
[] 

[] 

Incremental  Construct ion  of  Minimal  Acyclic 
State  A u t o m a t a  and Transducers 

Jan Daciuk I, Bruce W. Watson 2's and Richard E. Watson s 

I j andac®pg.gda.pl 
Technical University of Gdafisk 

(DEPARTMENT OF APPLIED INFORMATICS) 
Ul. G. Narutowicza 11/12 
PL80-952 Gdadsk, Poland 

2 watson@cs.up.ac.za 
University of Pretoria 

(DEPARTMENT OF COMPUTER SCIENCE) 
Hillcrest 0083, Pretoria, South Africa 

q {waCson, rwatson}@RibbitSoft.com 
RIBBIT SOFTWARE SYSTEMS INC. 

(IST TECHNOLOGIES RESEARCH GROUP) 
Box 24040, 297 Bernard Avenue, Kelowna 

British Columbia, VIY 1K9, Canada 
www .RibbitSoft. com 

Finite 

Abstract. In this paper, we describe a new method for constructing minimal, determin- 
istic, acyclic finite state automata and transducers. Traditional methods consist of two 
steps. The first one is to construct atrie, the second one -- to perform minimization. Our 
approach is to construct an automaton in a single step by adding new strings one by one 
and minimizing the resulting automaton on-the-fly. We present a general algorithm as 
well as a specialization that relies upon the lexicographical sorting of the input strings. 

1 Introduction 

Finite state automata are used in a variety of applications, such as natural language processing 
(NLP). They may store sets of words or sets of words with annotations, such as the corre- 
sponding pronunciation, lexeme, morphotactic categories, et cetera. The main reasons for the 
use of finite state automata in the NLP domain are their small size and very short lookup time. 
Of particular interest to the NLP community are deterministic, acyclic, finite state automata, 
which we call dictionaries. We refer to the set of all such dictionary automata as DAFSA. 

Dictionaries can be constructed in various ways, using different data. (See Watson [3, 5] 
for a taxonomy of (general) finite state automata construction algorithms.) A word is simply a 
finite sequence of symbols over some alphabet (we do not associate them with a meaning during 
the construction phase). For the purpose of this article, the input data is a finite sequence of 
words. This is a necessary and suificient condition for any resulting deterministic automaton to 
be acyclic. 

The MyhiU-Nerode theorem (see Hopcroft and Ullman [I]) states that among the many 
automata that accept a given language, there is a unique automaton (excluding isomorphisms) 
that has a minimal number of states. This is called the minimal automaton of the language. 

The generalized algorithm presented in this paper has been independently developed by Jan 
Daciuk (he is also the sole developer of the sorted specialization of the algorithm) of the Techni- 

48 



1 
i 

I 
i 

i 

i 

i 

I 

[ ]  

i 

[]  

[ ]  

ca• University of Gdazisk and by Richard Watson and Bruce Watson of the IST Technologies Re- 
search Group at Ribbit Software Systems Inc. Jan Daciuk has made his C++ implementations 
of the algorithms freely available for research purposes at ~n~.pg. gda. p l / ~ j  andac/f sa. html. 
Ribbit's commercial C++  and Java implementations are available via ~ .  Ribbi tSoft .  com. 
Ribbit's implementations include several additional features such as a method to remove words 
from the dictionary (while maintaining •in•reality) and the ability to associate any type of an- 
notation with a word in the dictionary (hence providing an efficient (p-)subsequential transducer 
implementation). In addition, it is possible to save a constructed dictionary and reload it on a 
different platform and implementation fan. gaiage (without endianess problems). The algorithms 
have been used for constructing dictionaries and transducers for spell checking, morphological 
analysis, two-level morphology, restoration of diacritics and perfect hashing. In addition, the 
algorithms have proven useful in numerous problems outside the field of NLP (for example, 
DNA sequence matching, computer virus recognition and document indexing). 

