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Robust Parsing Using a Hidden Markov Model 

Wide R. Hogenhout  Yuji Matsumoto  

Nara Institute of Science and Technology 

Abs t rac t .  Recent approaches to statistical parsing include those that estimate an approxi- 
mation of a stochastic, lexicalised gr~mm~x directly from a treebank and others that rebuild 
trees with a number of trse-coustructing operators, which are applied in order according 
to a stochastic model when parsing a sentence. In this paper we take an ehtirely di~erent 
approach to statistical parsing, as we propose a method for parsing using a Hidden Markov 
Model. We describe the stochastic model and the tree construction procedure, and we report 
results on the Wall Street Journal Corpus. 

1 Introduction 

Recent approaches to statistical parsing include those that estimate an approximation of a 
stochastic, lexicalized ~rammar directly from a treebank (Colll-.q~ 1997; Charuiak, 1997) and 
others that rebuild trees with a number of tree-construction operators, which are applied 
in order according to a stochastic model when parsing a sentence (Magerman, I995; Ratna- 
parldd, 1997). The results have been around 86% in labeled precision and recall on the Wall 
Street Journal treebank (Marcus, Santorini, and Marcinldewicz, 1994). 
In this paper we take an entirely different approach to statistical parsing. We propose a 
method for left to fight parsing using a Hidden Markov Model (HMM). The results we 
obtain are not as good as the more general approaches mentioned above, which consider the 
whole sentence rather then working in an incremental fashion, but the method does give a 
number of interesting new perspectives. In particular, it can be applied in an environment 
that requires left to right processing, such as a speech recognition system, it can easily 
process text that has not been separated into sentences (for example when punctuation is 
mi~ing or when~processing ungrammatical, spoken text), and it can give a shallow parse 
(i.e., leaving out long distance dependencies) as it is focused On local context. It also makes 
the parsing process closer to the way humans process language, although we do not explore 
this psychological aspect in this paper. 
In the next three sections we will discuss the way we decide the syntactic context of a word 
(%raversal strings"), how this can be used for parsing and how a tree can be constructed 
~om them. The following four sections discuss the HMM model used to predict a syntactic 
context for every word. The last two sections discuss the results, conclusions and future 
perspectives. 

2 Traversal Strings 

Take the sentence "I am singing in the rain." This can be analyzed as indicated in figure I, 
where the first line of symbols above the text indicates parts of speech as used in the Wall 
Street Journal Corpus (for example, VBG stands for "verb -gerund or present participle"). 
The abbreviations used for nonterminals are self-explanatory. 
We would like to characterize every word separately instead of having one intertwined struc- 
ture that models everything. This is possible by tracing the path from every word through 
the tree up to the top of the tree. This results in table 1. 
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PP VBP VBG IN DT NN 

I a m  .~in~n~ in the rain 

F i g u r e  1. Example of Syntactic Analysis. 

We will call these strings (excluding the word and its tag) traversal strings. I t  will be obvious 
that  this representation is very redundant, and it is exactly this property that  we will exploit. 
But first we note it is also possible to carry out the inverse action of reconstructing the 
tree from a set of traversal strings. Later we will describe a robust, heuristic algorithm for 
reconstructing the tree. 

