
I
/

/

/

l
/

/

l
/

/

/

/

/

l

l

L a n g u a g e M o d e l a n d S e n t e n c e S t r u c t u r e M a n i p u l a t i o n s f o r

N a t u r a l L a n g u a g e A p p l i c a t i o n S y s t e m s

Zenshiro Kawasaki, Keiji Takida, and Masato Tajima

Department of Intellectual Information Systems

Toyama University

3190 Gofuku, Toyama 930-0887, Japan

{ k a w a s a k i , z a k i d a , and Za j ima}@ecs .Zoyama-u . ac. jp

A b s t r a c t

This paper presents a language model and
its application to sentence structure manip-
ulations for various natural language ap-
plications including human-computer com-
munications. Building a working natural
language dialog systems requires the inte-
gration of solutions to many of the impor-
tant subproblems of natural language pro-
cessing. In order to materialize any of these
subproblems, handling of natural language
expressions plays a central role; natural
language manipulation facilities axe indis-
pensable for any natural language dialog
systems. Concept Compound Manipula-
tion Language (CCML) proposed in this
paper is intended to provide a practical
means to manipulate sentences by means
of formal uniform operations.

1 I n t r o d u c t i o n

Sentence structure manipulation facilities such as
transformation, substitution, translation, etc., axe
indispensable for developing and maintaining natu-
ral language application systems in which language
structure operation plays an essential role. For this
reason structural manipulability is one of the most
important factors to be considered for designing a
sentence structure representation scheme, i.e., a lan-
guage model. The situation can be compared to
database management systems; each system is based
on a specific data model, and a data manipulation
sublanguage designed for the data model is provided
to handle the data structure (Date, 1990).

In Concept Coupling Model (CCM) proposed in
this paper, the primitive building block is a Con-
cept Frame (CF), which is defined for each phrasal
or sentential conceptual unit. The sentence analysis
is carried out as a CF instantiation process, in which
several CFs axe combined to form a Concept Com-
pound (CC), a nested relational structure in which
the syntactic and semantic properties of the sen-
tence are encoded. The simplicity and uniformity of

the CC representation format lead to a correspond-
ing simplicity and uniformity in the CC structure
operation scheme, i.e., CC Manipulation Language
(CCML).

Another advantage of the CCM formalism is that
it allows inferential facilities to provide flexible hu-
man computer interactions for various natural lan-
guage applications. For this purpose conceptual re-
lationships including synonymous and implicational
relations established among CFs are employed. Such
knowledge-based operations axe under development
and will not be discussed in this paper.

In Section 2 we present the basic components of
CCM, i.e,, the concept frame and the concept com-
pound. Section 3 introduces the CC manipulation
language; the major features of each manipulation
statement are explained with illustrative examples.
Concluding observations axe drawn in Section 4.

2 C o n c e p t C o u p l i n g M o d e l

2.1 Concept Compound and Concept
Frame

It is assumed that each linguistic expression such
as a sentence or a phrase is mapped onto an ab-
stract data structure called a concept compound
(CC) which encodes the syntactic and semantic in-
formation corresponding to the linguistic expression
in question. The CC is realized as an instance of a
data structure called the concept frame (CF) which
is defined for each conceptual unit, such as an entity,
a property, a relation, or a proposition, and serves
as a template for permissible CC structures. CFs
axe distinguished from one another by the syntactic
and semantic properties of the concepts they repre-
sent, and axe assigned unique identifiers. CFs axe
classified according to their syntactic categories as
sentential, nominal, adjectival, and adverbial. The
CCM lexicon is a set of CFs; each entry of the lex-
icon defines a CF. It should be noted that in this
paper inflectional information attached to each CF
definition is left out for simplicity.

Kawasaki, Takida and Tajima 281 Language Model and Sentence Structure Manipulations

Zenshiro Kawasaki, Keiji Takida and Masato Tajima (1998) Language Model and Sentence Structure Manipulations for
Natural Language Applications Systems. In D.M.W. Powers (ed.) NeMIazP3/CoNLL98 Workshop on Human Computer
Conversation, ACL, pp 281-286.

