
The Proper Treatment of Optimality
in Computational Phonology

Lauri Kart tunen

Xerox Research Centre Europe
6, chemin de Maupertuis
38240 Meylan, France

Abstract. This paper presents a novel formalization of optimality theory. Unlike pre-
vious treatments of optimality in computational linguistics, starting with EUison (1994),
the new approach does not require any explicit marking and counting of constraint vi-
olations. It is based on the notion of "lenient composition", defined as the combination
of ordinary composition and priority union. If an underlying form has outputs that can
meet a given constraint, lenient composition enforces the constraint; if none of the output
candidates meets the constraint, lenient composition allows all of them. For the sake of
greater efficiency, we may "leniently compose" the GEN relation and all the constraints
into a single finite-state transducer that maps each underlying form directly into its op-
timal surface realizations, and vice versa. Seen f~om this perspective, optimality theolT
is surprisingly similar to the two older strains of finite-state phonology: classical rewrite
systems and two-level models. In particular, the ranking of optimality constraints corre-
sponds to the ordering of rewrite rules.

1 Introduction

It has been recognized for some time that Optimality Theory (OT), introduced by Prince
and Smolensky [24], is from a computational point of view closely related to classi-
cal phonological rewrite systems (Chomsky and Halle [11) and to two-level descriptions
(Kosksnniemi [21]).
Ellison [61 observes that the ~EN function of OT can be regarded as a regular relation
and that OT constraints seem to be regular. Thus each constraint can be modeled as a
transducer that maps a string to a sequence of marks indicating the presence or absence
of a violation. The most optimal solution can then be found by sorting and comparing
the marks. Frank and Satta [7] give a formal proof that OT models can be construed
as regtdar relations provided that the number of violations is bounded. Eisner [3, 4, 5]
develops a typology of OT constraints that corresponds to two types of rules in two-level
descriptions: restrictions and prohibitions.
The practice of marking and counting constraint violations is closely related to the tableau
method introduced in Prince and Smolensky for selecting the most optimal output can-
didate. Much of the current work in optimality theory consists of constructing tableaux
that demonstrate the need for particular constraints and rankings that allow the favored
candidate to emerge with the best score.
From a computational viewpoint, this evaluation method is suboptimal. Although the
work of ~EN and the assignment of violation marks can be carried out by finite-state
transducers, the sorting and counting of the marks envisioned by Ellison and subsequent
work (Walther [26]) is an off-line activity that is not a finite-state process. This kind
of optimality computation cannot be straightforwardly integrated with other types of
linguistic processing (morphological analysis, text-to-speech generation etc.) that are
commonly performed by means of finite-state transduction.
This paper demonstrates that the computation of the most optimal surface realizations
of any input string can be carried out entirely within a finite-state calculus, subject to

the limitation (Frank and Satta [7]) that the maximal number of violations that need to
be considered is bounded, we will show that optimality constraints can be treated com-
putationally in a similar m~-ner to two-level constraints and rewrite rules. For example,
optimality constraints can be merged with one another, respecting their rAniclug, just as
it is possible to merge rewrite rules and two-level constraints. A system of optimality
constraints can be imposed on a finite-state lexicon creating a transducer that maps each
member of a possibly infinite set of lexicai forms into its most optimal surface realization,
and vice versa.
For the sake of conciseness, we limit the discussion to optimality theory as originally
presented in Prince and Smolensky [24]. The techniques described below can also be
applied to the correspondence version of the theory (McCarthy and Prince [22]) that
expands the model to encompass output/output constraints between reduplicant and
base forms.
To set the stage for discussing the application and merging of optimality constraints it
is useful to look first at the corresponding operations in the context of rewrite rules and
two-level constraints. Thus we can see both the similarities and the differences among
the three approaches.

