
The Proper Treatment of Optimality 
in Computational Phonology 

Lauri Kart tunen 

Xerox Research Centre Europe 
6, chemin de Maupertuis 
38240 Meylan, France 

Abstract. This paper presents a novel formalization of optimality theory. Unlike pre- 
vious treatments of optimality in computational linguistics, starting with EUison (1994), 
the new approach does not require any explicit marking and counting of constraint vi- 
olations. It is based on the notion of "lenient composition", defined as the combination 
of ordinary composition and priority union. If an underlying form has outputs that can 
meet a given constraint, lenient composition enforces the constraint; if none of the output 
candidates meets the constraint, lenient composition allows all of them. For the sake of 
greater efficiency, we may "leniently compose" the GEN relation and all the constraints 
into a single finite-state transducer that maps each underlying form directly into its op- 
timal surface realizations, and vice versa. Seen f~om this perspective, optimality theolT 
is surprisingly similar to the two older strains of finite-state phonology: classical rewrite 
systems and two-level models. In particular, the ranking of optimality constraints corre- 
sponds to the ordering of rewrite rules. 

1 Introduction 

It has been recognized for some time that Optimality Theory (OT), introduced by Prince 
and Smolensky [24], is from a computational point of view closely related to classi- 
cal phonological rewrite systems (Chomsky and Halle [11) and to two-level descriptions 
(Kosksnniemi [21]). 
Ellison [61 observes that the ~EN function of OT can be regarded as a regular relation 
and that OT constraints seem to be regular. Thus each constraint can be modeled as a 
transducer that maps a string to a sequence of marks indicating the presence or absence 
of a violation. The most optimal solution can then be found by sorting and comparing 
the marks. Frank and Satta [7] give a formal proof that OT models can be construed 
as regtdar relations provided that the number of violations is bounded. Eisner [3, 4, 5] 
develops a typology of OT constraints that corresponds to two types of rules in two-level 
descriptions: restrictions and prohibitions. 
The practice of marking and counting constraint violations is closely related to the tableau 
method introduced in Prince and Smolensky for selecting the most optimal output can- 
didate. Much of the current work in optimality theory consists of constructing tableaux 
that demonstrate the need for particular constraints and rankings that allow the favored 
candidate to emerge with the best score. 
From a computational viewpoint, this evaluation method is suboptimal. Although the 
work of ~EN and the assignment of violation marks can be carried out by finite-state 
transducers, the sorting and counting of the marks envisioned by Ellison and subsequent 
work (Walther [26]) is an off-line activity that is not a finite-state process. This kind 
of optimality computation cannot be straightforwardly integrated with other types of 
linguistic processing (morphological analysis, text-to-speech generation etc.) that are 
commonly performed by means of finite-state transduction. 
This paper demonstrates that the computation of the most optimal surface realizations 
of any input string can be carried out entirely within a finite-state calculus, subject to 



the limitation (Frank and Satta [7]) that the maximal number of violations that need to 
be considered is bounded, we will show that optimality constraints can be treated com- 
putationally in a similar m~-ner to two-level constraints and rewrite rules. For example, 
optimality constraints can be merged with one another, respecting their rAniclug, just as 
it is possible to merge rewrite rules and two-level constraints. A system of optimality 
constraints can be imposed on a finite-state lexicon creating a transducer that maps each 
member of a possibly infinite set of lexicai forms into its most optimal surface realization, 
and vice versa. 
For the sake of conciseness, we limit the discussion to optimality theory as originally 
presented in Prince and Smolensky [24]. The techniques described below can also be 
applied to the correspondence version of the theory (McCarthy and Prince [22]) that 
expands the model to encompass output/output constraints between reduplicant and 
base forms. 
To set the stage for discussing the application and merging of optimality constraints it 
is useful to look first at the corresponding operations in the context of rewrite rules and 
two-level constraints. Thus we can see both the similarities and the differences among 
the three approaches. 