The basic concept of parsing with traver°~l strings is that  after seeing a word, one considers 
a number of possible tree contexts in which that  word normally occurs. The most likely ones 
are selected both by considering the likelihood of a context occun'ing with a word and the 
likelihood of a context following another context. As for the last relation, it is here that the 
redundance becomes me~nlngful; since neighboring traversal strings are often partially or 
completely equal. 
Oflazer (1996) used a similar structure called "vertex lists" which he defined as the path from 
a leaf to the root of the tree but,  different from our definition, including the tag and the word. 
Oflazer uses vertex lists for error-tolerant tree-matching. In some cases trees can be said to 
match approximately, and using vertex lists to quantify the amount of difference between 
trees, Oflazer shows how trees similar to a given tree can be retrieved from a database 
(treebank). As will be clear from what follows, we use traversal strings in a completely 
different way, and to the best of our knowledge these strings have not been used for parsing 
before. 
The work of Jcehi and Srinivas (1994) actually comes closer to our work. While we attach 
traversed strings to word-tag pairs, they do the same with elementary structures in a Lexi- 
calized Tree-Adjolnlng Grammar,  called Supertags. This is a partial  tree that  only contains 
one lexical word, as well as part  of its context. Joshi and Srinlvas show how, by statisti- 
cally choosing such structures for each word in a sentence, they are able to disambiguate 
syntactical structure. Note however that  the results they give are not comparable to ours as 
they only tested on short sentences, and report  on the accuracy of Supertags rather than 
bracket-accuracy or recall. 

I /PP -> NP -> S 
am/VBP -> VP -> VP -> S 
singing/VBG -> VP -> VP -> S 
in / IN  -> PP -> VP -> S 
the/DT -> NP -> PP -> VP -> S 
rain/NN -> NP -> PP -> VP -> S 

. / .  - >  S 

• a b l e  1. Example of Traversai Strings 
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3 Parsing with Traversal Strings 

Figure 2 shows the system design. When presented with a sentence, the first component 
finds the most likely set of part of speech tags (not shown) and traversal strings matching 
the words in the sentence. After this a second component assembles a tree from the traversal 
strings. 

l predict s p /P ~ [ combine 
l am singing.., traversal Iamsm.~...J strings into 1.. Iamsmghlg... 

-[ strings 1 tree ! 

Figure  2. System Design 

The prediction of traversal strings presents us with a problem, since traversal strings of 
arbitrary length are too numerous to be predicted accurately. To see our answer to this 
problem it is instructive to look at the analysis of a longer sentence, please see figure 3. In 
particular, notice the shaded areas that show how traversal strings of neighboring words are 
often equal or partially equal. The most common relation that is seen is a 'shift', where the 
vertex at position n for word wi becomes vertex n + 1 for word wi+l. At the bottom of the 
traversal string one vertex is added, and nothing else changes. 
This illustrates the next step we will take. Even after cutting off traversal strings at a fixed 
maximum length, it is still possible to reconstruct the tree. The dotted line in figure 3 shows 
how traversal strings are cut off at a maximum length of 5 vertices. Having part of the 
traversal string still leaves it possible to see that a particular word is likely to be in the same 
context as his neighbor. More generally, we look at what subtrees are likely to share part 
of their context with other, neighboring subtrees. We will show how doing this iteratively 
makes it possible to restore the tree with a high degree of accuracy. 

4 Transforming Traversal Strings into Trees 

We use a heuristic algorithm for reconstructing a tree from traversal strings. This includes 
'~artial" traversal strings, but we simply refer to them as traversal strings since we will 
always be working with partial traversal strings anyway. This is a brief, informal description 
of the algorithm. A complete technical description is given in (Hogenhout, 1998). 
The algorithm is based on the heuristic that best matches should go first. The best match is 
decided by checking neighboring strings (or, later, subtrees) for equal nonterminals starting at 
the top of either side. The pair with the most matching nonterminals is merged as displayed 
in figure 4. This process is repeated until one tree remains, or when there are no more 
matching neighbors. 
For example, the choice 
in/IN -> PP -> YP -> S 

the/DT -> NP -> PP -> VP -> S 
rain/NN -> NP -> PP -> VP -> S 
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Figure  3. Similarity between Traversal Strings and cut at maximum length 5 

