed text blocks with the results of the realizer in a
language-neutral way. IR expressions are consumed by the text realizer, which is a version of the
production system TG/2 described in [Busemann, 1996].

3.1 T h e T E M S I S a p p l i c a t i o n

With TEMSIS a Transnational Environmental Management Support and Information System
was created as part of a transnational cooperation between the communities in the French-German
urban agglomeration, Moselle Est and Stadtverband SaarbriJcken. Networked information kiosks
are being installed in a number of communities to provide public and expert environmental infor-
mation. The timely availability of relevant environmental information will improve the planning
and reactive capabilities of the administration considerably. Current measurement data are made
available on the TEMSIS web server. The data include the pollutant, the measurement values,
the location and the time the measurements were taken, and a variety of thresholds. Besides such
data, the server provides metadata that allow for descriptions of the measuring locations, of the
pollutants measured and of regulations or laws according to which a comparison between measure-
ments and thresholds can be performed. This information can be accessed via the internet through
a hyperlink navigation interface (h t tp :/ /www-temsi s. d f k i . un i - sb , de /) .

The verbalization of NL air quality information in German and French is an additional service
reducing the need to look up multiple heterogeneous data. The generated texts can be comple-
mented with diagrams of time series. The material can be edited andlfurther •processed by the
administrations to fit additional needs.

In order to request a report, a user specifies his demand by choosing from a hierarchy of options
presented to him within the hyperlink navigation interface. He selects a report type by indicat-
ing whether he is interested in average values, maximum values, or situations where thresholds
are exceeded. Further choices include the language, the country the environmental legislation of
which should apply, the measurement location, the pollutant, the period of time for which mea-
surements should be retrieved, and in some cases comparison parameters. In addition, descriptions
of pollutants and measurement stations can be requested. They are stored as canned texts in the
TEMSIS database: Not all choices are needed in every case, and the TEMSIS navigator•restricts
the combination of choices to the meaningful ones.

Let us assume that the user wants a French text comparing thresholds for sulfur dioxide with
measurements taken in the winter period of 1996/97 at VSlklingen City, and the applicable legis-
lation should be from Germany. He also wants a confirmation of some of his choices. The user
• receives the following text on his browser 3 (translated into English for the reader's convenience):

You would like information about the concentration of sulfur dioxide in the air during-the
• winter season 1996/97. At the measurement station of VSlklinge n City, the early warning

threshold for sulfur dioxide at an exposition of three hours (600 /zg/m 3 according to the
German decree "Smogverordnung") was not exceeded, in winter 1995/96, the early warning
threshold was not exceeded either.

3A demo version of the system is available at http://wnT.dfki.de/service/nlg-demo/.

241 •

Reports are organized into one or several paragraphs. Their length may range from a few lines
to a page.

[(COOP THRESHOLD-EXCEEDING)
(LANGUAGE. FRENCH)
(TIME [(PILED SEASON) (NAME [(SEASON WINTER) (YEAR 1996)])])
(THRESHOLD-VALUE [(AMOUNT 600) (UNIT MEG-M3)])
(POLLUTANT SULFUR-DIOXIDE)
(SITE "V~o llklingen-City") ..
(SOURCE [(LAW-NAME SMOGVERORDNUNG) (THRESHOLD-TYPE VORWARNSTUFE)])
(DURATION [(HOUR 3)])
(EXCEEDS [(STATUS NO) (TIMES 0)])].

En hive r 1996/97 ~ la station de mesure de V6lklingen-City , le seuil d'avertissement pour le dioxide
de soufre pour une exposition de trois heures (600.0 #g/m 3 selon le decret allemand "Smogverord-
nung") n'a pas dt~ dgpassde.

Figure h A sample intermediate rePresentation for a report statement and its realization.

3 .2 T h e i n t e r m e d i a t e r e p r e s e n t a t i o n

The ma in purpose of the IR layer for the report generation system consists in ensuring that all
facets of the domain with •their different degrees of specificity can be verbally expressed, and in
keeping the realization task simple when no or little variety in language is needed. While SPL and
similar languages interfacing to in-depth surface realization are either linguistic in nature or largely
constrain the surface form of an utterance, the IR specifies domain information to be conveyed to
the user and logical predicates about it. Abs t rac t ing away from language-specific information in
the IR like this has the additional advantage that multi-lingual aspects can be kept internal to the
realizer. They depend on the LANGUAGE feature in an IR expression.