2 Background: rewrite rules and two-level constraints 

As is well-known, phonological rewrite rules and two-level constraints can be implemented 
as finite-state transducers (Johnson [9], Karttunen, Koskenniemi and Kaplan [14], Kaplan 
and Kay [10]). 
The application of a system of rewrite rules to an input string can be modeled as a cascade 
of transductions, that is, a sequence of compositions that yields a relation mapping the 
input string to one or more surface realizations. The application of a set of two-level 
constraints is a combination of intersection and composition (Karttunen [18]). 
To illustrate the idea of rule application as composition, let us take a concrete example, 
the well-known vowel alternations in Yokuts (Kisseberth [20], Cole and Kisseberth [2], 
McCarthy [23]). Yokuts vowels are subject to three types of alternations: 

- Underspecified sui~ voweis are rounded in the presence of a stem vowel of the same 
height: dub+bin ~ dubhun, bok'+Al ~ bok'oL 

- Long high vowels are lowered: fu:t+It -~ fo:tut, mi:k+lt -4 me:t~it. 
- Vowels are shortened in closed syllables: sa:p --+ sap, go:b÷hln -~ gobhin. 

Because of examples such as fu:t÷hln -~ .~othun, the rules must be applied in the given 
order. Rounding must precede lowering because the suir~ vowel in ?u:t+hln emerges as 
u. Shortening must follow lowering because the stem vowel in fu:t+hln would otherwise 
remain high giving futhun rather than fothun as the final output. 
These three rewrite rules can be formalized straightforwardly as regular replace expres- 
sions (Karttunen [19]) and compiled into finite-state transducers. The derivation 7u:t÷hln 

fothun can thus be modeled as a cascade of three compositions that yield a transducer 
that relates the input directly to the final output. 
The first step, the composition of the initial network (an identity transducer on the 
string fu:t÷hln) with the rounding transducer, produces the network that maps between 
?a:t+hln and fu:t÷hun. The symbol,  o. in Figure 1 denotes the composition operation. 
It is important to realize that the result of each rule application in Figure 1 is not an 
output string but a relation. The first application produces a mapping from ?u:t+hln 
to ?u:t+hun. In essence, it is the original Rounding transducer restricted to the specific 
input. The resulting network represents a relation between two languages (= sets of 
strings). In this case both languages contain just one string; but if the Rounding rule 
were optional, the output language would contain two strings: one with, the other without 
rounding. 
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Figure 1. Cascade of rewrite rule applications. 

? u : t + h I n  

? u : t + l ~ I n  
.O, 

Rounding 
.o. 

Lowering 
.o. 

Shortening 

+ 
? o t + h u n  

At the next'step in Figure 1, the intermediate output created by the Rounding transducer 
is eliminated as a result of the composition with the Lowering transducer. The final stage 
is a transducer that maps directly between the input string and its surface realization 
without any intermediate stages. 
We could achieve this same result in a different way: by first composing the three rules 
to produce a transducer that maps any underlying form directly to its Yokuts surface 
realization (Figure 2) and then applying the resulting single transducer to the particular 
input. 
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Figure 2. Yokuts vowel alternations. 
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The small network (21 states) pictured in Figure 2 merges the three rules and thus 
represents the complexity of ¥okuts vowel alternations without any "serialism', that is, 
without any intermediate representations. 
In the context of the two-level model, the Yokuts vowel alternations can be described 
quite simply. The two-level version of the rounding rule controls rounding by the lexical 
context. It ignores the surface realization of the trigger, the underlyingly high stem vowel. 
The joint effect of the lowering and shortening constraints is that a lexical u: in .~u:t-l-hIn 
is realized as o. Thus a two-level description of the Yokuts alternations consists of three 
rule transducers operating in parallel (Figure 3). 

IRoondi"gl ILowo"n l (S"o onin  I 

Figure 3. Parallel two-level constraints. 