2 Background: rewrite rules and two-level constraints

As is well-known, phonological rewrite rules and two-level constraints can be implemented
as finite-state transducers (Johnson [9], Karttunen, Koskenniemi and Kaplan [14], Kaplan
and Kay [10]).
The application of a system of rewrite rules to an input string can be modeled as a cascade
of transductions, that is, a sequence of compositions that yields a relation mapping the
input string to one or more surface realizations. The application of a set of two-level
constraints is a combination of intersection and composition (Karttunen [18]).
To illustrate the idea of rule application as composition, let us take a concrete example,
the well-known vowel alternations in Yokuts (Kisseberth [20], Cole and Kisseberth [2],
McCarthy [23]). Yokuts vowels are subject to three types of alternations:

- Underspecified sui~ voweis are rounded in the presence of a stem vowel of the same
height: dub+bin ~ dubhun, bok'+Al ~ bok'oL

- Long high vowels are lowered: fu:t+It -~ fo:tut, mi:k+lt -4 me:t~it.
- Vowels are shortened in closed syllables: sa:p --+ sap, go:b÷hln -~ gobhin.

Because of examples such as fu:t÷hln -~ .~othun, the rules must be applied in the given
order. Rounding must precede lowering because the suir~ vowel in ?u:t+hln emerges as
u. Shortening must follow lowering because the stem vowel in fu:t+hln would otherwise
remain high giving futhun rather than fothun as the final output.
These three rewrite rules can be formalized straightforwardly as regular replace expres-
sions (Karttunen [19]) and compiled into finite-state transducers. The derivation 7u:t÷hln

fothun can thus be modeled as a cascade of three compositions that yield a transducer
that relates the input directly to the final output.
The first step, the composition of the initial network (an identity transducer on the
string fu:t÷hln) with the rounding transducer, produces the network that maps between
?a:t+hln and fu:t÷hun. The symbol, o. in Figure 1 denotes the composition operation.
It is important to realize that the result of each rule application in Figure 1 is not an
output string but a relation. The first application produces a mapping from ?u:t+hln
to ?u:t+hun. In essence, it is the original Rounding transducer restricted to the specific
input. The resulting network represents a relation between two languages (= sets of
strings). In this case both languages contain just one string; but if the Rounding rule
were optional, the output language would contain two strings: one with, the other without
rounding.

? u : t + h I n

? u : t + h I n
°0°

Rounding

+
? u : t + h u n

? u : t + h I n

' } u : t + h I n
.o.

Rounding
.o.

Lowering

+
? o : t + h u n

Figure 1. Cascade of rewrite rule applications.

? u : t + h I n

? u : t + l ~ I n
.O,

Rounding
.o.

Lowering
.o.

Shortening

+
? o t + h u n

At the next'step in Figure 1, the intermediate output created by the Rounding transducer
is eliminated as a result of the composition with the Lowering transducer. The final stage
is a transducer that maps directly between the input string and its surface realization
without any intermediate stages.
We could achieve this same result in a different way: by first composing the three rules
to produce a transducer that maps any underlying form directly to its Yokuts surface
realization (Figure 2) and then applying the resulting single transducer to the particular
input.

+
Rounding

.0.

Lowering
.o.

Shortening

Figure 2. Yokuts vowel alternations.

m

m

m

m

m

u

The small network (21 states) pictured in Figure 2 merges the three rules and thus
represents the complexity of ¥okuts vowel alternations without any "serialism', that is,
without any intermediate representations.
In the context of the two-level model, the Yokuts vowel alternations can be described
quite simply. The two-level version of the rounding rule controls rounding by the lexical
context. It ignores the surface realization of the trigger, the underlyingly high stem vowel.
The joint effect of the lowering and shortening constraints is that a lexical u: in .~u:t-l-hIn
is realized as o. Thus a two-level description of the Yokuts alternations consists of three
rule transducers operating in parallel (Figure 3).

IRoondi"gl ILowo"n l (S"o onin I

Figure 3. Parallel two-level constraints.

