
Fully Lexicalized Head-Driven Syntactic Generation

T i l m a n Becker

G e r m a n Research Center for Artificial Intel l igence (DFKI GmbH)
S tuh l sa t zenhausweg 3, 66123 Saarbriicken, G e r m a n y

b e c k e r @ d f k i , de

Abstract

We describe a new approach to syntactic generation with Head-Driven Phrase Structure
Grammars (HPSG) that uses an extensive off-line preprocessing step. Direct generation algo-

• rithms apply the phra~se-structure rules (schemata) of the grammar on:line which is an com-
putationally expensive step. Instead, we collect off-line for every lexical type of the HPSG
grammar all minimally complete projections (called elementary trees) that can be derived with
the schemata. This process is known as 'compiling HPSG to TAG' and derives a Lexicalized
Tree-Adjoining Grammar (LTAG). The representation as an LTAG is 'fully lexicalized' in the
sense that all grammatical information is directly encoded with the lexical item (as a set of
elementary trees) and the combination operations are reduced from schema applications to the
TAG primitives of adjunction and substitution. Given this LTAG, the generation task has a
very different search space that Can be traversed very efficiently, avoiding the costly on-line
applications of HPSG unification. The entire generation task from a semantic representation
to a surface string is split into two tasks, a microplanner and a syntactic realizer. This paper
discusses the syntactic generator and the preprocessing steps as implemented in the Verbmobil
system.

1 G e n e r a t i o n in a S p e e c h - t o - S p e e c h Sys t em

The syntact ic generation algorithm and the preprocessing steps presented in this paper are inte-
g r a t e d into the Verbmobil system (see [Wahlster 1993, Bub; Wahlster, and Waibel 1997]). It is a
system for speech-~to-speech dialog translation. The input for the generation module VM-GECO 1
is generated by a semantic-based transfer component (see [Dorna and Emele 1996]). The inter-
face language chosen comprises the encoding of target language-specific semantic information in a
combination of Underspecified Discourse Representation Theory and Minimal Recursion Semantics
(see [Bos et al. 1996] and [Copestake, Flickinger, and Sag 1997]).
The internal architecture of the generation module is modularized: it is separated into two phases, a
microplanner and a syntactic generator. Throughout the system, we emphasize declarativity, which
is also a necessary precondition for a comprehensive off-line preprocessing of external knowledge
bases-in particular the preprocessing of the underlying Head-Driven Phrase Structure Grammar
(HPSG, see [Pollard and Sag 1994]) which has been developed at CSLI, reflecting the latest devel-
opments in the linguistic theory and with a fairly wide coverage and also covering phenomena of
spoken language.

1VerbMobil GEneration COmponents

•208

,!

!

!

!

i

2 Microplanning and Syntactic Generation

Starting from the semantic representation, the microplanning component generates an annotated
dependency structure which is used by the syntactic generation component to realize a surface
string. The microplanner also carries out word-choice.
One goal of this modularization is a stepwise constraining of the search-space of alternative lin-
guistic realizations, using different views in the different modules. In each step, only an abstraction
of the multitude of information contained in an alternative needs to be considered.
Another aspect of this architecture is the separation into a kernel system, i.e., the language in-
dependent core algorithms (a constraint-solver for microplanning and the search and combination
algorithms for syntactic generation described in section'5) and declarative knowledge bases, e.g.,
the language specific word-choice constraints in microplanning and the TAG grammars used in syn-
tactic realization. This separation allows for an easy adaptation of the system to other languages
and domains (see [Becker et al. 1998]).