3 



m 

m 

m 

The application of a two-level system to an input can be formaiized as intersecting com- 
position (Karttunen [18]). It  involves constructing a partial intersection of the constraint 
networks and composing it with the input. We can of course carry out the intersection 
of the rules independently of any particular input. This merging operation results in 
the very same 21-state transducer as the composition of the corresponding rewrite rules 
pictured in Figure 2. 
Thus the two descriptions of Yolmts sketched above are completely equivalent in that 
they yield the same mapping between underlying and surface forms. They decompose the 
same complex vowel alternation relation in different ways into a set of simpler relations 
that are easily understood and manipulated, r As we will see shortly, optimality theory 
can be characterized as yet another way of achieving this kind of decomposition. 
The fundamental computational operation for rewrite rules is composition, as it is in- 
volved both in the application of rules to strings and in merging the rules themselves. 
For two-level rules, the corresponding operations are intersecting composition and inter- 
section. 
Turning now to optimality theory, our main interest will be in finding what the corre- 
sponding computations are in this new paradigm. Wh. at does applying a constraint mean 
in the context of optimality theory? Can optimality constraints be merged while taking 
into account their ranking? 
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3 Optimality theory 

Optimality theory (Prince and Smolensky [24]) abandons rewrite rules. Rules are replaced 
by two new concepts: (1) a universal function called GEN a n d  (2) a set of ranked uni- 
versal constraints. GEN provides each input form with a (possibly infinite) set of output 
candidates. The constraintseliminate all but the best output candidate. Because many 
constraints are in conflict, it may be impossible for any candidate to satisfy all of them. 
The winner is determined by taking into consideration the language-specific ranking of 
the constraints. The winning candidate is the one with the least serious violations. 
In order to explore the computational ~pec ts  of the theory it is useful to focus on a 
concrete example, even simpler than the Yolmts vowel alternation we just discussed. 2 We 
will take the familiar case of syllabification constraints discussed by Prince and Smolensky 
[24] and many subsequent authors (Ellison [6], Tesar [25], Hammond [8]). 

3.1 GEN fo r  s y l l a b i f i c a t i o n  

We assume that the input to OEN consists of strings of vowels V and consonants C. GEN 
allows each segment to play a role in the syllable or to remain "unparsed". A syllable 
contains at least a nucleus and possibly an onset and a coda. 
Let us assume that  GEN marks these roles by inserting labeled brackets around each 
input element. An input consonant such as b will have three outputs 0[b] (onset), D[b] 
(coda), and X[b] (~mparsed). Each vowel such as a will have two outputs, N[a] (nucleus) 
and x [a] (unparsed), In addition, GEN "overparses",  that is, it freely inserts empty onset 
0 [ ], nucleus N [ ], and coda D I" ] brackets. 
For the sake of concreteness, we give here an explicit definition of QEN using the notation 
of the Xerox regular expression calculus (Karttunen. et al [15]). We define GEN as the com- 
position of four simple components, Input, Parse, 0verParse~ and $y l lab leS t ruc tu re .  
The definitions of the first three components are shown in Figure 4. 

1 For more discussion of these issues, see Karttunen [17]. 
2 The Yokuts case is problematic for Optimality theory (Cole and Kisseberth [2], McCarthy [23]) 

because rounding depends on the height of the stem vowel in the underlying representation. Cole and 
Kisseberth offer a baroque version of the two-level solution. McCarthy strives mightily to distinguish 
his "sympathy" candidates from the intermediate representations postulated by the rewrite approach. 
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def ine  Input [C J V]* 

define Parse C - >  ["0[" I "D[" J "X["] . . .  "]" 
. 0 .  

v - >  ["NC" I "x["] . . .  "]" 

def ine  OverParse [ . . ]  (->) ["O["I"N["I"D["] "]" ; 