The IR in Figure 1 roUghly corresponds to the key s ta tement of the sample report in the pre-
vious section (the second sentence), which also appears at the end of each report as a summary.
It consti tutes a threshold comparison, as s ta ted b y t h e value of the C001 ~4 slot. There is only little
indication as to how IR exlSressions should be expressed linguistically. Many semantic relations be-
tween the elements of an IR expression are left implicit. For instance, the value of DURATION relates
to the t ime of exposure according to the threshold's definition and not to the period of t ime the user
is interested in (TIME). Another example is the relation between EXCEEDS and THRESHOLD-VALUE,

. which leads to the message tha t the early warning threshold was not exceeded at all. Wordings
are not prescribed. For instance, our sample IR does not contain a basis for t h e generation of
"exposure" or "measurement station".

I R expressions, contain specifications a t different degrees of granularity. For coarse-grained
specifications, it is up to the text realizer to make missing or underspecified parts explicit on the
surface so that , in a sense, shallow text realization determines parts of the contents. For more
fine-grained specifications , such as t ime expressions, text realization behaves like a general surface

4The C00P value can correspond to the report type, as in the example, to confirmations of user choices, or to meta
comments such as an introductory statement to a diagram, generated by a dedicated component.

242

generator with a fully-detailed interface. Ensuring an appropriate textual realization from IR
expressions is left to the language template design within the realizer.

The syntax of IR expressions is defined by a standard Backus-Naur form. All syntactically
correct expressions have a compositional semantic interpretation and can be realized as a surface
text provided corresponding realization rules are defined.• Sharing the IR definitions between the
text organization and the realization component thus avoids problems of realizability described in
[Meteer, 1992].

3.3 T e x t o r g a n i z a t i o n

The goal of text organization in our context is to retrieve and express, in terms suitable for the
definition of the IR, (1) report specifications provided by the user, (2) the relevant domain data
accessed from the database according to these specifications, including e.g. explicit comparisons
between measurements and threshold values, and (3) implicitly associated meta-information from
the database, such as the duration of exposure, the decree and the value of the threshold. This task
is accomplished by a staged process that is application-oriented rather than based on linguistically
motivated principles.

The process starts with building some sort of a representation sketch, by instantiating a report
skeleton that consists of a sequence of assertion statement specifications. Assertion statements
consist of a top level predicate that represents the assertion's type (e.g. threshold-exceeding) and
encapsulates the entire meaning of the associated assertion, except to attached specifications and
domain data, to make local parameters and data dependencies explicit.

In order to transform this initial representation to meet the application-oriented requirements
of the IR, it is necessary to recast the information, which comprises augmenting, restructuring, and
aggregating its components~

Augmenting statement specifications means making information implicitly contained or available
elsewhere explicitly at the place it is needed. This concerns reestablishing report-wide information,
as well as making locally entailed information accessible. An example for the former is the number of
diagrams copied• into the introductory statement to these diagrams. This treatment is much simpler
than using a reference generation algorithm, but it relies on knowing the number of diagrams in
advance. An example for the latter is the unit in which the value of a measurement is expressed.

Restructuring information imposes some manipulations on the specifications obtained so far
to rearrange the pieces of information contained so that they meet the definition of the IR. The
associated operations include reifying an attribute as a structured value and raising an embedded
partial description. These operations are realized by mapping schemata similar to those elaborated
for linguistically motivated lexicalization [H0racek, 1996]. However, •some of our schemata are
purely application-oriented and tailored to the domain, which manifests itse!f in the larger size of
the structures covered.