2.2 S y n t a x

In this section we define the syntax of the formal
description scheme for the CF and the CC, and ex-
plain how it is interpreted. A CF is comprised of
four types of tokens. The first is the concept identi-
fier which is used to indicate the relation name of the
CF structure. The second token is the key-phrase,
which establishes the links between the CF and the
actual linguistic expressions. The third is a list of
at tr ibute values which characterize the syntactic and
semantic properties of the CF. Control codes for the
CCM processing system may also be included in the
list. The last token is the concept pattern which is
a syntactic template to be matched to linguistic ex-
pressions. The overall structure of the CF is defined
as follows:
(I) c (g , A, P),
where C and K are the concept identifier and the
key-phrase respectively, A represents a list of at-
tr ibute values of the concept, and P is the concept
pat tern which is a sequence of several terms: vari-
ables, constants, and the symbol * which represents
the key-phrase itself or one of its derivative expres-
sions. The constant term is a word string. The vari-
able term is accompanied by a set of codes which
represent the syntactic and semantic properties im-
posed on a CF to be substituted for it. These codes,
each of which is preceded by the symbol +, are classi-
fied into three categories: (a) constraints, (b) roles,
and (c) instruction codes to be used by the CCM
processing system. No reference is made to the se-
quencing of these codes, i.e., the code names are
uniquely defined in the whole CCM code system.

The CF associated with the word break in the
sense meant by John broke the box yesterday is
shown in (2):
(2) breakOl O('break', [sent, dyn, base],

'$1(+nomphrs + hum + subj + agent) •
$2(+nomphrs + Chert + obj + patnt)').

In this example the identifier and the key-phrase are
breakOlO and break respectively. The attribute list
indicates that the syntactic category of this CF is
sertt(ential) and the semantic feature is dyn(amic).
The at tr ibute base is a control code for the CCM
processing system, which will not be discussed fur-
ther in this paper. The concept pattern of this CF
corresponds to a subcategorization fraxae of the verb
break. Besides the symbol • which represents the
key-phrase break or one of its derivatives, the pat-
tern includes two variable terms ($1 and $2), which
are called the immediate constituents of the con-
cept breakOlO. The appended attributes to these
variables impose conditions on the CFs substituted
for them. For example, the first variable should be
matched to a CF which is a nom(inal-)phr(a)s(e)
with the semantic feature hum(an), and the syntac-
tic role subj(ect) and the semantic role agent are to
be assigned to the instance of this variable.

The CC is an instantiated CF and is defined as
shown in (3):
(3) C(H,R,A,
where the concept identifier C is used to indicate
the root node of the CC and represents the ,whole
CC structure (3), and H, R, and A are the head,
role, and attribute slot respectively. The head slot
H is occupied by the identifier of the C's head, i.e.,
C itself or the identifier of the C's component which
determines the essential properties of the C. The
role slot R, which is absent in the corresponding CF
definition, is filled in by a list of syntactic and se-
mantic role names which are to be assigned to C
in the concept coupling process described in Sec-
tion 2.3. The last slot represents the C's structure,
an instance of the concept pattern P of the corre-
sponding CF, and is occupied by the constituent list.
The members of the list, X1,X2,..., and Xn, are the
CCs corresponding to the immediate constituents
of C. The tail element M of the constituent list,
which is absent in non-sentential CCs, has the form
md_(H,R,A, [M1, ..., Mini), where M1,...,Mm rep-
resent CCs which are associated with optional ad-
verbial modifiers.