F igure  4. Input, Parse, and OverParse 

A replace expression of the type A -> B . . .  C in the Xerox calculus denotes a relation 
that wraps the prefix strings in B and the sutF~ strings in C around every string in A. 
Thus Parse is a transducer that  inserts appropriate bracket pairs around input segments. 
Consonants can be onsets, codas, or be ignored. Vowels can be nuclei or be ignored. 
0verParse inserts optionally unfilled onsets, codas, and nuclei. The dotted brackets [. 
• ] specify that only a single instance of a given bracket pair is inserted at any position. 
The role of the third GEN component, Syl lableStructure ,  is to constrain the output of 
Parse and 0verParse. A syllable needs a nucleus, onsets and codas are optional; they 
must be ~ the right order; unparsed elements may occur freely. For the sake of clarity, 
we define Syl lab leSt ruc ture  with the help of four auxiliary terms (Figure 5). 

def ine  Onset "0[" (C) "]" ; 
def ine  Nucleus "N[" (V) "]" ; 
def ine  Coda "D[" (C) "]" ; 
def ine  Unparsed "X[" [ClV] "]" ; 

def ine  Sy l lab leS truc ture  [[(Onset)  Nucleus (coda)]/Unparsed]* ; 

Figure  5. SyllableStructure 

Round parentheses in the Xerox regular expression notation indicate optionality. Thus 
(C) in the definition of Onset indicates that onsets may be empty or filled with a con- 
sonant. Similarly, (Onset) in the definition of SyllableStructture means that a syllable 
may have or not have an onset. The effect of the / operator is to allow unparsed conso- 
nants and vowels to occur freely within a syllable. The disjunction [CJ V] in the definition 
of Unparsed allows consonants and vowels to remain unparsed. 
With these preliminaries we can now define GEN as a simple composition of the four 
components (Figure 6). 

def ine  GEN Input 
.o. 

OverParse 
.o. 

Parse 
. 0 .  

Syl lab leS t ruc tnre  ; 

F igure  6. GEN for syllabification 

With the appropriate definitions for C (consonants) and V (vowels), the expression in 
Figure 6 yields a transducer with 22 states and 229 arcs. 
It is not necessary to include Input in the definition of GEN but it has technically a 
beneficial effect. The constraints have less work to do when it is made explicit that the 
auxih'ary bracket alphabet is not included in the input. 
Because QEN over- and underparses with wild abandon, it produces a large number of 
output candidates even for very short inputs. For example, the string a composed with 
tEN yields a relation with 14 strings on the output side (Figure 7). 
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Figure 7. GEN applied to a 

The number of output candidates for abracadabra is nearly 1.7 million, although the 
network representing the mapping has only 193 states, It  is evident that working with 
finite-state tools has a significant advantage over manual tableau methods. 

3.2 Sy l lab i f ica t ion  c o n s t r a i n t s  

The syllabification constraints of Prince and Smoleusky [24] can easily be expressed as 
regular expressions in the Xerox calculus. Figure 8 lists the five constraints with their 
translations. 

Syllables must have onsets. 

Syllables must not have codas. 

Input segments must be parsed. 

A nucleus position must be filled. 

An onset position must be filled. 

def ine  HaveOns N[" ,~> "0[" (C) "]" . ; 

de f ine  NoCoda "$"D[" ; 

def ine  P a r s e  "$"X[" ; 

def ine  Fi l lNuc "$[ "N[" "]" ] ; 

de f ine  Fi l lOns "$ [ "0 [ . . . .  ]" ] ; 

Figure 8. Syllabification constraints 

The definition of the llave0ns constraint uses the restriction operator =>. It requires that 
any occurrence of the nucleus bracket, IN, must be immediately preceded by a filled 0[C] 
or unfilled 0[ ] onset. The definitions of the other four constraints are composed of the 
negation" and the contains operator $. For example, the NoCoda constraint, "$"D[", can 
be read as "does not contain D~. The FillNu¢ and Fi l l0ns  constraints forbid empty 
nucleus S[ ] and onset 0[ ] brackets. 
These constraints compile into very small networks, the largest one, Have0ns, contains 
four states. Each constraint network encodes an infinite regular language. For example, 
the ilaveOns language includes all strings of any length that contain no instances of N[ 
at all and all strings of any length in which every instance of N [ is immediately preceded 
by an onset. 
The identity relations on these constraint languages can be thought of as filters. For 
example, the identity relation on ilave0nz maps all llave0ns strings into themselves and 
blocks on all other strings. In the following section, we will in fact consistently treat  the 
constraint networks as representing identity relations. 