Aggregation, the last part of information recasting, comprises removing partial descriptions or
adding simple structures. These operations are driven by a small set of declaratively represented
rules that access a discourse memory. Most of the rules aim at avoiding repetitions of optional
constituents (e.g., temporal and locative information) over adjacent statements. For example, the
TIME specification is elided in the second sentence of our sample text, since the time specification
in the first sentence still applies. An example for adding a simple structure to an IR expression
is the insertion of a marker indicating a strong correspondence between adjacent assertions, which

243

(defproduction threshold-exceeding "WUOI"
(: PRECOND (: CAT DECL

:TEST ((coop-eq 'threshold-exceeding) (threshold-value-p)))
:ACTIONS (:TEMPLATE (:OPTRULE PPtime (get-param 'time))

(: OPTRULE SITEV (get-param ' site))
(:RULE THTYPE (self))

" (:0PTRULE POLL (get-param 'pollutant))
(:0PTRULE DUR (get-param 'duration))
"(" (:RULE VAL (get-param 'thresh01d-value))

(:OPTRULE LAW (get-param 'law-name)) ") "
(:RULE EXCEEDS (get-param 'exceeds)) ". "

: CONSTRAINTS (: GENDER (THTYPE EXCEEDS) : EQ))))

Figure 2: A TGL rule defining a sentence template for threshold exceeding statements.

gives rise to inserting "either" in the sample text, Altogether, the underlying rules are formulated
to meet application particularities, such as impacts of certain combinations of a value, a status,
and a threshold comparison outcome, r a the r than to caPture linguistic principles.

3 .4 T e x t r e a l i z a t i o n w i t h T G / 2

T G / 2 is a flexible and reusable application-oriented text realization system that can be smoothly
combined with deep generation processes. It •integrates canned text, templates, and context-free
rules into a single production-rule formalism and is thus extremely well suited for coping with IR
subexpressions of different granularity.

T G / 2 is based on production system techniques [Davis and King, 1977] that preserve the mod-
ularity of processing and linguistic knowledge. Productions are applied through the familiar three-
step processing cycle: (i) identify the applicable rules, (ii) select a rule on the basis of some conflict
resolution mechanism, and (iii) apply that rule. Productions are used to encode grammar rules
in the language TGL [Busemann, 199611 A rule is applicable if its preconditions are met. The
TGL rule in Figure 2 is applicable to input material as shown in Figure 1, because the COOP-
slot matches, and there is information about the THRESHOLD-VALUE available (otherwise a different
sentence pattern, and hence a different rule, would be required).

TGL rules contain categories as in a context-free grammar, which are used for rule selection
(see below). The rule's actions are carried out in a top-down, depth-first and left.to-right manner.
They include the activation of other rules (: RULE, : 0PTRULE), the execution of a function, or the
return of an ASCII string as a (partial) result. When selecting other rules by virtue of a category,
the relevant portion of the input structure for which a candidate rule must pass its associated
tests must be identified. The function ge t :parma in Figure 2 yields the substructure of the current •

• input depicted by the argument. T h e first action selects all rules with category PPtime; the relevant
substructure is the TIME slot of an IR.

TGL •rules are defined according to the IR syntax definitions. This includes optional IR elements,
many of which can simply be omitted wi thout disturbing fluency. In these cases, optional rules
(0PTRULE) are defined in TGL. Optional actions are ignored if the input structure does not contain
relevant information. In certain cases, the omission of an IR element would suggest a different

II
,11
I
I
l
I

iII

i
I

,l

l

244

I

i
!

i
l
!

I
i
|,
!

i
!

sentence structure, which is accounted • for by defining alternative TGL rules with appropriate tests
for the presence of some IR element. Agreement relations are encoded into TGL by virtue ofa PATR
style feature percolation mechanism [Shieber et al., 1983]. The rules can be annotated by equations
that either assert equality of a feature's value at two or more •constituents, or introduce a feature
value at a constituent. The constraint in Figure 2 requires the categories THTYPE and EXCEEDS to
agree in gender, thus implementing a subject-participle agreement relation in French. This general
mechanism provides a considerable amount of flexibility and goes beyond simple template filling
techniques.

A TGL rule is successfully applied if all actions are carried out. The rule returns the concate-
nation of the substrings produced by the "template" actions. If an action fails, backtracking can
be invoked flexibly and efficiently using memoization techniques (see [Busemann, 1996]).