2 M a t h e m a t i c a l  P r e l i m i n a r i e s  

Formally, we define a deterministic finite-state automaton to be a 5-tuple M = (Q, ,~, 6, q0, F), 
where Q is a finite set of states, qo • Q is the start state, F C Q is a set of final states,/7 is a 
finite set of symbols called the alphabet and 6 is a partial mapping ~ : Q × 27 ~ Q denoting 
transitions. We can extend the 6 mapping to 5" : Q × 27* ----, Q as in Hopcroft and Ullman [1]. 
We define E(M) to be the language accepted by automaton M: 

£(M) = { x e 27" 16" (q0, x) • F } 

The size of the automaton, IMI, is equal to the number of states, IQI. Let the mapping 

-~ : Q ~ P(27") (where P(27") is the set of all languages over 27) be the right language of 
a state q in M (the set of all strings, over ,~*, on a path from state q to any final state of M 
using the extended transition relation 6*): 

~ ( q )  --- { x ~ 27* 16*(q,x) ~ F }  

Note that/ :(M) = ~(q0). We also define a property of an automaton specifying that all states 
can be reached from the start state: 

Use/ t(M) = VqE, 3  z.(6*(qo, z )  = q) 

The property of being a minimal automata is traditionally defined as follows (see Watson [3, 5]): 

Min(M) =_ VM,~DAFSA(/:(M) = ~(M' )  =~ IMI < IM'I) 

We will, however, use an alternative definition of •in•reality, which is shown to be equivalent 
(see Watson [3, 5]): 

Mi,Umat(M) - (-Z(q) ^ Us4 t(M) 

49 



es•O_•_. 0 t ~@ 

_/ ~ ' ~  ~ ' ~ ' ~  

Figure 1. A trie whose language is the French 
regular endings of verbs of the first group. 

I 
Figure2.  The unique minimal dictionary 
whose language is the French regular endings 
of verbs of the first group. 

3 C o n s t r u c t i o n  f r o m  S o r t e d  D a t a  

A trie is a dictionary with a transition graph that is a tree with the start state as the root and 
all leaves being final. Let us picture a dictionary in a form of a trie (for example, see Figure 1). 
We can see that many subtrees in the transition graph are isomorphic. The equivalent minimal 
dictionary (Figure 2) is the one in which, for all isomorphic subtrees, only one copy of the tree 
is kept. That is, pointers (edges) to all isomorphic subtrees are replaced by pointers (edges) to 
their unique copy. 

Traditionally, to obtain a minimal dictionary one would first create a dictionary for the lan- 
guage (not necessarily minimal), and then minimize it using any one of a number of algorithms 
(see Watson [4, 5]). Usually, the first stage is done by building a trie, for which there are fast 
and well understood algorithms. Although algorithms that minimize dictionaries can be fairly 
effective in their use of memory, they unfortunately have bad run-time performance. In addition, 
the size of the original dictionary can be enormous - although some effort towards decreasing 
its memory requirements have been reported - -  see Revuz [2]. This paper presents a way to 
reduce these intermediate memory requirements and decrease the total construction time by 
constructing the minimal dictionary incrementally (word by word, maintaining an invariant of 
minimality), thus avoiding ever having a trie in memory. 

The central part of most automata minimization algorithms is a classification of states - -  
see Watson [4, 5]. The states of a dictionary are partitioned into equivalence classes of which 
the representatives are the states of the minimal dictionary. Assuming the original dictionary 
does not have any useless states (that is, Useful(M) is true), we can deduce (by our alternative 
definition of minimality) that  each state in the minimal dictionary must havea  unique right 
language. Since this is a necessary and suiBcient condition for minimality, we can use equality 
of right languages as our equivalence relation for our classes - -  see Watson [3, 5]. Using our 
definition of right languages, it is easily shown that equality of right languages is an equivalence 
relation (reflexive, symmetric and transitive). We will denote two states, p and q, belonging 
to the same equivalence class by p -- q (note that ~ here is different from its use for logical 
equivalence of predicates). 

