
Using Genericity to Create Cutomizable Finite-State
Tools

Sandro Pedrazzini, Marcus Hoffmann

Department of Computer Science, Basel University
Petersgraben 51

CH-4051 Basel, Switzerland
and

IDSIA
Corso Elvezia 36

CH-6900 Lugano, Switzerland
{slmcL¢o ,marcuso}@ideSa. ch

Abstract. In this article we present the realization of a generic finite-state system.
The system has been used to create concrete lexical tools for word form analysis, word
form generation, creation and derivation history, and spenchecking. It will also be used
to create a finite-state transducer for the recognition of phrases. Producing a finite-
state component with the generic system requires little e~ort. We will first emphasize
its meaning and its architecture from a design point of view; then we will present some
lexical finite-state tools created with it.

1 Introduction

The increasing need of finite-state components for different aspects in natural language pro-
cessing has led us to the definition of a generic system for finite-state tools construction. An
important aspect that should be considered comparing our resulting concrete finite-state au-
tomata with other existing ones (i.e. [5]) is that our automata are fed with data generated from
an existing system, Word Manager ([1]; [3]), which is responsible for the specification, manage-
ment and generation of morphological data. This means that the finite state component does
not need a user defined regular expression input, instead it receives the extended paradigms,
optimizing them following its internal needs. Another aspect to consider is the embedding of
the single elements of the finite-state tools into a portable object-oriented framework, the archi-
tecture of which assures the reuse, the flexibility and the customization of the different parts.
According to [4], a framework is more than a simple toolkit. It is a set of collaborating classes
that make up a reusable design for a specific class of software~ The purpose of the framework
is to define the overall structure of an application, its partitioning into classes and objects,
their collaboration, and the thread of control. These predefined design parameters allow the
programmer to concentrate on the specifics of his application. He will customizethe framework
for a particular application by creating application specific subclasses of classes (eventually
abstract) from the framework. The framework itself can be viewed as an abstract finite-state
element. Only the definition of some concrete classes can generate from it a usable finite-state
tool. The main design decisions have therefore already been taken, and the applications (finite-
state elements) are faster to implement and even easier to maintain. The reasons why we have
defined a framework are essentially two:

1. We wanted to achieve a broad software functionality with a small shared consistent struc-
ture.

m

m

m

m

m

m

m

110

2. We wanted to offer the opportunity to customize our work simply by subclassing parts of
it and reusing other parts (hopefully most of them) as they are.

The aim of the project was not only the reA liT.ation of the framework. The implementation
of concrete subclasses that you can put to work immediately has also played an important
role. First, as an example of how you can adapt the framework classes to your needs, and,
second, as a realization of the specialized morphology processing programs mentioned before.
The description is divided in two main parts. In the first one (section 2) we will describe the
framework, emphasazing its meaning, its design and its ability to create concrete finite-state
tools. In the second part (section 3) we will show the different functionalities that we have
realized with the tinlte-state elements created with the framework.

2 Customizat ion and Reuse

Instead of presenting the overall architecture of the system, we propose concentrating on the
main parts of the system which can be easily modified for customization purposes. Explaining
them will at the same time allow us to understand to what extent the remaining parts of the
system are reusable. There are three main parts of the abstract finite-state element (framework)
which must be customized:

- Node structure.
- Traversing algorithm.
- Information extraction, i.e. the operation applied to each single node of the finite-state

element during the traversal.

For each of these customization steps some concrete classes already exists. The user who wants
to create a new finite-state tool can decide to switch to one of them or to define a completely
new class.

2.1 The Node S t ruc tu re

Each finite-state tool can have a different kind of node, depending on the kind of informa-
tion it must code and on its use, unidirectional or bi-directional. The opportunity to define a
new node represents therefore a first level of customization. The new kind of node should take
advantage of the existing managing algorithms, using them as they are, without further modi-
fications. There are two methods for realising such a design: parameterized types and common
classes. Parameterized types let you define an algorithm without specifying all types it uses.
The unspecified types are supplied as parameters at the point of use. In our case all manag-
ing algorithms (insert, traverse, etc.) could be parameterized by the type of node they use. In
C++, the language we used in our project, this can be easily performed with templates. The
second method makes use of inheritance and polymorphism. It defines a common (abstract)
class Node, which serves to specify the interface of all possible nodes. Each implementation can
specify a different concrete subclass of Node, able tO respond to the requests defined in the
interface. All managing algorithms only refer to the abstract class for their operations. They
work with concrete nodes just at run-time. The C++ template method is more efficient and
probably easier to understand. However it presents some drawbacks. First, at the moment of
deciding the design (and still at present), it did not guarantee a complete portability of the
code over different C+÷ compilers, whereas the rest of the framework code did. Second, it is

III

just a type substitution and does not support any abstraction or hiding of some new specific
data or functions (process of coding and decoding data, for example) in an object-oriented way.
Third, it would require adapting other parts of the program (e.g. traversal) for every new type
of node, introducing an undesired dependence between di~erent customizable parts. Because of
these disadvantages and because we judged the second method more flexible, we chose the sec-
ond one. Moreover, parameterized types is a concept which is not known in every programming
language, and this would restrict the generalization of our software design, which is intended
to be independent of any programming language. Notice that the method used is also called
Template in the design patterns terminology. The abstract Node class must define the interface,
previewing all basic functionalities required for the nodes by the internal algorithms. The latter
will use the concrete elements through Node references.