4 Costs and Benefits

As Reiter and Mellish note, the use of shallow techniques needs to be justified through a cost-benefit
analysis [Reiter and Mellish, 1993]. We specify the range of possible applications our approach is
• useful for, exemplified by the report generator developed for the TEMSIS project.

This application took an effort of about eight person months, part of which were spent imple-
menting interfaces to the TEMSIS server and to the database, and for making ourselves acquainted
with details of the domain. The remaining time was spent on (1) the elicitation of user requirements
and the definition of a small text corpus, (2) the design of IR according to the domain distinctions
required for the corpus texts, and (3) text organization, adaptation of TG/2 and grammar devel-
opment.

The grammars comprise 105 rules for the German and 122 for the French version. There are
about twenty test predicates and IR access functions, most of which are needed for both languages.
The French version was designed on the basis of the German one and took little more than a week
to implement. The system covers a total of 384 different report structures tha t differ in at least
one linguistic aspect.

4.1 B e n e f i t s

Altogether, the development effort was very low. We believe that reusing an in-depth surface
generator for this task would not have scored better. Our method has a number of advantages:

(1) Partial reusability. Despite its domain-dependence, parts of the system are reusable. The
TG/2 interpreter has been adopted without modifications. Moreover, a sub-grammar for time
expressions in the domain of appointment scheduling was reused with only minor extensions.

(2) Modeling flexibility. Realization techniques of different granularity (canned text, templates,
context-free grammars) allow the grammar writer to model general, linguistic knowledge as well as
more specific task and domain-oriented wordings.

(3) Processing "speed. Shallow processing is fast. In our system, the average generation time of
less than a second can almost be neglected (the overall run-time is longer due to database access).

(4) Multi-lingual extensions. Additional languages can be included with little effort because the
IR is neutral towards particular languages.

(5) Variations in wording. Alternative formulations are easily integrated by defining conflicting
rules in TGL. These are ordered according to a set of criteria that cause the system to prefer certain

245

formulations to others (cf. [Busemann, 1996]): Grammar rules leading to preferred formulations
are selected first from a conflict set of concurring rules~ The preference mechanisms will be used in
a future version to tailor the texts for administrative and public uses.

4 .2 C o s t s

As argued above, the orientation towards the application task and domain yields some important
benefits. On the other hand, there are limitations in reusability and flexibility:

(1) IR cannot be reused for other applications. The consequences for the modules interfaced
by IR, the text organizer and the text realizer, are a loss in generality. Since both modules keep
a generic interpreter apar t from partly domain-specific knowledge, the effort of transporting the
components to new applications is, however, restricted to modifying the knowledge sources.

(2) By associating canned text with domain acts ' TG/2 behaves in a domain and task specific
way. This keeps the flexibility in the wording, which can only partly be influenced by the text
organizer, inherently lower than with in-depth approaches.

4.3 W h e n d o e s i t p a y off?

We take it for granted that the TEMSIS generation application stands for a class of comparable
tasks that can be characterized as follows. The generated texts are information-conveying reports
in a technical domain. The subIanguage allows for a rather straight-forward mapping onto IR
expressions, and IR expressions can be realized in a context-independent way. For these kinds of
applications, our methods provide sufficient flexibility by omitting unnecessary or known informa-
tion from both the schemes and its IR expressions, and by including particles to increase coherency.
The reports could be generated in multiple languages. We recommend the opportunistic us e of shal-
low techniques for this type of application.

Our approach is not suitable for tasks involving deliberate sentence planning, the careful choice
of lexemes, or a sophisticated distribution of information onto linguistic units. Such tasks would not
be compatible with the loose couPling of our components via IR. In addition, they would require
complex tests to be formulated in TGL rules, rendering the grammar :rather obscure. Finally, if the
intended coverage of content is to be kept extensibl e or is not known precisely enough at an early
phase Of development, the eventual redesign of the intermediate structure and associated mapping
rules for text organization may severely limit the usefulness Of our approachl

5 Conc lus ion

We have suggested shallow approaches to NL generation that are suited for small applications re-
quiring limited linguistic resources. While these approaches ignore many theoretical insights gained
through years of NLG research and instead revive old techniques once criticized for their lack of
• flexibility, they neyertheless allow for the quick development of running systems. By integrating
techniques of different granularity into one formalism, we have shown that lack of flexibility is not
an inherent property of shallow approaches. Within the air quality report generation in TEMSIS,
a non-trivial application was described. We also gave a qualitative evaluation of the domain char-
acteristics to be met for our approach to work successfully. Further experience will show whether
shallow techniques transpose to more complex tasks.