Let us step through the minimization of the trie 'in Figure 1 using the algorithm given in 
Hopcroft and Ullman [1] and Watson [5]. As a first step, pairs of states where one iS final and 

50 



i 

i 
i i  

i 
an 

m 

i 

m 

i 

I 

i 

I 

I 

I 

l 

i 

Ha 

Ha 

l 

the other is not can immediately be marked as belonging to different equivalence classes (since 
only final states contain e, the empty string, in their right language). Pairs of states that have 
a dii~erent number of outgoing transitions or the same number but with different labels can 
also be marked as belonging to different equivalence classes. Finally, pairs of states that have 
transitions labeled with the same symbols but leading to different states that have already been 
considered, can be marked as belonging to different equivalence classes. 

Let us traverse the trie (see Figure 1) with the postorder method and see how the partition 
can be performed. We start With the (lexicographically) first leaf, moving backward through 
the trie toward the start state. All states up to the first forward-branching state (state with 
more than one outgoing transition) must belong to different classes. We can put them into a 

register of states so that we can find them easily. There will be no need to replace them by 
other states. Considering the other branches, and starting from their leaves, we need to know 
whether or not a given state belongs to the same class as a previously registered class. The 
state being considered belongs to the same class as a representative of an established class if 
and only if: 

1. they are either both final, or both non-final. If there is an annotation or some other type of 
information associated with each state, then states in the same equivalence class must all 
have equivalent information; 

2. they have the same number of outgoing transitions; 
3. corresponding transitions have the same labels; 
4. corresponding transitions lead to the same states, and 
5. states reachable via outgoing transitions are the sole representatives of their classes. 

The last condition is satisfied by using the postorder method to traverse the trie. If all the 
conditions are satisfied, the state is replaced by the equivalent (representative) state found in 
the register. Replacing a state simply involves deleting the state while redirecting all of its 
in-transitions to the equivalent state. Note that all leaf states belong to the same equivalence 
class. If some of the conditions are not satisfied, the state must be a representative of a new 
class and therefore must be put into the register. 

In order to build the dictionary one word at a time, we need to merge the process of adding 
new words to the dictionary with the 'minimization process. There are two crucial questions 
that need to be answered. Firstly, which states (or equivalence classes) are subject to change 
when new words are added? Secondly, is there a way to add new words to the dictionary such 
that we minimize the number of states that may need to be changed during the addition of a 
word? Looking at the Figures 1 and 2, it becomes clear that in order to reproduce the same 
postorder traversal of states, the input data must be lexicographically sorted. (Note that in 
order to do this, the alphabet 27 must be ordered). Further investigation reveals that when we 
add words in this order, only the states that need to be traversed to accept the previous word 
added to the dictionary may change when a new word is added. All the rest of the dictionary 
remains unchanged. This discovery leads us to the algorithm shown in Algorithm 3.1. 

Algorithm 3.1: 

Register := 0 
do there is another word --* 

Word := next word; 
CommonPrefix := common_prefix( Word); 
LastState := 6* ( qo , CornmonPrefix ) ; 

51 



[] 

[] 

CurrentSuff~ := Word[length( CommonPrefix) + 1 . . .  length( Word)]; 
if  has_children( LastState) --* 

replace_or_register( LastS tate) 
fi; 
add_suffix( LastState, CurrentSuff~x ) 

od; 
replace_or_register( qo ) 

func comraon_prefix( Word ) --* 
r e t u r n  Word[1. . .  n] : n = max i : 3qEQ~*(qo, Word[1.. .  i]) = q 

cnuf 

func replace.or_register(State) 
Child := last_child(State); 
if not marked_as_registered(Child) --* 

i f  has_children(Child) 
replace_or_register(Child) 

fi; 
i f  3qeQ ( marked-as_registered( q ) A q = Child) 

delete_branch(Child); 
last_child(State) := q 

else 
Register := Register U { Child}; 
mark_as_registered(Child) 

fi 
fi  

cnuf 

m 

i 

m 

m 

m 
m 

m 

n 

[] 

m 

m 

m 

[] 

The function common_prefi~ finds the longest prefix (of the word to be added) that is a prefix 
of a word already in the automaton. 