By way of example, the concept st'~ruCture corre-
sponding to the sentence in (4a) is shown in (4b),
which is an instance of the CF in (2).
(4a) John broke the box yesterday.
(4b) break010

(break010,

0,
[sent, dyn, fntcls, past, agr3s],
[johnO060

(johnO060,
[subj, agent],
[nomphr s, prop, hum, agr 3s, mascIn] ,
B),

boxO0010
(box00010,
[obj, patnt],
[the_, encrt, nomphr s, agr3s],
0),

md_
([yeste010],

[modyr],
[advphr s, mo~,
[yeste010

(yeste010,
0,
[advphrs, timeAdv],
I) 3) 3).

In (4b) three additional attributes, i.e., f(i)n(i)t(e-
)cl(au)s(e), past, and agr(eement-)3(rd-person-
)s(ingular), which are absent in the CF definition,
enter the attribute list of break010. Also note that
the constituent list of break010 contains an optional
modifier component with the identifier rod_, which
does not have its counterpart in the corresponding
CF definition given in (2).

Kawasaki, Takida and Tajima 282 Language Model and Sentence Structure Manipulations

I

I

I

I

l

I

l

I

I

I

I

l

I

II

II

II

II

II

II

II

II

II

II

i l

!1

AI

2.3 Concept Coupling
As sketched in the last section, each linguistic ex-
pression such as a sentence or a phrase is mapped
onto an instance of a CF. For example, the sentence
(4a) is mapped onto the CC given in (4b) which is
an instance of the sentential CF defined in (2). In
this instantiation process, three other CFs given in
(5) are identified and coupled with the CF in (2) to
generate the compound given in (4b).
(5a) johnOO60('john',

[nomphrs, prop, hum, agr3s, mascln], I . ,).
(Sb) boxOOOlO('box', [nomphrs, cncrt, base_n], ' * ').
(5c) yesteOl O(l yesterday I, [advphrs, timeAdv], ' * i).

All three CFs in (5) are primitive CFs, i.e., their
concept patterns do not contain variable terms and
their instances constitute ultimate constituents in
the CC structure. F o r example (Sb) defines a CF
corresponding to the word box. The identifier and
the key-phrase are box00010 and box respectively.
The attribute list indicates that the syntactic cate-
gory, the semantic feature, and the control attr ibute
are noro(inal-)phr(o)s(e), c(o)~c~(e)t(e), and base(-
}n(oun} respectively. The concept pattern consists
of the symbol *, for which box or boxes is to 'be sub-
stituted.

In the current implementation of concept cou-
pling, a Definite Clause Grammar (DCG) (Pereira
and Warren, 1980) rule generator has been devel-
oped. The generator converts the run-time dictio-
nary entries, which are retrieved from the base dic-
tionary as the relevant CFs for the input sentence
analysis, to the corresponding DCG rules. We shall
not, however, go into details here about the algo-
ri thm of this rule generation process. The input
sentence is then analyzed using the generated DCG
rules, and finally the source sentence structure is ob-
tained as a CC, i.e., an instantiated CF. In this way
the sentence analysis can be regarded as a process of
identifying and combining the CFs which frame the
source sentence.

3 C o n c e p t C o m p o u n d

M a n i p u l a t i o n s

The significance of the CC representation format is
it 's simplicity and uniformity; the relational struc-
ture has the fixed argument configuration, and ev-
ery constituent of the structure has the same data
structure. Sentence-to-CC conversion corresponds
to sentence analysis, and the obtained CC encodes
syntactic and semantic information of the sentence;
the CC representation can be used as a model for
sentence analysis. Since CC, together with the rele-
vant CFs, contains sufficient information to generate
a syntactically and semantically equivalent sentence
to the original, the CC representation can also be
employed as a model for sentence generation. In
this way, the CC representation can be used as a
language model for sentence analysis and generation.

Kawasaki, Takida and Tajima

Another important feature of the CC representa-
tion is that structural transformation relations can
easily be established between CCs with different
syntactic and semantic properties in tense, voice,
modality, and so forth. Accordingly, if a conve-
nient CC structure manipulation tool is available,
sentence-to-sentence transformations can be realized
through CC-to-CC transformations. The simplicity
and uniformity of the CC data structure allows us to
devise such a tool. We call the tool Concept Com-
pound Manipulation Language (CCML).