3 Declarativity in the Syntactic Generator

All modules of the generator utilize external, declarative knowledge bases. For the syntactic gen-
erator, extensive off-line preprocessing of the highly declarative HPSG grammar for English 2 is
applied. The grammar has not even been written exclusively as a generation grammar 3. It is
specialized, however, in that it covers phenomena of spoken language. The high level of abstraction
which is achieved in the hierarchically organized grammar description (see [Flickinger 1987]) allows
for easy maintenance as well as off-line preprocessing.
The off-line preprocessing steps described in the next section keep the declarative nature of the
grammar intact, Le. they retain explicitly the phrase structures and syntactic features as defined
by the HPSG grammar.
In general, declarative knowledge bases allow for an easier adaptation of the system to other
domains and languages. This is a huge benefit in the current second phase of the Verbmobil project
[Becker et al. 1996] where the generator is extended to cover German, English and Japanese as well
as additional and extended domains with a considerably larger vocabulary.

4 Off-Line Preprocessing: H P S G to TAG Compi la t ion

The subtasks in a direct syntactic generator based on an HPSG grammar will always include the
application of schemata (the HPSG equivalent of phrase structure rules) such that all syntactic
constraints introduced by a lexical item (especially its SUBCAT l i s t)a re fulfilled. This results
in a constant repetition of, e.g., building up the projection of a verb in a declarative sentence.
In preprocessing the HPSG grammar we aim at computing all possible partial phrase structures
which can be derived from the information in a lexicon entry. Given such sets of possible syn-
tactic realization together with a set of selected lexicon entries for an utterance and finally their
dependencies, the task of a syntactic generator is simplified considerably. Instead of exploring all

2The HPSG grammar is being developed at CSLI, Stanford University. Development is carried out on a grammar
development platform which is based on TDL [Krieger and Sch£fer 1994].

3In fact, most of the testing during grammar development depends on the use of a parser.

209

possible, computationally expensive applications of HPSG schemata, it merely has to find suitable
precomputed syntactic structures for each lexical item and combine them appropriately.
For this preprocessing of the HPSG grammar, we adapted the 'HPSG to TAG compilation' process
described in [Kasper et al. 1995]. The basis for the compilation is an identification of syntactically
relevant selector features which express subcategorization requirements of a lexical item, e.g. the
VALENCE features. In general, a phrase structure is complete when these selector features are
empty.
Starting from the feature structure for a lexical item, HPSG schemata are applied such tha t the
current structure is unified with a daughter feature of the schema. The resulting structure is again
subject to this process: This compilation process stops when certain termination criteria are met,
e.g., when all selector features are empty. Thus, all projections from the lexical item are collected
as a set of minimally complete phrase structures which can also be interpreted as elementary trees
of a Tree-Adjoining Grammar (TAG).
Instead of actually applying this compilation •process to all lexical items, certain abstractions over
the lexical entries are specified in the HPSG grammar. In fact, the needs of the compilation process
have led to a clear-cut separation of lexica! types and lexical entries as shown in Figure 1. A
typical lexical entry is shown in Figure 2 and demonstrates that only three kinds of information are
stored: the lexical type MV_NP_TRANS_LE 4, the semantic contribution (th e relation _SUIT_REL)
and morphological information (the stem and potentiallyirregular forms): By expanding the lexical
type, the full feature structure can be obtained.

Lexicon Hierarchy - Phrase Structure

[syntac,,c] [sem nt, c]
Types Types

[,Morphological
L Infomation J

I L e x i C a ~ x 200 types

~__._[Lexical]
Instance

approx. 2,900entries

HPSG]
Principles

Schemata]

approx. 25 schemata

Figure 1: Organization of the HPSG grammar.

Some of the trees which result from the preprocessing of the lexical type MV_NP_TRANS_LE
are shown in Figure 3. The figure Shows only the phrase structure and an abstraction of the

4MV_NP_TRANS_LE is an abbreviation for "Main Verb, NP object, TRANSitive Lexical Entry" used in sentences
like "Monday suits me."

210

I
I

,I

!

I

suit_vl := mv_np_trans_le

[STEM < "suit" >,

SYNSEM.LOCAL.CONT.STEMLISZT < ! [PRED _suit_tel] ! >] .