The function add_suj~ creates a branch extending out of the dictionary, which represents 
the suffix of the word being added (the maximal SulFLX of the word which is not a prefix of 
any other word already in the dictionary). The last state of this branch is marked as final (and 
an annotation associated with it, if applicable ). The function last_child returns a (modifiable) 
reference to the state reached by the lexicographically last transition that is outgoing from the 
argument state. Since the input data is lexicographically sorted, last_child returns the outgoing 
transition (from the state) most recently added (during the addition of the previous word). 
To determine which states have already been processed, each state has a marker that indicates 
whether or not it is already registered. Some parts of the automaton are left for further treatment 
(replacement or registering) until some other word is added so that those states no longer 
belong to the path in the automaton that accepts the new word. That marker is read with 
marked_as_registered and set with mark_as_registered. Finally, has_children returns true if, and 
only if, there are outgoing transitions from the node, and delete_branch deletes its argument 
state and all states that  can be reached from it (if they are not already marked as registered). 

Memory is needed for the minimized dictionary that  is under construction, the call stack and 
for the register of states. The memory for the dictionary is proportional to the number of states 
and the total number of transitions. The memory for the register of states is proportional to the 

52 



number of states and can be freed once construction is complete. Depending upon the choice 
of implementation method, memory may be required to maintain the equivalence relation. 

The main loop of the algorithm runs m times, where ra is the number of words to be 
accepted by the dictionary. The function common_prefix executes in O(Iwl) time, where [~v I is 
the maximum word length. The function replace_or_register executes recursively at most Iwl 
times for each word. In each recursive call, there is one register search and possibly one register 
insertion. The pessimistic time complexity of the search is O(logn), where n is the number 
of states in the (minimized) dictionary. The pessimistic time -complexity of adding a state to 
the register is also O(log n). By using a hash table to represent the register (and equivalence 
relation), the average time complexity of those operations can be made constant. Since all 
Children of a state are either replaced or registered, delete_branch executes in constant time. So 
the pessimistic time complexity of the entire algorithm is O(mlw I logn), while an average time 
complexity of O(mlwl) can be achieved. 

4 C o n s t r u c t i o n  f rom U n s o r t e d  D a t a  

Sometimes it is di~cult or impossible to sort the input data before constructing a dictionary. For 
example, when there is not enough time or storage space to sort the data, or the data originates 
in another program or physical source. An incremental dictionary-building algorithm would still 
be very useful in those situations, although unsorted data makes it more difficult to merge the 
trie-building process and the minimization process. We could leave the two processes disjoint, 
although this would lead to the traditional method of constructing a trie and minimizing it 
afterwards. A better solution is to minimize everything on-the-fiy, possibly changing a state's 
equivalence class each time a word is added. Before actually constructing a new state in the 
dictionary, we first determine if it would be included in the equivalence class of a pre-existing 
state. In addition, we may need to change the equivalence classes of previously constructed 
states since their right languages may have changed. This leads to an incremental construction 
algorithm. Naturally, we would want to create the states for a new word in an order that would 
minimize the computation of the new equivalence classes. 

Similar to the algorithm for sorted data, when a new word is added, we search for the 
common prefix in the dictionary. This time, however, we cannot assume that the states traversed 
by this common prefix will not be changed by the addition of the word. If there are any pre- 
existing states traversed by the common prefix that are already targets of more than one 
in-transition (known as confluence states), then blindly appending another transition to the 
last state in this path (as we would in the sorted algoritm) would accidentally add more words 
than desired (see Figure 3 for an example of this). 

~ d 

Figure 3. The result of blindly adding the word bae to a minimized dictionary containing abd and bad. 
The middle dictionary inadvertently contains abe as well. The rightmost dictionary is correct - -  state 
3 had to be cloned. 