Suppose a set of sentences are collected for a spe-
cific natural language application such as second lan-
guage learning or human computer communication.
The sentences are first transformed into the corre-
sponding CCs and stored in a CC-base, a file of
stored CCs. The CC-base is then made to be avail-
able to retrieval and update operations.

The CCML operations are classified into three cat-
egories: (a) Sentence-CC conversion operations, (b)
CC internal structure operations, (c) CC-base oper-
ations. The sentence-CC conversion operations con-
sists of two operators: the sentence-to-CC conver-
sion which invokes the sentence analysis program
and parses the input sentence to obtain the corre-
sponding CC as the output, and the CC-to-sentence
conversion which generates a sentence corresponding
to the indicated CC. The CC internal structure oper-
ations are concerned with operations such as mod-
ifying values in a specific slot of a CC, and trans-
forming a CC to its derivative CC structures. The
CC-base operations include such operations as cre-
ating and destroying CC-bases, and retrieving and
updating entries in a CC-base. The current imple-
mentation of these facilities are realized in a Prolog
environment, in which these operations are provided
as Prolog predicates.

In the following sections, the operations men-
tioned above are explained in terms of their effects
on CCs and CC-bases, and are illustrated by means
of a series of examples. All examples will be based
on a small collection of sample sentences shown in
(7), which are assumed to be stored in a file named
sophie.text.
(7a) Sophie opened the big envelope apprehensively.
(To) Hilde began to describe her plan.
(7c) Sophie saw that the philosopher was right.
(7d) A thought had suddenly struck her.

3.1 Sentence-CC Convers ions

Two operations, $get_cc and $get_sent, are provided
to inter-convert sentences and CCs.
$get_cc~ $get_sent

The conversion of a sentence to its CC can be re-
alized by the operation $get_cc as a process of con-
cept coupling described in Section 2.3. The reverse
process, i.e., CC-to-sentence conversion, is carried
out by the operation $get_sent, which invokes the

283 Language Model and Sentence Structure Manipulations

sentence generator to transform the CC to a corre-
sponding linguistic expression. The formats of these
operations are:
(8) Sget_cc(Sent, CC).
(9) $get_sent(CC, Sent).
The arguments Sent and CC represent a sentence
or a list of sentences, and a CC or a list of CCs,
respectively. For the $get_cc operation, the input
sentence (list) occupies the Sent position and CC
is a variable in which the resultant CC (list) is ob-
tained. For the $get_sent operation, the roles of the
arguments are reversed, i.e., CC is taken up by an
input CC (list) and Sent an output sentence (list).
Example:
(10a) Get CC for the sentence Sophie opened the big
envelope apprehensively.
The query (10a) is translated into a CCML state-
ment as:
(10b) $get_cc('Sophie opened the big envelope

apprehensively', CC).
Note that the input sentence must be enclosed in sin-
gle quotes. The CC of the input sentence is obtained
in the second argument CC, as shown in (10c):
(10c) CC =

openOOlO(openO010, D, [sent, f ntels, past, agr 3s] ,
[sophiOlO(sophiOlO, [subj],

[nomphrs, prop, hum, agr3s, femnn], D),
bigOOO20(envelO01, [obj],

[the_, det_modf d, adj_mod, cncrt,
nomphrs, agr3s],

[envelOO l (envelO01, ~,
[cncrt, nomphrs, agr3s, f _n], ~)]),

md_([ar e010], [modyr], [advphrs,
[app,'eO10(azo,'e010, D, [dvphrs], U)])])-

3.2 C C I n t e rna l S t r u c t u r e Opera t ions

Since the CC is designed to represent an abstract
sentence structure in a uniform format, well-defined
attributive and structural correspondences can be
established between CCs of syntactically and seman-
tically related sentences. Transformations between
these derivative expressions can therefore be realized
by modifying relevant portions of the CC in ques-
tion.
For manipulating the CC's internal structure,
CCML provides four basic operations ($add, Sdelete,
Ssubstitute, Srestructure) and one comprehensive op-
eration ($trans form).
$add