246

it*

]

We consider it a scientific challenge to combine shallow and in-depth approaches to analysis
and generation in such a way that more theoretically motivated research finds its way into real
applications.

References

[Bateman, 1997] John Bateman. KPML delvelopment environment: multilingual linguistic resource devel-
opment and sentence generation. Report, German National Center for Information Technology (GMD),
Institute for integrated publication and information systems (IPSI), Darmstadt, Germany, January 1997.
Release 1.1.

[Busemann, 1996] Stephan Busemann. Best-first surface realization. In Donia Scott, editor, Eighth
International Natural Language Generation Workshop. Proceedings, pages 101-110, Herstmonceux,
Univ. of Brighton, England, 1996. Also available at the Computation and Language Archive at
http://xxx, lanl. gov/abs/cmp-lg/9605010.

[Cawsey et al., 1995] Alison Cawsey, Kim Binsted, and Ray Jones. Personalised explanations for patient
education. In Fifth European Workshop on Natural Language Generation. Proceedings, pages 59-74,
Leiden, The Netherlands, 1995.

[Davis and King, 1977] Randall Davis and Jonathan King. An overview of production systems. In E. W.
Elcock and D. Michie, editors, Machine Intelligence 8, pages 300-332. Ellis Horwood, Chichester, 1977.

[Elhadad and Robin, 1996] Michael Elhadad and Jacques Robin. An overview of SURGE: a reusable com-
prehensive syntactic realiZation component. In Donia Scott, editor, Eighth International Natural Language
Generation Workshop. Demonstrations and Posters, pages 1-4, Herstmonceux, Univ. of Brighton, Eng-
land, 1996.

[Horacek, 1996] Helmut Horacek. Lexical choice in expressing metonymic relations in multiple languages.
Machine Translation, 11:109-158, 1996.

[Kasper and Whitney, 1989] Robert Kasper and Richard Whitney. SPL: A sentence plan language for text
generation. Technical report, USC/Information Sciences Institute, Marina del Rey, CA., 1989.

[Kukich, 1983] Karen Kukich. Design and implementation of a knowledge-based report generator. In Pro-
ceedings of the 21st Annual Meeting of the Association for Computational Linguistics, pages 145-150,
Cambridge, MA, 1983.

[Meteer, 1992] M. Meteer. Expressibility and the Problem of Efficient Text Planning. Frances Pinter, 1992.

[Penman, 1989] Project Penman. PENMAN documentation: the primer, the user guide, the reference manual,
and the Nigel manual. Technical report, USC/Information Sciences Institute, Marina del Rey, CA, 1989.

[Reiter and Mellish, 1993] Ehud Reiter and Chris Mellish. Optimizing the costs and benefits of natural
language generation. In Proc. 13th International Joint Conference on Artificial Intelligence, pages 1164-
1169, Cha.mbery, France, 1993.

[Reiter et al., 1995] Ehud Reiter, Chris Mellish, and John Levine. Automatic generation of technical docu-
mentation. Applied Artificial Intelligence , 9, 1995.

[Shieber et al., 1983] Stuart Shieber, Hans Uszkoreit, Fernando Pereira, Jane Robinson, and Mabry Tyson.
The formalism and implementation of PATR-II. In Barbara J. Grosz and Mark E. Stickel, editors, Research
on Interactive Acquisition and Use of Knowledge, pages 39-79. AI Center, SRI International, Menlo Park,
CA., 1983.

[White and Caldwell, 1997] Michael White and David E. Caldwell. CogentHelp: NLG meets SE in a tool
for authoring dynamically generated on-line help. In Proc. 5th Conference on Applied Natural Language
Processing, pages 257-264, Washington, DC., 1997.

247