Wi W2 W3 W4 W5 W6 W7 Ws W9 Wlo 

Figure  4. "[~raversal Strings merged into (sub)trees 

would initially be decided in favor of the and rain, and.after they are merged completely, the 
top three nonterminals would be merged to those of i~ 
There is an easy way of testing this algorithm. One can take trees from a treebank, convert 
the trees to traversal strings, then use the algorithm to reconstruct the trees. Figure 5 shows 
the labeled accuracy and recall of these reconstructed trees when compared to the original 
treebank trees, for various maximum traversal string lengths. 
The accuracy is calculated as 

number of identical brackets with identical nonterminal 
accuracy -- number of brackets in system parse (1) 

and the recall as 

number of identical brackets with identical nonterminal 
recall = number of brackets in treebank parse (2) 

which we will refer tO as "labeled accuracy" and "labeled recall" as opposed to the "unla- 
beled" versions of these measures that ignore nonterminals. 
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Even for long traversal strings the original tree is not reconstructed completely. This happens, 
for example, when two identical nonterminals are siblings, as in the sentence "She ga~e [NP 
the man] [NP a book]." It  is of course possible to solve such problems with a post-processor 
that  tries to recognize such situations and correct them whenever they arise. But as can be 
seen it only involves a small percentage (about 2%) of all brackets and for this reason it is 
not very significant at  this stage. 
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F i g u r e  5. Upper Bound Imposed by Tree Construction Algorithm 

The graph shows that  if we are capable of predicting up to 5 or more vertices, the algorithm 
will be able to do very well. If we can only predict up to 4 vertices we still have a high upper 
bound, but it is slightly lower~ Predicting up to 3 or less vertices however will not produce 
useful results. 
I t  must however be stressed that  this .is only an upper bound and does not reflect the 
performance of a useful system in any way. The upper bound only helps to pin down the 
border line of 4-5 vertices, and what really counts in practice is how the algorithm will do 
when the traversal strings that  are predicted contain errors--as they undoubtedly will. 

5 Guessing Traversal Strings 

We will now look at the question of how to predict traversal strings. As will become clear 
when  inspecting the equation this bears similarity to part-of-speech tagging. But there is 
one factor that  makes a big difference: we do not test on the correct traversal string, but on 
the result of the tree that  is reconstructed at  the end. In many cases the traversal string that  
is guessed is not correct, but  similar to the correct traversal string, and a Similar traversal 
string will render much better results at tree reconstruction than a completely different one. 
As usual our approach is maximizing the likelihood of the training dal~a. We will use a Hidden 
Markov Model which has traversal string-tag combinations as states and which produces 
words as output. We do not re~stimate probabilities using the Bantu-Welch algorithm (Bantu, 
1972) but we use smoothed Maximum Likelihood estimates from treebank data. 
Let us say we have a string of words wl...wn, and we are interested in guessing tags 7" --- t l  ...tn 
and traversal strings S = sl...s,~. We also use s0 ----- to -- too = s~+l ~- t~+l = dummy as a 
short-hand to signal the beginning and end of the sentence. 
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We take the probability of a sentence to be 

p(Wl--.~.Ort) = ~'p(wl...w~lT,,q) (3) 
7",8 

~ ~pC~, Is,, t,)p(~,+,., t,+~ I,~. t,), (4) 
7",8 in0 

corresponding to the transition and output probabilities of a hidden markov model. 
In practice the probabilities p(wi[si, ti) and p(s~+l, ti+l]s,, t,) can not be estimated directly 
using Maximum Likelihood because of sparse data. For this reason we smooth the estimates 
with our version of lower-order models as follows: 

~(w~lsl, ti) = A,it~p(wils,, ti) + (1 - ;~,m)p(w, lt0 (5) 

where the interpolation factor •sit, is a d j u s t e d  for different values of si and t, as suggested in 
(Bahl, Jelinek, and Mercer, 1983). We also divide the si-ti pa~r values over different buckets 
so that all pairs in the same bucket have the same ,~ parameter. It should be noted that we 
have a special word which stands for "nnlcnown word," to take care of words that were not 
seen in the training data. 
We do something similar for p(si+l, ti+llsi, tO, namely 