This operation is used to axid values to a slot. The
format is:
(11) Sadd(CC, Slot, ValueList, CCNew).
For the CC given in the first argument CC, the el-
ements in ValueList are appended to the slot indi-
cated by the second argument Slot to get the mod-
ified CC in the last argument CCNew.
Example:
(12a) For the CC given in (10c), add the value

perf(e)ct to the slot attribute.
(12b) $add(C C , attribute, ~ver f ct] , C C New) .
In (12b) the first argument CC is occupied by the
CC shown in (10c). The last argument .CCNew is
then instantiated as the CC corresponding to the
sentence Sophie had opened the envelope apprehen-
sively. Note that imperf(e)ct is a default attribute
value assumed in (10c).
$de le te

In contrast to add, this operation removes the in-
dicated values from the specified slot. The format
is:
(13) Sdelete(CC, Slot, ValueList, CCNew).
$ s u b s t i t u t e

This operation is used to replace a value in a slot
with another value. The format is:
(14) Ssubstitute(C C, Slot, OldV alue, N ewV alue,

CCNew).
Example:
(15a) For the CC in (10c), replace the attribute value
past by pres(e)nt.
(15b) $substitute(CC, attribute, past,

presnt, C C New).
By this operation CCNew is instantiated as a CC
corresponding to the sentence Sophie opens the en-
velope apprehensively.
$res t ruc ture

This operation changes the listing order of imme-
diate constituents, i.e., the component CCs in the
structure slot of the specified CC. The format is:
(16) Srestrueture(CC, Order, CC New),
where the first argument CC represents the CC to
be restructured and the second argument Order de-
fines the new ordering of the constituents. The gen-
eral format for this entry is:
(17) [Pl,P2,Ps, ..,pn],
where the integer p~ (i = 1, 2, ..., n) represents the
old position for the pi-th constituent of the CC in
question, and the current position of Pi in the list
(17) indicates the new position for that constituent.
For example, [2,1] means that the constituent CCs
in the first and second positions in the old structure
are to be swapped. The remaining constituents are
not affected by this rearrangement.
$ t r ans fo rm

The above mentioned basic operations yield CCs
which do not necessarily correspond to actual (gram-
matical) linguistic expressions. The higher level
structural transformation operation, $transform, is
a comprehensive operation to change a CC into one
of its derivative CCs which directly correspond to
actual linguistic expressions. Tense, aspect, voice,
sentence types (statement, question, etc), and nega-
tion are among the currently implemented transfor-
mation types. The format is:
(18) Strans form(C C, TransTypeList, C C New).
The second argument TransTypeList defines the
target transformation types which can be selected
from the following codes:

Kawasaki, Takida and Tafima 284 Language Model and Sentence Structure Manipulations

mm

mm

!1
mm

II

II
mm

II
mm

mm

II

II

mm

II

II

II

II

II

!1

II

II

II

II

II

II

II

II

II

Voice: act(i)v(e), pas(si)v(e).
Negation: a f firm(a)t(i)v(e), neg(a)t(i)v(e).
Tense: pres(e)nt, past,/ut(u)r(e).
Perfective: per f (e)ct, imper f (e)ct.
Progressive: cont(inuous), n(on-)cont(inuous).
Sentence Type~ stat(e)m(e)nt, quest(io)n,

dir(e)ct(i)v(e), excl(a)m(a)t(io)n.
Note that the $transform operation does not re-
quire explicit indication of the attribute type for
each transformation code in the above list. This
is possible because the code names are uniquely de-
fined in the whole CCM code system.
Examples:
(19a) Get the interrogative form of the sentence
Hilde began to describe her plan.
The above query is expressed as a series of CCML
statements:
(19b) $get_cc(~Hilde began to describe her plan ~,

CC),
Stransf orm(CC, [questn], CCNew),
Sget_sent(CC New, SentNew).