Figure 2: Specification of a lexical instance for the verb "suit."

node's categories. All nodes still represent the full HPSG •feature structures. E.g., the tree
MV_NP_TRANS_LE.2 of Figure 3 represents an imperative clause. As a consequence PERSON
has t h e value SECOND and CL-MODE is set to IMPERATIVE. Note that the compilation process
stopped at this node since the selector features are empty.

MV NP TRANS_LE.1 MV NP_TRANS_LE.2 MV NP TRANS_LE.3 MV NP TRANS_LE.4

vP

V NP$

I
• MV NP TRANS_LE

s s s

VP NP.S.C P NP.S.COMP $ VP

I I I
MV NP TRANS_LE MV NP TRANS_LE MV NP TRANS_LE

Figure 3: Some of the trees for transitive verbs. They are compiled from the corresponding lexical
type MV_NP_TRANS_/E as defined in the HPSG grammar. Trees 3 and 4 differ only with respect
to their feature structures which are not shown in this figure.

From these trees, two kinds of knowledge bases are built. For the microplanner, the relation between
the lexical and syntactic realization and the semantic representation (encoded in the SYNSEM
LOCAl CONT feature) is extracted as a constraint. For the syntactic generator, the relevant
syntactic information is extracted in the form of a Feature-Based Lexicalized TAG (FB-LTAG)
grammar, see [Joshi 1987, Vijay-Shanker and Joshi 1991, Schabes, Abeill4, and Joshi 1988]. This
includes the phrase structure and a selected part of the feature structure (mainly the SYNSEM
LOCAL CAT and SYNSEM NON-LOCAL features). Figure 4 shows the bo t tom feature structure
extracted from the root node of MV_NP_TRANSJE.2. Note that some of the feature paths are
abbreviated, e.g. 5LCI stands for SYNSEM LOCAL CONT INDEX. The elementary TAG trees which
are built from the compilation result have so-called restricted •feature structures which can be
exploited for an efficient, specialized unification algorithm.
The node names shown in the figures represent a disjunction of possible categories, e.g. NP.S.COMP
in tree MV_NP_TRANS_LE.3 implies that the subject of a transitive verb may be a nominal or
sentential phrase.

211

Bottom Dag at selected node:

:ROOT: [SLC: [HEAD: [FRD: (- .)]
[MOOD: (SUBJUNCTIVE MODAISUB} Ih~ICATIVE)]
[VOICE: (PASSIVE ACTIVE)]
['mNSE: (FUnma PAST PR~Sln, rO]
[worv~t Bs~
Ire'v: -I

[AUX'.-]
[ROOT: .]
[CL-MODE: IMPERATIVE]

[RULE: IMPERATIVE_RULE]
[SLCI: NIL]
[SY~EM: It,tON-LOCAL: [Qtm: -]

Figure 4: The bo t tom feature s tructure of the S node of tree MV.NP_TRANS_LE.2.

Finally, the leaf nodes of the trees (except for the lexical i tem itself) are marked either as substi-
tut ion nodes or as a foot node, thus creating an auxiliary tree. In a TAG derivation, subst i tut ion
nodeS are replaced with trees bearing the correct category and a Unifiable feature structure at their
root node. Auxiliary trees can be inserted into other trees by the adjunction operation.

5 The Syntactic Generator V M - G I F T

The task of the syntactic generator is the construction of a sentence (or phrase, given the often
incomplete utterances in spoken dialogs) from the microplanning result which is then sent to a
speech-synthesis component. It proceeds in three major steps which are also depicted in Fig. 5.

• A tree selection phase determines the set of relevant TAG trees. A first tree retrieval step
maps every object o f the dependency tree into a set of applicable elementary TAG trees. The
main tree selection phase uses information from the microplanner ou tput to further refine the
set of retrieved trees.

• A combination phase finds a successful combination of trees to build a (derived) phrase
s tructure tree.

* An inflection phase uses the information in the feature structures of the leaves (i.e. the words)
to apply appropriate morphological functions, including the use of irregular forms as provided
by the HPSG lexiconand regular inflection function as supplied (as LISP code) by the HPSG
grammar.