53 



I 

I 

I 
To avoid generation of such spurious words, all states in the common prefix from the first state 
that has more than one in-transition must be cloned. Cloning is the process of creating a new 
state that has outgoing transitions on the same labels and to the same destination states as 
a given state. If we compare the minimal dictionary ' to an equivalent trie, we notice that a 
confluence state can be seen as a root of several original, isomorphic subtrees merged into one 
(as described in the previous section). One of the isomorphisms now needs to be modified, so it 
must first be separated from the others by cloning its root. The isomorphic subtrees hanging off 
these roots are unchanged, so the original root and its clone have the same outgoing transitions 
(that is, transitions on the same labels and to the same destination states). 

Once the entire common prefix is traversed, possibly cloning states along the way, the rest 
of the word must be appended. If there are no confluence states in the common prefix, then the 
method of adding the rest of the word does not differ from the method used in the algorithm 
for sorted data. The addition of words in a lexicographical order in the sorted algorithm ensures 
us that we will not encounter any confluence states during the traversal on the common prefix. 

When the process of traversing the common prefix (up to a confluence state) and adding the 
suffix is complete, further modifications follow. We must recalculate the equivalence class of each 
state on the path of the new word. If any equivalence class changes, we must also recalculate 
the equivalence classes of all of the parents of all of the states in the changed class. Interestingly, 
this process could actually make the new minimal dictionary smaller. For example, if we add the 
word abe to the dictionary at the right of Figure 3 while maintaining minimality, we obtain the 
dictionary shown in the middle of Figure 3, which is one state smaller. The resulting algorithm 
is shown in Algorithm 4.1. 

A l g o r i t h m  4.1: 

Register := 0 
do there is another word 

Word := next word; 
CommonPrefix := common_pre]L~( Word); 
FirstState := first_state( CommonPrefiz ); 
if  FirstState = 0 

LastState := 6(q0, ComrnonPrefix ) 
else 

LastState := clone( 6(qo, CommonPrefiz ) ) 
fi; 
CurrentSuffix := Word[length( CommonPrefiz) + 1. . .  length( Word)]; 
adoLsuffix( LastState, CurrentSuffix ); 
if  FirstState ~ 0 --* 

Currentlndex := (length(x) : 6* ( qo, x) = F irstState ) ; 
for i f rom length(CommonPrefix) - 1 d o wn t o  CurrentIndex 

CurrentState := clone(6* (qo, CornrnonPrefix [1. . .  i]) ); 
6( CurrentState, ComrnonPrefix [i]) := LastState; 
replace_or_register( CurrentState ) ; 
LastState :-- CurrentState; 

ro f  
else 

CurrentIndex := length( CommonPrefix ) 
fi; 
Changed := true; 

54 



I 

I 

m 
i 

Ha 

I 

t 

i 

I 

I 

I 

m 

I 

m 
l 

n 

m 

i 

i 

i 

I 

I 

I 

m 

i 

m 
i 
aid 
i 

o d  

do  

od  

Currentlnde~ :'- Currentlnde~ - 1; 
CurrentState := 6*(qo, Wont[1... OurrentInde~]); 
OldState := Lo.~tState; 
mark_as_not_registered( LastState ) ; 
Register := Register- { LoatState } ; 
replace_or_register( CurrentState ) ; 
Changed := OldState ~ LastState 

O 

Several changes to the functions used in the sorted algorithm are necessary to handle the 
general case of unsorted data. The replace_or_register procedure needs to be modified slightly. 
Since new words are added in arbitrary order, one can no longer assume that the last child 
(lexicographically) of the state (the one that has been added most recently) is the child whose 
equivalence class may have changed. Now, all children of a state must be checked; not Only the 
most recently altered child. However, at most one child may need treatment, so the execution 
time is of the same order. Also, in the sorted algorithm, add_suffiz is never passed c as an 
argument, whereas this may occur in the unsorted version of the algorithm. The effect is that  
the LastState should be marked as final since the common prefix is, in fact, the entire word. 
Finally, the new function first.state simply traverses the dictionary using the given word prefix 
and returns the first confluence state it encounters. If no such state exists, first_state returns O. 