Node
(abstract class)

char getInputO
char getOutputO
int geflnfoO
int getHashO

F~ure 1. Node

Customization: In order to add a new particular kind of node, the customizer must write a
new concrete subclass of Node, defining the content type and implementing all methods defined
as interface in the abstract class. For example, the node used for the implementation of the
lexical transducer contains two characters, input and output. New methods not included in the
interface can also be specified, however they will only be used in customized parts.

2.2 The Traversing Algor i thm

There are different kinds of traversing algOrithms depending .on the purpose of each single tool
and on the knowledge it is supposed to code. A transducer used to generate word forms needs
a non deterministic traversing method, because the same input will generate different output
strings, a simple FSA used for spellchecking can use a deterministic traverse, the opportunity
of looping.over nodes will be useful for phrase recognition, some other traversais could need the
recognition of a special character for some special purposes, etc. As we can see there are many
algorithms to consider for traversing finite-state elements. Hard-wiring all of them into the class
that may require them is not desirable. First because the class will get more complex if it has to
include all possible algorithms , and different algorithms will be appropriate at different times;

112

second because it will become difficult to add new algorithms or to vary existing ones when
traversal is an integral part-of the class that uses it. We can avoid these problems encapsulating
all different traversing algorithms in different classes, using the same interface. The interface is
defined by a common superclass, the Strategy class, The intent of the Strategy pattern is to
define a family of algorithms, encapsulate each one, and make them interchangeable.

Customization: In order to add a new kind of traverse, the customizer must simply write a
new subclass of Strategy with its method traverse.

2.3 Information Extraction

The main feature here is the separation of information extraction performed during the traversal
process, from the traversal algorithm itself. We must keep the responsibility of the action away
from the traversal part. In this way we can use the same finite-state tool to deliver a different
type of informatibn. We used as model the Visitor pattern, although this pattern is merely
thought for a use with different kinds of nodes at the same time. The information extraction
process is embedded into the class Visitor. Subclassing the visitor means reusing the nodes of
the finite-state system, building with it a new kind of answer. During the retrieval process the
internal data in the nodes remains read-only, i.e. unmodified. The adaptation is in the way the
data will be used for the external result. For example, the difference between the information
extracted from a lemmatizer and the information extracted from a morphosyntactic analyzer can
be coded uniquely distinguishing two different interpretations of the same data, i.e. modifying
the action performed during the traversal. The traversal process is responsible for leading the
control through the structure, whereas the action, which will be called for each node, involves
accumulating information during it. This is particularly useful with lexical transducers, which
store input and output information in the nodes. Separating the retrieval process from the
internal structure will bring more flexibility and potential for reuse, because different kinds
of retrieval often require the same kind of traversal. In addition, we will simplify the task of
customizing the retrieval, restricting the modification to the action. The implementation is
organized as follows: there is a class (called Fsa) that contains the main structure. Each node of
the structure will receive an instance of the concrete Visitor during the traversal. The instance
is used for accumulating information, creating the final result of the analysis. The acceptance
of each visitor object, including the customized ones, is achieved through polymorphism. In
order to be accepted, the concrete object must inherit from the abstract class Visitor, which
defines the interface for the whole hierarchy. The overall pattern is shown in figure 2. Each
box corresponds to a class with its own methods. The abstract class Visitor is shown with two
(among many possible) inheriting concrete classes. The class Fsa has a reference to the whole
internal data, represented here by the class Node.

Any FSA specific data structure remains separated and hidden for the visitor object, sim-
plifying the task of the customer.

Customization: In order to add a new kind of information extraction to the structure, the
customizer must write a new subclass of Visitor with its method visitNode, or a new subclass
of an already existing concrete class inheriting from Visitor. In the first case he will customize
the system reusing the design, in the second case he will adapt it reusing both, design and code.

113

Layer I - ~
accept(Reuiev~&) ~ I Node

Retrieval
(abslractcla,~)

visitNode(Node)

/ \

Retr/evalA RetrievalB
visit_Node(Node) visitNode(Node)

• :i~i

Figure 2. Visitor

3 R e a l i z e d too ls

In this section we will describe some concrete lexical tools realized using the described frame-
work. The tools take as source data a Word Manager database with morphological and lexical
entries. They read it and they generate their independent internal structure, efficient in space.
For example, the source file encoding the inflection information of about 100,000 German lex-
emes (1 million word forms, including wordformations) occupies 26 Mb, but the file for the
corresponding finite-state transducer, used as morphosyntactic analyzer and generator, was
less than 1.8 Mb. The same transducer used as morphosyntactic analyzer reaches a speed of
8,000 words/s to 12,000 words/s (SPARC 20), depending on the requested kind of answer.
Another example is the generative spellchecker, which reaches a similar speed (up to 14,000
words/s), but at a compression rate of less than one byte per word (about 800 kbytes for 1
million word forms).