~(s~+lt,+lls. tO = 6~,pCs~+~t~+iIs. td + 6~mpCsi+lt~+lltd + 6~mpCs,+lt,+l) (fi) 

where of course 6~,ti + ~it, + 6~ti = 1. The interpolation factors axe bucketed in the same 
w~y. 
Using the obtained model we choose T and ,q by maximizing the probability of the sentence 
that we wish to analyse: 

(~r, s)" = arsma~p((7", S)lw2...w.) (7) 
(r,s) 

n 

argmax ITp(w~ls~, tdp(si+2, ti+l Is. to (8) 
¢r,s) ~o  

which can be resolved using the Viterbi-algorithm (Viterbi, 1967). 

6 Se l ec t ion  of  P a r t  o f  S p e e c h  Tags  

The process outlined above still has one problem that will be central in the rest of the 
discussion. The number of traversal strings is easily a few thousand, and the number of part 
of speech tag-traversal string pairs is even larger. Clearly, the computational complexity of 
the algorithm is in calculating (8). But, given a word and the history up to that word, most 
tags and traversal strings can be ruled out immediately. We will therefore only consider a 
fraction of the possible part of speech tags and traversal strings. This section will discuss 
how we select part of speech tags. 
The equation we use for selecting a tag is similar to the standard tagging HMM based model. 
We pretend for the time being that we are dealing with another stochastic process, namely 
one that only generates tags. We assume that 

p(wl...w~) = y~p(wl...w~, 7") (9) 
T 

n 

~. ~_~ l'Ip(w~lti)p(ti+llti) (10) 
T i=O 

but we do not really use this model, we only' use the idea behind it to approximate the 
probability of a tag. We find the most likely tags after seeing word i using the following 
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approximation: 

1;~' = argm.axp( t : i  = t:[ 'wl... 'w.i) (11) 
t 

= argmax ~ p(t, = tit,-1 = ~-l)p(w, lt,)atC/- I, ~-1)  (12) 
t 

= argmax ~ p(t, = tlt,-~ = ~-~)p(w, lt,) 
t 

Ui- -1  

O~C.,,,)4i - 1, (s ,u ) )6 (u ,  u a - l )  (13) 
O,,'.,.)(E .ei- 1 

where s is a traversal string, the symbol B i - I  indicates the set of tag-traversal string pairs 
that is being considered for word wi-l ,  and ~ indicates the "forward probability" according 
to the HMM. As usual 64u, u~-l) -- 1 i fu  = u~_~ and 0 otherwise. We will discuss later how 
the set B~-I is chosen, but this of course depends on the tags selected for the word wi-1. 
We distinguish between ~, (tagging model) and ~(~,~) (traversal string model). 
We take two significant assumptions at this point. First, we do not really use the HMM 
indicated in 410), but in equation (12) we restrict ourselves to the forward probability. The 
second assumption we take is (13), i.e., we estimate the probability of the previous tag by 
the tag-traversal string pairs that were selected for the previous word. Using this method we 
do not need to implement the markov model for tags, we only need the tables for p(t, lti_l) 
and p(wdti ). As we already need the last one for the traversal string model, we only need 
the (small) table p(ti[t~-l) especially for tagging. 
We must emphasize that the tagging described here is only a first estimate. We consider the 
most ~lcely one, two or three tags according to this model and discard the rest. Once they 
are selected, these probabilities are discarded and we return to the regular model. The next 
section will describe how the tags are selected in the next phase. 