3

m

m

m

The application of a two-level system to an input can be formaiized as intersecting com-
position (Karttunen [18]). It involves constructing a partial intersection of the constraint
networks and composing it with the input. We can of course carry out the intersection
of the rules independently of any particular input. This merging operation results in
the very same 21-state transducer as the composition of the corresponding rewrite rules
pictured in Figure 2.
Thus the two descriptions of Yolmts sketched above are completely equivalent in that
they yield the same mapping between underlying and surface forms. They decompose the
same complex vowel alternation relation in different ways into a set of simpler relations
that are easily understood and manipulated, r As we will see shortly, optimality theory
can be characterized as yet another way of achieving this kind of decomposition.
The fundamental computational operation for rewrite rules is composition, as it is in-
volved both in the application of rules to strings and in merging the rules themselves.
For two-level rules, the corresponding operations are intersecting composition and inter-
section.
Turning now to optimality theory, our main interest will be in finding what the corre-
sponding computations are in this new paradigm. Wh. at does applying a constraint mean
in the context of optimality theory? Can optimality constraints be merged while taking
into account their ranking?

-m

m

m

m

m

m

m

m

m

3 Optimality theory

Optimality theory (Prince and Smolensky [24]) abandons rewrite rules. Rules are replaced
by two new concepts: (1) a universal function called GEN a n d (2) a set of ranked uni-
versal constraints. GEN provides each input form with a (possibly infinite) set of output
candidates. The constraintseliminate all but the best output candidate. Because many
constraints are in conflict, it may be impossible for any candidate to satisfy all of them.
The winner is determined by taking into consideration the language-specific ranking of
the constraints. The winning candidate is the one with the least serious violations.
In order to explore the computational ~pec ts of the theory it is useful to focus on a
concrete example, even simpler than the Yolmts vowel alternation we just discussed. 2 We
will take the familiar case of syllabification constraints discussed by Prince and Smolensky
[24] and many subsequent authors (Ellison [6], Tesar [25], Hammond [8]).

3.1 GEN fo r s y l l a b i f i c a t i o n

We assume that the input to OEN consists of strings of vowels V and consonants C. GEN
allows each segment to play a role in the syllable or to remain "unparsed". A syllable
contains at least a nucleus and possibly an onset and a coda.
Let us assume that GEN marks these roles by inserting labeled brackets around each
input element. An input consonant such as b will have three outputs 0[b] (onset), D[b]
(coda), and X[b] (~mparsed). Each vowel such as a will have two outputs, N[a] (nucleus)
and x [a] (unparsed), In addition, GEN "overparses", that is, it freely inserts empty onset
0 [], nucleus N [], and coda D I"] brackets.
For the sake of concreteness, we give here an explicit definition of QEN using the notation
of the Xerox regular expression calculus (Karttunen. et al [15]). We define GEN as the com-
position of four simple components, Input, Parse, 0verParse~ and $y l lab leS t ruc tu re .
The definitions of the first three components are shown in Figure 4.

1 For more discussion of these issues, see Karttunen [17].
2 The Yokuts case is problematic for Optimality theory (Cole and Kisseberth [2], McCarthy [23])

because rounding depends on the height of the stem vowel in the underlying representation. Cole and
Kisseberth offer a baroque version of the two-level solution. McCarthy strives mightily to distinguish
his "sympathy" candidates from the intermediate representations postulated by the rewrite approach.

m

m

m

m

m

m

m

m

mm

m

n

m

m

m

def ine Input [C J V]*

define Parse C - > ["0[" I "D[" J "X["] . . . "]"
. 0 .

v - > ["NC" I "x["] . . . "]"

def ine OverParse [. .] (->) ["O["I"N["I"D["] "]" ;

F igure 4. Input, Parse, and OverParse

A replace expression of the type A -> B . . . C in the Xerox calculus denotes a relation
that wraps the prefix strings in B and the sutF~ strings in C around every string in A.
Thus Parse is a transducer that inserts appropriate bracket pairs around input segments.
Consonants can be onsets, codas, or be ignored. Vowels can be nuclei or be ignored.
0verParse inserts optionally unfilled onsets, codas, and nuclei. The dotted brackets [.
•] specify that only a single instance of a given bracket pair is inserted at any position.
The role of the third GEN component, Syl lableStructure , is to constrain the output of
Parse and 0verParse. A syllable needs a nucleus, onsets and codas are optional; they
must be ~ the right order; unparsed elements may occur freely. For the sake of clarity,
we define Syl lab leSt ruc ture with the help of four auxiliary terms (Figure 5).