The result is obtained in SentNew as:
(19c) SentNew='Did Hilde begin to describe her
plan?'
Note that the same values are substituted for like-
named variables appearing in the same query in all
of their occurrences, e.g., CC and CCNew in (19b).
Another example of the use of $transfarm is given
in (20):
(20a) Get the present perfect passive form of the sen-
tence Sophie opened the big envelope apprehensively.
(20b) $get_cc(tSophie opened the big envelope

apprehensively ~, C C) ,
$trans form(C C, ~resnt, per f ct, pasv],

CCNew),
$get_sent(CC New, SentNew).

(20c) SentNew='The big envelope has been opened
by Sophie apprehensively.'

3.3 CC-base Operations
3.3.1 Storage operations

The CC-base storage operations are: $create_ccb,
Sactivate_ccb, Sdestroy_ccb, Ssave_ccb, and Sre-
store_ccb.
$crea te_ecb

The general format of $create_ccb is:
(21) $create_ccb(SentenceFileName,

CC BaseFileName).
The file indicated by the first argument Sentence-
FileName contains a set of sentences (one sentence
per line) to be converted to their CC structures. The
$create_ccb operation invokes the sentence analyzer
to transform each sentence in the file into the cor-
responding CC and store the results in the CC-base
indicated by CCBaseFileName (one CC per line).
Example:
(22a) Convert all sentences in the text file
sophie.text shown in (7) into their CCs and store

the result in the CC-base named sophie.ccb.
(22b) $create_ccb(' sophie.text',' sophie.ccb').
The first line of the file sophie.ccb is taken by the CC
given in (10c) which corresponds to the first sentence
in the file sophie.text shown in (7).
$activate_ccb

The format of $activate_ccb is:
(23) $activate_ccb(CC BaseFileName).
This operation copies the CC-base indicated by
CCBaseFileName to the "current" CC-base which
can be accessed by retrieval and update operations
explained in the following sections. If another CC-
base file is subsequently "activated", CCs from this
new CC-base file are simply appended to the current
CC-base.
Example:
(24a) Activate sophie.ccb.
(24b) $activate(' sophie.ccb').
$destroy_ccb

There are two formats for $destro~_ccb:
(25a) $destroy_ccb(CCBaseFileName).
(25b) $destroy_ccb.
CCBaseFileName is taken up by the name of a CC-
base file to be removed. If current is substituted for
CCBaseFileName in (25a) or the operation is used
in the (25b) format, the current CC-base is removed.
$save_eeb

The formats are:
(26a) $save_ccb(C C BaseF ileN ame).
(26b) $save_ccb.
The $save_ccb operation is used to store the cur-
rent CC-base into the file indicated by CCBaseFile-
Name. The current CC-base is destroyed by this
operation. If CCBaseFileName is current in (26a)
or the operation is used in the (26b) format, the cur-
rent CC-base is stored temporarily in the system's
work space. Note that the Ssave_ccb operation dis-
cards already existing CC-base in the work space
when it is executed.
$res tore_ccb

This operation takes no arguments. The existing
current CC-base is destroyed and the saved CC-base
in the work space is activated. The format is:
(27) $restore_ccb.

3.3.2 Retrieval operations
Retrieval operations are applied to the current

CC-base. Relevant CC-bases should therefore be ac-
tivated prior to issuing retrieval operations.
$retr ieve_ec

The $retrieve_cc operation searches the current
CC-base for CCs which satisfy the specified condi-
tions. Note that if a CC contains component CCs
which satisfy the imposed conditions, they are also
fetched by this operation; CCs within a CC are all
searched for. .The general format of $retrieve_cc is
as fallows:
(28) $retrieve_cc(S electionaIC onditionList,

Kawasaki, Takida and Tajima 285 Language Model and Sentence Structure Manipulations