An initial preprocessing phase computes: the necessary auxiliary verbs from the tense, aspect,
and sentence mood information. It also rearranges the dependency tree accordingly (e.g. subject
arguments are moved from the main verb to become dependents of the inflected auxiliary verb).
The two core phases are the tree selection and the tree combination phase. The tree selection
phase consists of two steps. First, a set of possible trees is retrieved and then appropriate trees are
selected from this set. The retrieval is driven by the HPSG instance or word class that is supplied
by the microplanner. It is mapped to a lexical type by a lexicon that is automatically compiled from
the H P S G grammar. The lexical types are then mapped to a tree family, i.e., a set of elementary
TAG trees representing all possible minimally complete phrase structures that can b e build from
the instance. T h e additional information in the dependency tree is then used to add further feature

212

-t .o

t D
e -

e -
a)

Preprocessing I I Tree selection I I Tree combination { I
(expand auxiliaries)~] and sorting [- -~ (adjoining and substitution) ~ - ~ Inflecti°n [

Irregular

Figure 5: Steps of the syntactic generator.

t :) .

O
l a 0
t -

values to the trees. This additional information acts as a filter for selecting appropriate trees in
two stages:

• Some values are incompatible with values already present in the trees. These trees can
therefore be filtered immediately from the set. E.g., a syntactic structure for an imperative
clause is marked as such by a feature and can be discarded if a declarative sentence is to be
generated.

• Additional features can prevent the combination with other trees during the combination
phase. This is the case, for example with agreement features.

The combination phase explores the search space of all possible combinations of trees from the
candidate sets for each lexical item (instance). An inefficient combination phase is a potential
drawback of using the precomputed TAG trees. However, there is sufficient information available
fl'om the microplanner result and from the trees such that a well:guided best-first search strategy
can be employed in the current system. The difference in run-time can be as dramatic as 24 seconds
(comprehensive breadth-first) versus 1.5 seconds (best-first).
As part of the tree selection phase, based on the rich annotation of the input structure, the tree sets
are sorted locally. Then a backtracking algorithm traverses the dependency tree in a bottom-up
fashion s. At each node, and for each subtree in the dependency tree, a candidate for the phrase
structures of the subtree is constructed. Then all possible adjunction or substitution sites are
computed, possibly sorted (e.g. allowing for preferences in word order) and the best candidate for
a combined phrase structure is returned. Since the combination of two partial phrase structures
by adjunction or substitution might fail due to incompatible feature structures , a backtracking

5The algorithm stores intermediate results with a memoization technique.

213

algorithm must be used. A partial phrase structure for a subtree of the dependency is finally checked
for completeness. These tests include the unifiability of all top and bottom feature structures and
the satisfaction of all other constraints (e.g. obligatory adjunctions or open substitution nodes)
since no further adjunctions or substitutions will occur in this subtree.

T h e necessity of a spoken dialog translation system to produce output robustly calls for some
relaxations in these tests. E.g., 'obligatory' arguments may be missing in t he utterance and the
tests in the syntactic generator must accept a sentence with a missing obligatory object if no other
complete phrase can be generated.
Figure 6 shows an example of the input of from the microplanner after the preprocessing phase has
inserted the entity LGV1 for the auxiliary will.

((ENTITY LGVI
((CAT V) (HEAD.WILL_AUX_POS) (INTENTION WH-QUESTION) (FUNC AUX)
(TENSE• FUTUP~) (MOOD INDICATIVE) (VOICE ACTIVE) (FORM OP, DINARY)
(VPORM FIN)))

(ENTITY LS-WORK_ACCEPTABLE
. ((FORM OKI)INARY) (VFOKM BSE) (CAT V) (GOVE~-BY WH-SENTENCE)

(OPTIONAL-AGENT NO) (HEAD (OR SUIT_VI SUIT_V2)) (REALIZED LOCAL)
(KEG LGVl)))