def ine Onset "0[" (C) "]" ;
def ine Nucleus "N[" (V) "]" ;
def ine Coda "D[" (C) "]" ;
def ine Unparsed "X[" [ClV] "]" ;

def ine Sy l lab leS truc ture [[(Onset) Nucleus (coda)]/Unparsed]* ;

Figure 5. SyllableStructure

Round parentheses in the Xerox regular expression notation indicate optionality. Thus
(C) in the definition of Onset indicates that onsets may be empty or filled with a con-
sonant. Similarly, (Onset) in the definition of SyllableStructture means that a syllable
may have or not have an onset. The effect of the / operator is to allow unparsed conso-
nants and vowels to occur freely within a syllable. The disjunction [CJ V] in the definition
of Unparsed allows consonants and vowels to remain unparsed.
With these preliminaries we can now define GEN as a simple composition of the four
components (Figure 6).

def ine GEN Input
.o.

OverParse
.o.

Parse
. 0 .

Syl lab leS t ruc tnre ;

F igure 6. GEN for syllabification

With the appropriate definitions for C (consonants) and V (vowels), the expression in
Figure 6 yields a transducer with 22 states and 229 arcs.
It is not necessary to include Input in the definition of GEN but it has technically a
beneficial effect. The constraints have less work to do when it is made explicit that the
auxih'ary bracket alphabet is not included in the input.
Because QEN over- and underparses with wild abandon, it produces a large number of
output candidates even for very short inputs. For example, the string a composed with
tEN yields a relation with 14 strings on the output side (Figure 7).

Sial
N[a]10
N[a]DD

~Qsra]
NON[a]NQ
~ON[a]D0
NOXta]
N[~X[a]NC]
NDX[a]DO
OON[a3
OON[a]ND
OOS[aJVO
OOX[a)SO

X[a]NO

Figure 7. GEN applied to a

The number of output candidates for abracadabra is nearly 1.7 million, although the
network representing the mapping has only 193 states, It is evident that working with
finite-state tools has a significant advantage over manual tableau methods.

3.2 Sy l lab i f ica t ion c o n s t r a i n t s

The syllabification constraints of Prince and Smoleusky [24] can easily be expressed as
regular expressions in the Xerox calculus. Figure 8 lists the five constraints with their
translations.

Syllables must have onsets.

Syllables must not have codas.

Input segments must be parsed.

A nucleus position must be filled.

An onset position must be filled.

def ine HaveOns N[" ,~> "0[" (C) "]" . ;

de f ine NoCoda "$"D[" ;

def ine P a r s e "$"X[" ;

def ine Fi l lNuc "$["N[" "]"] ;

de f ine Fi l lOns "$ ["0 [. . . .]"] ;

Figure 8. Syllabification constraints

The definition of the llave0ns constraint uses the restriction operator =>. It requires that
any occurrence of the nucleus bracket, IN, must be immediately preceded by a filled 0[C]
or unfilled 0[] onset. The definitions of the other four constraints are composed of the
negation" and the contains operator $. For example, the NoCoda constraint, "$"D[", can
be read as "does not contain D~. The FillNu¢ and Fi l l0ns constraints forbid empty
nucleus S[] and onset 0[] brackets.
These constraints compile into very small networks, the largest one, Have0ns, contains
four states. Each constraint network encodes an infinite regular language. For example,
the ilaveOns language includes all strings of any length that contain no instances of N[
at all and all strings of any length in which every instance of N [is immediately preceded
by an onset.
The identity relations on these constraint languages can be thought of as filters. For
example, the identity relation on ilave0nz maps all llave0ns strings into themselves and
blocks on all other strings. In the following section, we will in fact consistently treat the
constraint networks as representing identity relations.