3 .3  C o n s t r a i n t  a p p l i c a t i o n  

Having defined GEN and the five syllabification constraints we are now in a position to 
address the main issue: houl are optimality constraints applied ~. 
Given that  Q~.N denotes a relation and that  the constraints can be thought of as identity 
relations on sets, the simplest idea is to proceed in the same way as with the rewrite 
rules in Figure 2. We could compose GEN with the constraints to yield a transducer that 
maps each input to its most optimal realization letting the ordering of the constraints in 
the cascade implement their ranking (Figure 9). 

GEN 
oO. 

HaveOns 
.O, 

N o C o d a  
.0, 

FillNuc 
o0° 

Parse 
,O. 

FillOns 

Figure 9. Merciless cascade. 

But it is immediately obvious that composition does not work here as intended. The 
6-state transducer illustrated in Figure 9 works fine on inputs such as panama yielding 
0[p]N[a]0[~S[a]0[m]N[a] but it fails to produce any output on inputs like america 
that fall on some constraint. Only strings that have a perfect output candidate survive 
this merciless cascade. We need to replace composition with some new operation to make 
this schema work correctly. 

4 Lenient composition 

The necessary operation, let us call it  lenient composition, is not di~cuLt to construct, 
but to our knowledge it has not previously been defined. Frank and Satta [7] come very 
close but do not take the final step to encapsulate the notion. Hammond [8] has the idea 
but lacks the means to spell it out in formal terms. 
As the first step toward defining lenient composition, let us review an old notion called 
priority union (Kaplan [12]). This term was originally defined as an operation for unifying 
two feature structures in a way that  eliminates any risk of failure by stipulating that  one 
of the two has priority in case of a conflict. 3 A finite-state version of this notion has 
proved very useful in the management of transducer lexicons (Kaplan and Newman [11]). 
Let us consider the relations q and R depicted in Figure 10. The Q relation maps a to z 
and b to y. The It relation maps b to z and c to z,. The priority union of Q and It, denoted 
Q .P. R, maps a to z, b to y, and c to w. That  is, it includes all the pairs from Q and 
every pair from R that  has as its upper element a string that  does not occur as the upper 
string of any pair in Q. If some string occurs as the upper element of some pair in both 
Q and R, the priority union of Q and R only includes the pair in Q. Consequently Q .P. It 
in Figure 10 maps b to y instead of z. 

3 The DPATR system at SRI (Kart tunen [16]) had the same operation with a less respectable title, i t  
was called "clobber". 



{ a  b }  { b  c }  
Q= I R =  I • 

x ~y z 9 w • 

a b c } 
Q.P.R= I I I • 

x 9 y 9  w 
Figure  10. Example of priority union. • 

The priority union operator .P. can be defined in terms of other regular expression 
operators in the Xerox calculus. A straightforward definition is given in Figure 11. 

Q .p. R ffi Q I ['CQ.~J .o. R] 
Figure  11. Definition of priority union 

The .u operator in Figure 11 extracts the '~pper" language from a regular relation. Thus 
the expression "[Q. u] denotes the set of strings that do not occur on the upper side of 
the Q relation. The effect of the composition in Figure 11 is to restrict R to mappings that 
concern strings that are not mapped to anything in Q. Only this subset of R is unioned 
with Q. 
We define the desired operation, lenient composition, denoted . 0., as a combination of 
ordinary composition and priority union (Figure 12). 