(ENTITY LI3-PRON
((REALIZED LOCAL) (CAT PPRON) (PERS 3) (NUM SG) (GENDER NTR)
(TYPE NORMAL) (GOVERNED-BY V) (IS-COMPLEMENT T) (FORM CONTINUOUS)
(KEG LGVI) (FUNC AGENT)))

(ENTITY LI0-PRON
((REALIZED LOCAL) (CAT PPRON) (PERS 2A) (NUM SG) (GENDER FEM) (TYPE NORMAL)
(GOVERNED-BY (0R V PREP SENTENCE)) (FORM CONTINUOUS) (KEG L5-WORK_ACCEPTABLE)
(FUNC • PATIENT)))

(ENTITY L6-TEMP_LOC
((CA T ADV) (REAL WH_QUEST) (SORT TIME) (POINTED'BY TEMP_LOC)
(GOVERNED-BY (0R V N ADV SENTENCE)) (PRED TIME) (HEAD WHEN1)
• (REALIZED L0CAL) (WH-FOCUS T) (KEG L5-WORE_ACCEpTABLE) (FUNC TEMP-SPEC)))

(ENTITY LI5-TEMP_LOC
((CAT ADV) (BEAD THEN_ADV) (REALIZED GRouP-TIME-DEMONSTRATiVE)
(REAL (0R ADV WH_QUEST YOFC)) (SORT (SUBSORT TIME)) (POINTED-BY TEMP_LOC)
(GOVERNED-BY (OR V N ADV SENTENCE)) (BEG LS-WORK_ACCEPTABLE) (FUNC TEMP-SPEC))))

• . ..~ :

Figure 6: Example of the input from microplanning after preprocessing for auxiliaries

In the tree retrieval phase for L5-WORK_ACCEPTABLE, first the HEAD information is used to deter-
mine the lexical types of the possible realizations SUIT_V1 and SUIT_V2, namely MV_NP_TRANS_LE and
MV_EXPL_PREP_TRANSIE respectively. These types are then mapped to their respective sets of ele-
mentary trees, a total of 25 trees. In the tree selection phase (as described above), this number
is reduced to six. For example, the tree MV_NP_TRANS_L£.2 in Figure 3 has a feature CL-MOD£
with the value IMPERATIVE Now, the microplanner output for the root entity LGV1 contains the
information (INTENTION WH-QUESTION) The NTENTION information is unified with all appropriate
Ck-MOD£ features, which in this case fails. Thereforethe tree MV_NP_TRANS_k£.2 can be dis-
carded in the tree selection phas e .

214

The combination phase uses the best-first bot tom-up algorithm described above to determine one
suitable tree for every entity and also a target node in the tree that is selected for the governing
entity. For the above example, the selected trees and their combination nodes are shown in Figure
7 6 ,

A0 " "
% %

,¢ " ~ %

, V VP/ADV VP VP
I ~ ' ' ~ 1%

I" % " l. %

ADV Y NP $. . " " NP Y NP J, ,' .NP VP ADV

I I '-",- I I ' '1,-, I
when will it suit you then

L6-TEMP_LOC LGVI LI3-PRON L5-SUIT LI0-PRON LI5-TEMP_LOC

Figure 7: The trees finally selected for the entities Of the example sentence. The dashed lines
connect to suitable substitution or adjunction nodes. They correspond to the dependency tree.

The inflection function finally uses a t t r ibute values like verb-form, number and person from the
final tree to derive the correct inflections. Information about the sentence mode WH-QUESTION
can be used to annotate the resulting string for the speech-synthesis module.