3 .3 C o n s t r a i n t a p p l i c a t i o n

Having defined GEN and the five syllabification constraints we are now in a position to
address the main issue: houl are optimality constraints applied ~.
Given that Q~.N denotes a relation and that the constraints can be thought of as identity
relations on sets, the simplest idea is to proceed in the same way as with the rewrite
rules in Figure 2. We could compose GEN with the constraints to yield a transducer that
maps each input to its most optimal realization letting the ordering of the constraints in
the cascade implement their ranking (Figure 9).

GEN
oO.

HaveOns
.O,

N o C o d a
.0,

FillNuc
o0°

Parse
,O.

FillOns

Figure 9. Merciless cascade.

But it is immediately obvious that composition does not work here as intended. The
6-state transducer illustrated in Figure 9 works fine on inputs such as panama yielding
0[p]N[a]0[~S[a]0[m]N[a] but it fails to produce any output on inputs like america
that fall on some constraint. Only strings that have a perfect output candidate survive
this merciless cascade. We need to replace composition with some new operation to make
this schema work correctly.

4 Lenient composition

The necessary operation, let us call it lenient composition, is not di~cuLt to construct,
but to our knowledge it has not previously been defined. Frank and Satta [7] come very
close but do not take the final step to encapsulate the notion. Hammond [8] has the idea
but lacks the means to spell it out in formal terms.
As the first step toward defining lenient composition, let us review an old notion called
priority union (Kaplan [12]). This term was originally defined as an operation for unifying
two feature structures in a way that eliminates any risk of failure by stipulating that one
of the two has priority in case of a conflict. 3 A finite-state version of this notion has
proved very useful in the management of transducer lexicons (Kaplan and Newman [11]).
Let us consider the relations q and R depicted in Figure 10. The Q relation maps a to z
and b to y. The It relation maps b to z and c to z,. The priority union of Q and It, denoted
Q .P. R, maps a to z, b to y, and c to w. That is, it includes all the pairs from Q and
every pair from R that has as its upper element a string that does not occur as the upper
string of any pair in Q. If some string occurs as the upper element of some pair in both
Q and R, the priority union of Q and R only includes the pair in Q. Consequently Q .P. It
in Figure 10 maps b to y instead of z.

3 The DPATR system at SRI (Kart tunen [16]) had the same operation with a less respectable title, i t
was called "clobber".

{ a b } { b c }
Q= I R = I •

x ~y z 9 w •

a b c }
Q.P.R= I I I •

x 9 y 9 w
Figure 10. Example of priority union. •

The priority union operator .P. can be defined in terms of other regular expression
operators in the Xerox calculus. A straightforward definition is given in Figure 11.

Q .p. R ffi Q I ['CQ.~J .o. R]
Figure 11. Definition of priority union

The .u operator in Figure 11 extracts the '~pper" language from a regular relation. Thus
the expression "[Q. u] denotes the set of strings that do not occur on the upper side of
the Q relation. The effect of the composition in Figure 11 is to restrict R to mappings that
concern strings that are not mapped to anything in Q. Only this subset of R is unioned
with Q.
We define the desired operation, lenient composition, denoted . 0., as a combination of
ordinary composition and priority union (Figure 12).

R . 0 . C = [R . o . C] . P . It

Figure 12. Definition of lenient composition

To better visualize the effect of the operation defined in Figure 12 one may think of
the relation R as a set of mappings induced by GEN and the relation C as oneof the
constraints defined in Figure 8. The left side of the priority union, [It . o. C] restricts tt
to mappings that satisfy the constraint. That is, any pair whose lower side string is not in
C will be eliminated. If some string in the upper language of R has no counterpart on the
lower side that meets the constraint, then it is not present in [1l .o. C] .u but, for that
very reason, it will be "rescued" by the priority union. In other words, if an underlying
form has some output that can meet the given constraint, lenient composition enforces the
constraint. If an underlying form has no output candidates that meet the constraint, then
the underlying form and all its outputs are retained. The definition of lenient composition
entails that the upper language of It is preserved in R . 0. C.
Many people, including Hammond [8] and Frank and Satta [7], have independently had a
similar idea without conceiving it as a finite-state operation. 4 If one already knows about
priority union, lenient composition is an obvious idea.
Let us illustrate the effect of lenient composition starting with the example in Figure ?
The composition of the input a with GSl~ yields a relation that maps a to the 14 outputs
in Figure 7. We will leniently compose this relation with each of the constraints in the
order of their ranking, starting with the ltave0ns constraint (Figure 13). The lower-case
operator, o. stands for ordinary composition, the upper case. 0. for lenient composition.
As Figure 13 illustrates, applying ltave0ns by lenient composition removes most of the
14 output candidates produced by OEN. The resulting relation maps a to two outputs
0[]N[a] and 0[]N[a]D[]. The next highest-ranking constraint, NoCoda, removes the
latter alternative. The twelve candidates that were eliminated by the first lenient com-
position are no longer under consideration.