R . 0 .  C = [R . o .  C] . P .  It 

Figure  12. Definition of lenient composition 

To better visualize the effect of the operation defined in Figure 12 one may think of 
the relation R as a set of mappings induced by GEN and the relation C as oneof  the 
constraints defined in Figure 8. The left side of the priority union, [It . o. C] restricts tt 
to mappings that satisfy the constraint. That is, any pair whose lower side string is not in 
C will be eliminated. If  some string in the upper language of R has no counterpart on the 
lower side that meets the constraint, then it is not present in [1l .o. C] .u but, for that 
very reason, it will be "rescued" by the priority union. In other words, if an underlying 
form has some output that can meet the given constraint, lenient composition enforces the 
constraint. If an underlying form has no output candidates that meet the constraint, then 
the underlying form and all its outputs are retained. The definition of lenient composition 
entails that the upper language of It is preserved in R . 0. C. 
Many people, including Hammond [8] and Frank and Satta [7], have independently had a 
similar idea without conceiving it as a finite-state operation. 4 If one already knows about 
priority union, lenient composition is an obvious idea. 
Let us illustrate the effect of lenient composition starting with the example in Figure ? 
The composition of the input a with GSl~ yields a relation that maps a to the 14 outputs 
in Figure 7. We will leniently compose this relation with each of the constraints in the 
order of their ranking, starting with the ltave0ns constraint (Figure 13). The lower-case 
operator, o. stands for ordinary composition, the upper case.  0. for lenient composition. 
As Figure 13 illustrates, applying ltave0ns by lenient composition removes most of the 
14 output candidates produced by OEN. The resulting relation maps a to two outputs 
0[ ]N[a] and 0[  ]N[a]D[ ]. The next highest-ranking constraint, NoCoda, removes the 
latter alternative. The twelve candidates that were eliminated by the first lenient com- 
position are no longer under consideration. 

4 Hammond implements a pruning operation that removes uutput candidates under the condition that 
"pruning cannot reduce the candidate set to null" (p 13). Frank and Satta (p. ?) describe a process 
of "conditional intersection" that enforces a constraint if it can be met and does nothing otherwise. 
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Figure 13. Cascade of constraint applications. 
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The next two constraints in the sequence, FillNuc and Parse, obviously do not change 
the relation because the one remaining output candidate, 0 [ IN[a], satisfies them. Up to 
this point, the distinction between lenient and ordinary composition does not make any 
difference because we have not exhausted the set of output candidates. However, when 
we bring in the last constraint, FillOns, the fight half of the definition in Figure 12 has 
to come to the rescue; otherwise there would be no output for a. 

This example demonstrates that the application of optimality constraints can be thought 
of as a cascade of lenient compositions that carry down an ever decreasing number of 
output candidates without allowing the set to become empty. Instead of intermediate 
representations (c.f. Figure 1) there are intermediate candidate populations corresponding 
to the columns in the left-to-right ordering of the constraint tableau. 

Instead of applying the constraints one by one to the output provided by GEN for a par- 
ticular input, we may also leniently compose the GEN relation itself with the constraints. 
Thus the suggestion made in Figure 9 is (nearly) correct after all, provided that we 
replace ordinary composition with lenient composition (Figure 14). 

GEN 
.O. 

Ha.vs?ns 

NoCoda 
.0. 

Parse 
.0. 

FillOns 

Figure 14. Lenient cascade 

The composite single transducer shown in Figure 14 maps a and any other input directly 
into its viable outputs without ever producing any failing candidates. 



5 M u l t i p l e  v i o l a t i o n s  

I 

I 
However, we have not yet addressed one very important issue. It is not sufficient to 
obey the ranking of the constraints. If two or more output candidates "violate the same 
constraint multiple times we should prefer the candidate or candidates with the smallest 
number of violations. This does not come for free. The system that we have sketched 
so far does not make that distinction. If the input form has no perfect outputs, we may 
get a set of outputs that di~er with respect to the number of constraint violations. For 
example, the transducer in Figure 14 gives three outputs for the string bebop (Figure 15). 