As in the sorted case, the main loop of the unsorted algorithm executes ra times, where 
ra is the number of words accepted by the dictionary. The inner loops are executed at most 
Jwl times for each word. Putting a state into the register takes O(logn), although it may be 
constant when using a hash table. The same estimation is valid for a removal from the register. 
So the time complexity of the algorithm remains the same, but the constant changes. Similarly, 
hashing can be used to provide an efficient method of determining the state equivalence classes. 
For sorted data, only a single path through the dictionary could possibly be changed each time 
a new word is added. For unsorted data,.however, the changes frequently fan-out and percolate 
all the way back to the start state, so processing each word takes more time. 

An algorithm described by Revuz [2] also constructs a dictionary from sorted data while 
performing a partial minimization on-the-fly. Data is sorted in reverse order and that prop- 
erty is used to compress the endings of words within the dictionary as it is being built 4. The 
minimization still involves finding an equivalence relation over all of the States of the pseudo- 
minimal dictionary 6. However, the time complexity of the subset construction minimization can 
be reduced somewhat by using knowlei~ge of the pseudo-minimization process. Although this 
pseudo-minimization technique is more economic in its use of memory than traditional tech- 
niques, we are still left with a sub-minimal dictionary which can be a factor of 8 times larger 
([2], the DELAF dictionary) than the equivalent minimal dictionary. 

This new algorithm can also be used to construct transducers. The alphabet of the (transduc- 
ing) automaton would be 2~1 × 272, where ~71 and £72 are the alphabet of the levels. Alternatively, 
as previously described, elements of ZT~ can be associated with the final states of the dictionary 
and only output once a valid word from E~ is recognized. 

4 This is called a pseudo-minimization and must be supplemented by a true minimization aSterwards. 
5 It is possible to use unsorted data but it produces a much bigger dictionary in the first stage of 

processing. 

55 



I 
II 

I 

I 
5 Conclusions II 

We have presented two new methods for constructing minimal, deterministic, acyclic finite state 
automata whose languages are word sets (possibly with corresponding annotations). Both can 
be used to construct transducers as well as traditional acceptors. Their main advantage is their 
extremely low intermediate memory requirements which are achieved by building and minimiz- 
ing the dictionaries incrementally. The total construction time of these minimal dictionaries is 
dramatically reduced from previous algorithms. The algorithm constructing a dictionary from 
sorted data can be used in parallel with other algorithms that traverse or utilize the dictionary 
since parts of the dictionary that are already constructed are no longer subject to future change. 

6 Acknowledgements 

We would like to thank the anonymous referees and Nanette Sae.s for providing both technical 
and style feedback in polishing this paper. Jan Daciuk would also like to thank friends from 
ISSCO, Geneva, for their comments and suggestions on early versions of the algorithms given 
in this paper. 

Jan Daciuk would like to express his gratitude to the Swiss Federal Scholarship Commission 
for providing a scholarship that made possible the work described here. Richard Watson and 
Bruce Watson would like to thank Ribbit Software Systems Inc. for its continued support in 
these fields of applicable research. 

References 

1. John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Languages, and 
Computation, Addison-Wesley Publishing Co., Reading, M.A. 

2. Dominique Revuz. 1991. Dictionnaires et le.ziques: m~thodes et algorithmes, Ph.D. dissertation, 
Institut Blaise Pascal, LITP 91.44, Pads, l~ance. 

3. Bruce W. Watson. 1993. A Taxonomy of Finite Automata Construction Algorithms. Comput- 
ing Science Note 93/43, Eindhoven University of Technology, The Netherlands. Available via 
m .  RibbitSoft. com/research/watson. 

4. Bruce W. Watson. 1993. A Taxonomy of Finite Automata Minimization Algorithms.Comput- 
ing Science Note 93/44, Eindhoven University of Technology, The Netherlands. Available via 
~ .  R i b b i t S o f ~ .  com/research/eatson.  

5. Bruce W. Watson. 1995. Tazonomies and Toolldt~ o/ Regular Language Algorithms. 
Ph.D. dissertation, Eindhoven University of Technology, The Netherlands. Available via 
~ .  R £ b b i t S o f t .  C o r n / r e s e a r c h / w a r  son .  

5 6  