4 Hammond implements a pruning operation that removes uutput candidates under the condition that
"pruning cannot reduce the candidate set to null" (p 13). Frank and Satta (p. ?) describe a process
of "conditional intersection" that enforces a constraint if it can be met and does nothing otherwise.

a

a
.0°

GEN
.0.

HaveOns

a

a

o0.

GEN
.0.

HaveOns
.0.

NoCoda

O[]N[a], 0[]N[a]D[]

O[IN[a]

Figure 13. Cascade of constraint applications.

a

a
oO.

GEN
.O.

HaveOns
.0.

NoCoda
.0.

FillNu¢
.0.

Parse
.0.

FiliOns

o[IN[a]

The next two constraints in the sequence, FillNuc and Parse, obviously do not change
the relation because the one remaining output candidate, 0 [IN[a], satisfies them. Up to
this point, the distinction between lenient and ordinary composition does not make any
difference because we have not exhausted the set of output candidates. However, when
we bring in the last constraint, FillOns, the fight half of the definition in Figure 12 has
to come to the rescue; otherwise there would be no output for a.

This example demonstrates that the application of optimality constraints can be thought
of as a cascade of lenient compositions that carry down an ever decreasing number of
output candidates without allowing the set to become empty. Instead of intermediate
representations (c.f. Figure 1) there are intermediate candidate populations corresponding
to the columns in the left-to-right ordering of the constraint tableau.

Instead of applying the constraints one by one to the output provided by GEN for a par-
ticular input, we may also leniently compose the GEN relation itself with the constraints.
Thus the suggestion made in Figure 9 is (nearly) correct after all, provided that we
replace ordinary composition with lenient composition (Figure 14).

GEN
.O.

Ha.vs?ns

NoCoda
.0.

Parse
.0.

FillOns

Figure 14. Lenient cascade

The composite single transducer shown in Figure 14 maps a and any other input directly
into its viable outputs without ever producing any failing candidates.

5 M u l t i p l e v i o l a t i o n s

I

I
However, we have not yet addressed one very important issue. It is not sufficient to
obey the ranking of the constraints. If two or more output candidates "violate the same
constraint multiple times we should prefer the candidate or candidates with the smallest
number of violations. This does not come for free. The system that we have sketched
so far does not make that distinction. If the input form has no perfect outputs, we may
get a set of outputs that di~er with respect to the number of constraint violations. For
example, the transducer in Figure 14 gives three outputs for the string bebop (Figure 15).

0 [b]N[e]X fb]X[o] X[p]
0 [b] ~ [e] 0 [b]X~[o] X [p]
XEb]X[e]0Cb]N[o]X[p]

Figure 15. Two many outputs

Because bebop has no output that meets the Parse constraint, lenient composition allows
all outputs that contain a Parse violation regardless of the number of violations. Here
the second alternative with just one violation should win but it does not.
Instead of viewing Parse as a single constraint, we need to reconstruct it as a series of
ever more relaxed parse constraints. The ">n operator in Figure 16 means "more than n
iterations".

def ine Parse "$ ["X ["] ;
def ine Parse1 "[[$°'XE"]'>I] ;
define Parse2 "CC$"XC"]'>2] ;

ooo

def ine ParseN "[[$"I["] '>N] ;

Figure 16. A family of Parse constraints

Our original Parse constraint is violated by a single unparsed element. Parse1 allows one
unparsed element. Parse2 allows up to two violations, and Parseg up to N violations.
The single Parse line in Figure 14 must be replaced by the sequence of lenient composi-
tions in Figure 17 up to some chosen N.