0 [b]N[e]X fb]X[o] X[p] 
0 [b] ~ [e] 0 [b]X~[o] X [p] 
XEb]X[e]0Cb]N[o]X[p] 

Figure  15. Two many outputs 

Because bebop has no output that meets the Parse constraint, lenient composition allows 
all outputs that contain a Parse violation regardless of the number of violations. Here 
the second alternative with just one violation should win but it does not. 
Instead of viewing Parse as a single constraint, we need to reconstruct it as a series of 
ever more relaxed parse constraints. The ">n operator in Figure 16 means "more than n 
iterations". 

def ine  Parse "$ ["X [ " ]  ; 
def ine  Parse1 "[[$°'XE"]'>I] ; 
define Parse2 "CC$"XC"]'>2] ; 

ooo 

def ine  ParseN "[[$"I["] '>N] ; 

Figure  16. A family of Parse constraints 

Our original Parse constraint is violated by a single unparsed element. Parse1 allows one 
unparsed element. Parse2 allows up to two violations, and Parseg up to N violations. 
The single Parse line in Figure 14 must be replaced by the sequence of lenient composi- 
tions in Figure 17 up to some chosen N. 

Par sQ  

°0o 

Parse1 
.0o 

Parse2 
.O° 

ParseS 

FiKure 17. Gradient Parse constraint 

If an input string has at least one output form that meets the Parse constraint (no 
violations), all the competing output forms with Parse violations are eliminated. Failing 
that, if the input string has at least one output form with just one violation, all the 
outputs with more violations are eliminated. And so on. 
The particular order in which the individual parse constraints apply actually has no effect 
here on the final outcome because the constraint languages are in a strict subset relation: 
Parse C Parsel  C Parse2 C . . .  ParseN. 5 For example, if the best candidate incurs two 

5 Thanks to Jason Eisner (p.c.) for this observation. 
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violations, it is in Parse2 and in all the weaker constraints. The ranking in Figure 17 
determines only the order in which the losing candidates are eliminated. If we start with 
the strictest constraint, al l  the losers are eliminated at once when Parse2 is applied; if 
we start with a weaker constraint, some output candidates will be eliminated earlier than 
others but the winner remains the same. 
As the number of constraints goes up, so does the size of the combined constraint network 
in Figure 14, from 66 states (no Parse violations) to 248 (at most five violations). It maps 
bebop to 0[bJSCe]0[b]NCoJX[p] and abracadabra to 0DN[edX[bJ0CrJNCa]0[c]N[a]- 
0 [d]N [aJ X [b] 0 I t ]  N [a] correctly and instantaneously. 
It is immediately evident that while we can construct a cascade of constraints that prefer 
n violations to n+I  violations up to any given n, there is no way in a finite-Rate system 
to express the general idea that fewer violations is better than more violations. As Frank 
and Satta [7] point out, finite-state constraints cannot make infinitely many distinctions 
of well-formedness. It is not likely that this limitation is a serious obstacle to practical 
optimality computations with finite-state systems as the number of constraint violations 
that need to be taken into account is generally small. 
It is curious that violation counting should emerge as the crucial issue that potentially 
pushes optimality theory out of the finite-state domain thus making it formally more 
powerful than rewrite systems and two-level models. It has never been presented as an 
argument against the older models that they do not allow unlimited counting. It is not 
clear whether the additional power constitutes an asset or an embarrassment for OT. 

6 Conclusion 

This novel formalization of optimality theory has several technical advantages over the 
previous computational treatments: 

- No marking, sorting, or counting of constraint violations. 
- Application of optimality constraints is done within the finite-state calculus. 
- A system of optimality constraints can be merged into a single constraint network. 

This approach shows clearly that optimality theory is very similar to the two older strains 
of finite-state phonology: classical rewrite systems and two-level models. In optimality 
theory, lenient composition plays the same role as ordinary composition in rewrite sys- 
tems. The top-down sorialism of rule ordering is replaced by the left-to-right serialism of 
the constraint tableau. 
The new lenient composition operator has other uses beyond phonology. In the area of 
syntax, Constraint Grammar (Karlsson et el. [13]) is from a formal point of view very 
similar to optimality theory. Although constraint grammars so far have not been imple- 
mented as pure finlte-state systems, it is evident that the lenient composition operator 
makes it possible. 
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