6 Conclusion and Comparison

We have shown how preprocessing an HPSG grammar can be used to avoid the costly on-line ap-
plication (unification) of HPSG schemata in a modularized generation system with a microplanner
and a separate syntactic generator. The compilation of an HPSG grammar to TAG grammar allows
the use of an efficient syntactic generator without sacrificing the declarative nature of the HPSG
grammar.
It is important to compare the generation strategy presented here with Semantic-head-driven gen-
eration [Shieber et al. 1990, van Noord 1990] which is a direct generation algorithm froni logical
form encodings. It improves previous algorithms in efficiency and in imposing less restrictions on
the type of grammar. It is also applicable to HPSG and proceeds by applying the HPSG schemata
in a bot tom-up fashion, driven from the lexical heads of the schemata.
To a large ex.tend, the TAG-based generation algorithm presented here goes through the same steps
as semantic-head-driven generation. However, most of •these steps will have been made during the
off-line preprocessing and are encoded in the elementary trees of the TAG grammar thns resulting

6Note t h a t the node labels shown in F igures 7 are only a concession to readabi l i ty . T h e TAG requ i r emen t t h a t
in an auxi l ia ry t ree the foot node m u s t have t he same ca t ego ry label as the roo t node is fo rmal ly fulfilled in our
imp lemen ta t i on .

215

in an important gain in efficiency. Note though, that the generation task in the algorithm presented
here is shared between the micr0planner and the syntactic generator,-so a formal comparison must
include both components.

Work on generation with TAG generally assumes that there is a one, to~-one mapping between the in-
formation in the generator input and the choice of elementary tree [Mcdonald and Pustejovsky 1985,
Yang, McCoy, and Vijay-Shanker 1991, D0ran and Stone 1997]. In general, this will not be the
case. In particular, in our system the input is not always sufficiently analyzed and the preprocess-
ing f roman HPSG grammar potentially •creates more than one elementary tree that fits the input

parameters .
One possible approach are choice nets-see [Yang, McCoy, and Vijay-Shanker 1991] who interpret
systemic grammar in this way. Our approach has some similarity, though we have provided a more
general algorithm that does not require the specification of grammar specific choice nets but rather
executes tree Selection and combination from more declarative knowledge bases. Tree selection is
implemented mainly by unification (adding feature values from the input specification to the trees
where unifiable) and the best-first search algorithm is a general framework for handling sets of
possible elementary trees, including backtracking steps when non-local tests (e.g. unification in the
resulting derived tree) fail. This approach is also a precondition in our system since we have no
direct access to the TAG grammar as it is automatically preprocessed from an HPSG grammar.

VM-GECO is fully implemented (in Common Lisp) and integrated into the speech-to-speech
translation system Verbmobil for Enghsh and German. For example, the underlying English HPSG
grammar has almost 3000 iexical entries with over 200 lexical types. The resulting lexicalized TAG
consists of about 2800 trees. The average overall generation time per sentence (up to length 24) is
0.7 cpu •seconds on a SUN ULTRA-1 machine, 68% of the runtime are used for tile microplanning
while tile remaining 32% of the runtime are used for syntactic generation.

7 C u r r e n t W o r k

In general, the task of finding appropriate elementary trees for the chosen words and consequently
a consistent phrase structure tree can exhibit constraints between an), two elementary trees in
the utterance (as expressed through feature equations). •However, most of these constraints exist
between elementary trees tha t are combined directly with each other (adjoined or substituted). To
exploit thiSi we are currently experimenting with various well established binary constraint-solving
algorithms to preselect elementary trees that are pairwise consistent w.r.t , feature equations.

R e f e r e n c e s

[Becket et al. 1996] Becket, T. W. Finkler, A. K!lger, and W. Wahlster. 1996. Vorhabensbeschreibung zur
Sprachgenerierung innerhalb des Teilprojektes 5 (Sprachgenerierung und -synthese) in Verbmobil, Phase
2. Document, German Research Center for Artificial Intelligence (DFKI GmbH), Saarbriicken, Germany,
AUgust.

[Becke r et al. 1998] Becker, Tilman, Wolfgang Finkler, Anne Kilger, and Peter Poller. 1998. An efficient
kernel for multilingual generation in speech-to-speech dialogue translation. In Proceedings of COLING-
ACL 98, Montreal, Canada.