Par sQ

°0o

Parse1
.0o

Parse2
.O°

ParseS

FiKure 17. Gradient Parse constraint

If an input string has at least one output form that meets the Parse constraint (no
violations), all the competing output forms with Parse violations are eliminated. Failing
that, if the input string has at least one output form with just one violation, all the
outputs with more violations are eliminated. And so on.
The particular order in which the individual parse constraints apply actually has no effect
here on the final outcome because the constraint languages are in a strict subset relation:
Parse C Parsel C Parse2 C . . . ParseN. 5 For example, if the best candidate incurs two

5 Thanks to Jason Eisner (p.c.) for this observation.

10

violations, it is in Parse2 and in all the weaker constraints. The ranking in Figure 17
determines only the order in which the losing candidates are eliminated. If we start with
the strictest constraint, al l the losers are eliminated at once when Parse2 is applied; if
we start with a weaker constraint, some output candidates will be eliminated earlier than
others but the winner remains the same.
As the number of constraints goes up, so does the size of the combined constraint network
in Figure 14, from 66 states (no Parse violations) to 248 (at most five violations). It maps
bebop to 0[bJSCe]0[b]NCoJX[p] and abracadabra to 0DN[edX[bJ0CrJNCa]0[c]N[a]-
0 [d]N [aJ X [b] 0 I t] N [a] correctly and instantaneously.
It is immediately evident that while we can construct a cascade of constraints that prefer
n violations to n+I violations up to any given n, there is no way in a finite-Rate system
to express the general idea that fewer violations is better than more violations. As Frank
and Satta [7] point out, finite-state constraints cannot make infinitely many distinctions
of well-formedness. It is not likely that this limitation is a serious obstacle to practical
optimality computations with finite-state systems as the number of constraint violations
that need to be taken into account is generally small.
It is curious that violation counting should emerge as the crucial issue that potentially
pushes optimality theory out of the finite-state domain thus making it formally more
powerful than rewrite systems and two-level models. It has never been presented as an
argument against the older models that they do not allow unlimited counting. It is not
clear whether the additional power constitutes an asset or an embarrassment for OT.

6 Conclusion

This novel formalization of optimality theory has several technical advantages over the
previous computational treatments:

- No marking, sorting, or counting of constraint violations.
- Application of optimality constraints is done within the finite-state calculus.
- A system of optimality constraints can be merged into a single constraint network.

This approach shows clearly that optimality theory is very similar to the two older strains
of finite-state phonology: classical rewrite systems and two-level models. In optimality
theory, lenient composition plays the same role as ordinary composition in rewrite sys-
tems. The top-down sorialism of rule ordering is replaced by the left-to-right serialism of
the constraint tableau.
The new lenient composition operator has other uses beyond phonology. In the area of
syntax, Constraint Grammar (Karlsson et el. [13]) is from a formal point of view very
similar to optimality theory. Although constraint grammars so far have not been imple-
mented as pure finlte-state systems, it is evident that the lenient composition operator
makes it possible.

References

1. Noam Chomsky and Morris Halle. 1968. The Sound Pattern of English. Harper and
Row, New York.

2. Jennifer S. Cole and Charles W. Kisseberth. 1995. Restricting multi-level constraint
evaluation: Opaque rule interaction in Yawelmani vowel harmony. (ROA-98-0000).

3. Jason Eisner. 1997a. Decomposing FootForm: Primitive constraints in OT. In SCIL
VIII. (ROA-205-0797).

4. Jason Eisner. 1997"o. Efficient generation in primitive optimality theory. In ACL'97,
Madrid, Spain. (ROA-206-0797).

5. Jason Eisner. 1997c. What constraints should OT allow? Handout (20p) for talk at
the LSA Annual Meeting, Chicago, 1/4/97. (ROA-204-0797).