7 S e l e c t i o n  o f  T r a v e r s a l  S t r i n g s  : F i r s t  P h a s e  

The next problem is how to select a few traversal strings given a word and a few tags, one of 
which is likely to be correct. The model we use for this pre~selection is actually more simple; 
as we ignore the selected traversal strings for previous words. 1 From the corpus we directly 
estimate in Maximum Likelihood fashion 

P4w,, si, ti) (14) 

and select the most likely travexsal strings si from this table. If  there are too few samples 
for a particular word wi, the list is completed with the more general distribution 

P(s,,t,), (15) 

again maximizing over si. We will have to consider that we do not have a single tag but 
several options, but we will first pretend that we do have one single tag. 
Figure 6 shows the results of this first phase, in case the maximum length of traversal strings 
is set to 5. If the best 50 candidates are selected according to 414), supplemented with 
selection according to (15) if necessary, we have the correct candidate between them about 
80% of the time. That means that for 20% of the words, we can only hope that a similar 
traver-~al string will be available for them. If we use the best 300 candidates, we will miss the 
correct candidate for about one word per sentence. We must however emphas!ze two points: 

1. The question is not only if we can select the correct candidate. It is crucial that, when 
a wrong candidate is chosen, this is at least similar to the correct candidate. 

2. Figure 6 indicates the percentage for traversal strings cut of at length 5. If traversal 
stings of a different maximum length are used, this will change (the higher the maximum 
length, the lower the percentage of hits). 
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Figure 6. Hit percentage for first phase 

Now we return to the tagging problem; after all we do not have the right tag available to us. 
We solve this, heuristically, as follows. Let a be the most likely tag, b the second most likely 
and c the third. 

- If p(a)/p(b) > 50, select 300 candidates for tag a and ignore other tags. 
- If 50 > p(a)/p(b) > 4 we select 300 candidates for tag a and more 100 candidates for 

tag b. 
- If 4 >_ p(a)/p(b) we select 300 candidates for tag a, 200 candidates for tag b and 100 

candidates for tag c. 
This scheme gives more candidates for more ambiguous words, but  as about 80% of all words 
fall in the first category and only 9% in the last category, this is not so bad. This list will 
contain the correct traversal string about 95% of the time. 

8 Select ion of  Traversal  Str ings  : Second P h a s e  

The previous section explained how initial candidates can be  selected quickly from all possible 
sets. After these initial candidates were selected, the transition and output probabilities are 
calculated. Let again B~- 1 be the set of candidates considered for word w~_ 1. Then we need 
to calculate (regrouping the product as compared to (8)) the quantity 

,~(8,t,) = ~ ,~(8,t)p{,~,ls,,t,)p(8,,~,ls,0 (16) 
(~,t)~Bi_1 

where we set 

1 if s0 =dummy and Co =dummy 
a(s0to) -- 0 otherwise (17) 

and Bo = {(dummy, dummy)}. The sum in (16) reflects almost all of the time that the 
calculation process takes up. But equation (16) gives a much more accurate estimate of 
likelihood than the rather primitive word-based selection (14), so once this sum is calculated 
we have a much better idea of the likelihood of candidates. For this reason we use two criteria: 

Note that using a technique similar to that for part of speech tags is not an option as this is exactly 
what we are trying to avoid doing for all possible traversai strings. 
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- In the first phase we use equation (14) and select the best p candidates. (As explained, 
depending on tagging confidence we vary the number of candidates, so # should be 
thought of as an average.) 

- In the second phase we use equation (16) and select the best 7 candidates. 
It will be clear that  we can choose 7 ( ( /z .  We have illustrated this in figure 7, which displays 
the percentage of correct candidates for various values for 7, again using a maximum traversal 
string length.of 5. Note that  the computational complexity of the Viterbi algorithm will be 
O(p~n) where n is sentence length. 
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7O 

6O 

% correct 
candidate 50 

40 

30 

f f  . . . .  