II

II

216

[Bos et al. 1996] Bos, J., B. Gamb~ick, C. Lieske, Y. Mori, M. Pinkal, and K. Worm. 1996. Composi-
tional semantics in verbmobil. Technical report, University of the Saarland, Computational Linguistics,
Saarbrficken, July. Verbmobil Report 135.

[Bub, Wahlster, and Waibel 1997] Bub, Th. W. Wahlster, and A. Waibel. 1997. Verbmobil: The combina-
.tion of deep and shallow processing for spontaneous speech translation. In Proceedings of ICASSP '97.
(forthcoming).

[Copestake, Flickinger, and Sag 1997] Copestake, Ann, Dan Flickinger, and Ivan A. Sag. 1997. Minimal
recursion semantics: An introduction, available at f t p : / / c s l i - f t p , s tanford , e d u / l i n g u i s t i c s / s a g / -
mrs.ps, gz. '

[Doran and Stone 1997] Doran, Christy and Matthew Stone. 1997. Sentence planning as description using
tree adjoining grammar. In ACL-EACL, Madrid, Spain, July.

[Dorna and Emele 1996] Dorna, M. and M. Emele. 1996. Semantic-based transfer. In Proceedings of the
16th International Conference on Computational Linguistics (COLING '96).

[Flickinger 1987] Flickinger, Daniel P. 1987. Lexical Rules in the Hierarchical Lexicon. Ph.D. thesis, Stanford
University.

[Joshi 1987] Joshi, Aravind K. 1987. An introduction tO Tree Adjoining Grammars. In A. Manaster-Ramer,
• editor, Mathematics of Language. John Benjamins, Amsterdam.

[Kasper et al. 1995] Kasper, R., B. Kiefer, K. Netter, and K. Vijay-Shanker. 1995. Compilation of HPSG to
TAG. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, pages
92-99, Cambridge, Mass.

[Krieger and Sch~fer 1994] Krieger, Hans-Ulrich and Ulrich Sch~ifer. 1994. 779£--a type description language
for constraint-based grammars. In Proceedings of the 15th International Conference on Computational
Linguistics, COLING-9g, pages 893-899.

[Mcdonald and Pustejovsky 1985] Mcdonald, David D. and James D. Pust'ejovsky. 1985. Tags as a gram-
matical formalism for generation. In Proc. of the 23 th ACL, Chicago, IL.

[Pollard and Sag 1994] Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.
Studies in Contemporary Linguistics. University of Chicago Press, Chicago.

[Schabes, Abeill4, and Joshi 1988] Schabes, Y., A. Abeill4, and A.K. Joshi. 1988. Parsing strategies with
'lexicalized' grammars: Application to Tree Adjoining Grammars. In Proc. 12th bzternational Conference
on Computational Linguistics (COLING-88}, pages 578-583, Budapest, August.

[Shieber et al. 1990] Shieber, Stuart, Gertjan Van Noord, Fernando Pereira, and Robert Moore. 1990.
Semantic-head-driven generation. Computational Linguistics Vol. 16 No. 1, 16(1):30-43.

[van Noord 1990] van Noord, Gertjan. 1990. An overview of head-driven bottom-up generation. In Robert
Dale, Chris Mellish, and Michael Zock, editors, Current Research in Natural Language Generation. Aca-
demic Press, New York, pages 141-165.

[Vijay-Shanker and Joshi 1991] Vijay-Shanker, K. and Aravind K. Joshi. 1991. Unification Based Tree
Adjoining Grammars. In J. Wedekind, editor, Unification-based Grammars. MIT Press, Cambridge, Mas-
sachusetts.

[Wahlster 1993.] Wahlster, W. 1993. Verbmobil: Translation of face-to-face dialoges. In MT Summit IV,
Kobe, Japan.

[Yang, McCoy, and Vijay-Shanker 1991] Yang, Gijoo, Kathleen F. McCoy, and K. Vijay-Shanker. 1991.
From functional specification to syntactic structures: Systemic grammar and tree adjoining grammar.
Computational Intelligence, 7(4):207-219, November.

217