11

6. Mark T. Ellison. 1994. Phonological derivation in optimality theory, In COLING'g ~
Vol//, pages 1007-1013, Kyoto, Japan. (ROA-75-0000), (cmp-lg/9505031).

7. Robert Frank and Giorgio Satta. 1998. Optimality theory and the generative com-
plexity of constraint violability. Computational Linguistics (forthcoming). (ROA-228-
1197).

8. Michael Hammond. 1997. Parsing syllables: Modeling OT computationally. (ROA-
222-1097).

9. C. Douglas Johnson. 1972. Formal Aspects of Phonological Description. Mouton,
The Hague.

10. Ronald M. Kaplan and Martin Kay. 1994. Regular models of phonological rule
systems. Computational Linguistics, 20(3):331-378.

11. Ronald M. Kaplan and Panla S. Newman. 1997. Lexical resource reconciliation in
the Xerox Linguistic Environment. In ACL/EACL'g8 Workshop on Computational
Environments for Grammar Development and Linguistic Engineering, pages 54-61,
Madrid, Spain, July 12.

12. Ronald M. Kaplan. 1987. Three seductions of computational psycholinguistics. In
P. Whitelock, M. M. Wood, H. L. Somers, R. Johnson, and P. Bennett, editors, Lin-
guistic Theory and Computer Applications, pages 149-181. Academic Press, New York.
Reprinted in Formal Issues in Lexical-Functional Grammar, ed. M. Dalrymple, R. M.
Kaplan, J. T. Maxwell III, and A. Zaenen. University of Chicago Press, 1996.

13. Fred Karlsson, Atro Voutilainen, Juha Heikkila, and Arto Anttila. 1995. Constraint
Grammar: A Language-Independent Framework for Parsing Unrestricted Te~. Mouton
de Gruyter, Berlin/New York.

14. Lauri Karttunen, Kimmo Koskenniemi, and Ronald M. Kaplan. 1987. A compiler
for two-level phonological rules. Technical report, Center for the Study of Language
and Information, Stanford University, June 25.

15. Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller.
1996. Regular expressions for language engineering. Journal of Natural Language
Engineering, 2(4):305-328.

16. Lauri Karttunen. 1986. D-PATR: A development environment for unification-based
grammars. In COLING'86, pages 74--80.

17. Lauri Karttunen. 1993. Finite-state constraints. In John Goldsmith, editor, The
Last Phonological Rule, pages 173-194. Chicago University Press, Chicago.

18. Lauri Karttunen. 1994. Constructing lexical transducers. In COLING'9~, Kyoto,
• Japan.
19. Lauri Karttunen. 1995. The replace operator. In Proceedings of the 33rd Annual

Meeting of the ACL, Cambridge, MA. (emp-lg/9504032).
20. Charles Kisseberth. 1969. On the abstractness of phonology. Papers in Linguistics,

1:248-282.
21. Kimmo Koskenniemi. 1983. Two-level morphology: A general computational model

for word-form recognition and production. Publication 11, University of Helsinki, De-
partment of General Linguistics, Helsinki.

22. John McCarthy and Alan Prince. 1998. Faithfulness and identity in prosodic mor-
phology. In R. Kager, H. van der Hulst, and W. Zonneveld, editors, The prosody-
morphology interface. Cambridge University Press, Cambridge, UK. (ROA-216-0997).

23. John J. McCarthy. 1998. Sympathy & phonological opacity. (ROA-252-0398).
24. Alan Prince and Paul Smolensky. 1993. Optimality Theory: Constraint Interaction

in Generative Grammar. Technical Report TR-2, 'Rutgers University Cognitive Science
Center, New Brunswick, NJ. To appear, MIT Press.

25. Bruce Tesar. 1995. Computational Optimality Theory. Ph.D. thesis, University of
Colorado, Boulder, CO.

26. Markus Walther. 1996. OT SIMPLE - A construction-kit approach to Optimality
Theory implementation. (ROA-152-1090).

B

[]

[]

12