~ a t e  available after phase 2 - -  
' correct candidate ¢ho6en by Viterbl algodthm 

r i i i i 

5 10 15 20 25 30 
number of candidates phase 2 

F i g u r e  7. Hit  percentage for second phase 

Figure 7gives the percentage of cases in which the correct candidate is available (the upper 
line) and also the percentage of cases in which the correct candidate is chosen by the Viterbi 
algorithm. A remarkable fact arises from this figure: the percentage of traversal strings that  
are chosen correctly stabilizes at  about 7 = 4. From that  point the percentage is about 50% 
and while increasing 7 increases the chance that  the correct one will be available, choosing 
it becomes more diiBcult and these two effects cancel each other out. Nevertheless the result 
continues to improve for higher 7, as better  alternatives become available. We will put 7 to 
15 as a higher number contributes little more to the final scores. 

9 Parsing 

We have now dealt with all parts of the parsing process. Whenever a new word is seen, a few 
tags are selected according to (13). After this a set of about 300 (depending on the confidence 
in the tags) traversal strings is selected according to (14) or (15). The forward probability 
of these candidates is calculated (16) and this is used to further reduce the candidates to 15 
tag-traversal string pairs. This set is saved with their forward probabilities, and when the 
end-of-sentence signal is received the best series is given by the Viterbi algorithm. A tree is 
then produced according to the algorithm described in section 4. 
Until now we h~ve set the maximum traversal string length to 5 but  now we can show how 
variation in the maximum length affects the result. The experiments we present here were 
carried out with data  from the Wall Street Journal Treebank. Parameters were estimated with 
the first 22 sections (over 40,000 sentences), section 24 was used for smoothing (interpolation) 
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Figure 8. Precision and recall plotted again.qt maximum traversal string length 

and section 23 (2,416 sentences) was used exclusively for testing. Figure 8 shows the labeled 
accuracy and recall for various maximum lengths that result from this data. 
This shows that the optimal length is about 4, 5 or perhaps 6. This picture is slightly favoring 
the shorter lengths, since # and ~ are fixed while the longer lengths have more candidates 
to choose from. But on the other handl keeping p and ~7 fixed corresponds to giving the 
algorithm a certain time and letting it do its best in the given time• The longer lengths also 
have a disadvantage in that they lead to larger tables, using more memory. 
The differences between 4, 5 and 6 axe minor, and the performance degrades seriously at 3 
or 7. This shows that a maximum of 5 is a sensible choice. The first colnm, of table 2 gives 
detailed information about the final performance. It is also possible to restrict the parser 
to lower level structures, t~iclng only those parts which are the most safe, namely low-level 
brackets that do not depend on long distance dependencies. We carried this out by removing 
brackets covering more than three words and some particular nonterminals that often result 
in errors, such as SBAR~ These results axe indicated in the ~Shallow Parsing z col-re ,  

Table 2. Parsing Results 

Measure Regular Score Shallow Parsing 
labeled precision 75.6% 87.4% 
labeled recall 72.9% 37.9% 
unlabeled precision 79.5% 89.2% 
unlabeled recall 76.6% 38.9% 
crossing brackets per sentence 2.31 0.44 
tagging accuracy 94.4% 
speed on Spaxc Station 20 6.5 words/second 

10 Discussion 

The method we propose analyses language indirectly as a regular language. This makes it 
impossible to use long distance dependencies, but nevertheless the experiment shows that it 

46 



| 

mm 

U 

[] 

n 

[] 

m 

m 

m 

U 

U 

m 

U 

m 

m 

[] 

[] 

mm 

m 

m 

performs quite reasonable and is very robust. 
The score is less than the scores obtained by systems that consider the entire sentence with, 
in particular, the headwords of phrases. But the method creates new possibilities such as 
processing ungrammatical text and processing unpunctuated text. Shallow parsing is also a 
possible application. 
As far as future directions are concerned, we would like to mention that our parsing strategy 
is not limited, to regular languages and HMM models. It is possible to switch to a history- 
based approach, where the choice of si depends on both the words wl...w~ and all earlier 
tags and traversal strings chosen by the system. In that case a statistical decision tree or a 
markov field can be used to model the optimal choice for s~ after seeing word wi. 
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