3.1 Transducers

A first set of examples consists of finite-state transducers based on inflection. The tools are
illustrated with forms of the verb gehen ('go'). The same transducer can be used for the following
four functionalities:

- Lemmatizer.
It takes as its input a word form as found in a text and yields a set of identifiers of lexemes
to which it may belong. Often the set will consist of a single element.

IN "ging"
OUT "gehen" (Cat V)

114

- Paradigm generator.
It generates the word forms of a lexeme identified in the input.

IN "gehen" (Ca¢ V)
OUT
gehen, gehe, gehst, geht, ging, ginger,
gingest, gingez, geh, gehend, gegangen

gingen, gingl;, gehest, gehet, ginge

Morphosyntactic analyser.
The input is the same as in the former example, but the output specifies the position in the
paradigm of the lexeme.

IN "ging"
OUT
"gehen" (Cat V) (Hod Ind) (Temp Impf) (Num SG) (Pers Ist)
"gehen" (Cat V) (Mod Ind) (Temp Impf) (Num SG) (Pers 3rd)

- Morphosynta~tic generator.
h is the reverse of the previous example.

IN "gehen" (Cat V) (Nod Ind) (Temp Impf) (Ntm SG) (Pets l s t)
OUT "ging"

There is also the opportunity to restrict the answer producing a partial set of word forms on
the basis of a partial feature specification. Obviously inflection information can be required for
any kind of word, including compoundings. We have also used the same transducer structure to
encode information on derivation and creation history. The source data were also the 100,000
German lexemes.

Creation history.
Given the identifier of a lexeme, here Sperrung ('closing'), it retrieves the base and the WM
word formation rule if the input lexeme is complex.

IN "sperrung" (Cat N)(Gender F)
OUT
"sperren" Derivation V-To-N Suffixing No-Umlaut V-No-Det-Prefix

Generation history.
The same data can be used in the reverse order, i.e. from the base lexeme to the derived
ones. In the following example the transducer generates all lexeme identifiers of lexemes
formed by word formation rules applied to a given input lexeme, in this case kind ('child').

IN "kind" (Cat N)(Gender N)
OUT
"enkelkind" (Cat N)(Gender N)
"mmderkind" (Cat N) (Gender N)
"schulkind" (Cat N)(Gender N)
etc.

115

3.2 Simple FSA

A further category of tools includes FSAs. They are not bi-directional as the transducers, but
they can still be used for different purposes:

- Structuring into formatives.

IN "gegangen"
OUT "ge + gang + en"

- Spelling-checker (yes/no answer).

IN "g:ing"
our yes

- Generative spelling-checker.
It is similar to the former spelling-checker, in the sense that it does not give strings or fea-
tures as output, but only yes or no, depending on successful recognition. The difference is
that this FSA has been generated taking existing word forms from Word Manager database
into account as well as formatives which may result from the application of productive Word
Manager wordformation rules. As opposed to common spellcheckers, which only check a text
against a word list, it could be called a generative spellchecker ([7]), because it also tries to
generate the word as possible word.

IN "krankenver s i che rungssys t era"
OUT poss ib le word

3.3 Others

Some more finite-state tools are foreseen. The most important of them is a special trans-
ducer able to recognize particular sentences. The sentences will be acquired through an existing
product, Phrase Manager ([6]), which will generate the data used to produce the independent
transducer.

4 Conclusion

In this paper, various finite-state tools have been described which are based on a general com-
mon framework. The significance of these tools does not reside primarily in their individual
functionalities. Although each of them is useful and fast, their principal interest lies in the fact
that they are produced with so little effort on the basis of an existing object-oriented framework.
The framework represents an abstract finite-state element, which can be easily customized to
produce new kinds of concrete finite-state tools. We think that the use of a customizable frame-
work, as well as the use of a source database for the generation of the input, is a further step
towards the optimal reuse of expensive tasks like defining some tens of thousands of entries
which will usually not focus on a single application.

116

References

1. Domenig M. and ten Harken P. 1992. Word Manager: A System for Morphological Dictionaries.
Olms Vedag, Hildesheim.

2. Gamma E., Helm R., Johnson R., Vlissides J. 1995. Design Patterns. Addison Wesley.
3. ten Harken P, Bopp S., Domenig M., Holz D., Hsiung A, Pedrazzini S. 1994 A Knowledge Ac-

quisition and Management System for Morphological Dictionaries. In Proceedings of Coling-9~,
International Conference on Computer Linguistics, Kyoto.

4. Johnson R.E and Foote B. 1988. Designing reusable classes. Journal of Object-Oriented Program-
mlng. June/July 1988.

5. K~rttunen Laud. 1993. Finite-State Lexicon Compiler. Xerox Corporation Polo Alto Research
Center. Technical Report [P93-00077].

6. Pedrazziai Sandro. 1994. Phrase Manager: A System for Phrasal and Idiomatic Dictionaries. Olms
Verlag, Hildesheim.

7. Pedrazzini Sandro. 1997. Word Games. In Proceedings of the Fifth International Symposium on
Social Communication, Santiago de Cuba, Editorial Academia, La Habana.

.a

117