RetrievedC C List),
where SelectionalConditionList is a list of con-
stralnts imposed on CCs to be retrieved. Each el-
ement of the list consists of either of the following
terms:
(29a) SlotName = ValueList.
(29b) RoleN ame : C ondition List.
SlotName is occupied by a slot name of the CC
structure, i.e., identifier, head, role, attribute, or
structure. ValueList is a list of values correspond-
ing to the value category indicated by SlotName.
The (29b) format is used when conditions are to
be imposed on the immediate constituent CC with
the role value indicated by RoleName. The con-
ditions are entered in ConditionList, which is a
list of terms of the format (29a). Each element of
SelectionalConditionList represents an obligatory
condition, i.e., all the conditions in the list should be
satisfied simultaneously. More general logical con-
nectives such as negation and disjunction are not
available in the current implementation. The re-
trieval result is obtained in the second argument
RetrievedCCList as a list.
Examples:
(30a) Get all finite subordinate clauses in the file
sophie.text.
(30b) Sdestroy_ccb,

$cr eate_ccb(t sophie.text',' sophie.ccb') ,
$activate_ccb(' sophie.ccU),
$retrieve_cc([attribute = fntcls,

attribute = sub_cls], CCL),
$get_sent(CC L, SL).

(30c) SL=['That the philosopher was right. '].
(31a) Assuming that the current CC-base is the one
activated in (30), get sentences/clauses whose sub-
jects have the semantic feature hum(an).
(315) $retrieve_cc([subject : [attribute = hum]],

$get.sent(CC L, SentL). CC L),
(31c) Senti,=

['Sophie opened the big envelope
apprehensively. ',

'Hilde began to describe her plan."
'To describe her plan. ',
'Sophie saw that the philosopher was right. ',
'That the philosopher was right. '].

Note that all the embedded sentences are included
in the retrieved CC list. Since the non-overt subject
of describe in the sentence (7b) is analyzed as Hilde
in the CC generation process, the infinitival clause
To describe her plan is also retrieved.

3.3.3 Update o p e r a t i o n s

CCML provides two update operations, i.e.,
Sappend_cc and $delete_cc. These operations are
used to add or delete the specified CCs from the
CC-base indicated.
Sappend_cc

The formats axe:
(32a) $append_cc(C C , C C B File).
(325) $append.cc(C C).
The first argument CC indicates a CC or a list of
CCs to be appended to the CC-base specified in
the second argument CCBFile. If the named CC-
base is current or the operation is used in the for-
mat (32b), the $append_cc operation makes the ap-
pended CC(s) indicated in the first argument be di-
rectly accessible by retrieval operations.
Example:
(33a) Append the CC for the sentence Sophie saw
that the philosopher was right to the current CC-
base.
(335) Sget_cc('Sophie saw that the philosopher

was right', CC),
Sappend_cc(CC).

Sdelete_cc
(34a) $delete_cc(C C , C C B File).
(34b) $delete_cc(C C).
Removal of the indicated CC(s) from the current
CC-base is carried out by this operation. The in-
terpretation of the arguments and their uses are the
same as those of $append_cc.

4 Conclusions

A sentence structure manipulation language CCML
based on the language model CCM was proposed.
In CCM each sentence is transformed into a CC,
a nested relational structure in which the syntac-
tic and semantic properties of the sentence are en-
coded in a uniform data structure. This uniformity
in CC's data structure leads to a corresponding uni-
formity in the CCML operations. The CCML op-
erations implemented so fax cover a wide range of
areas in sentence structure manipulations including
sentence-CC inter-conversion operations, CC inter-
nal structure operations, and CC-base operations.
The manipulation language CCML proposed in this
paper is expected to be used in various natural lan-
guage application systems such as second-language
learning systems and human computer communica-
tion systems, in which sentence structure manipula-
tion plays an essential role.

R e f e r e n c e s

C. J. Date. 1990. An Introduction to Database
Systems, Volume 1, Fifth Edition. Addison-
Wesley Publishing Company, Inc., Reading, Mas-
sachusetts.

F. Pereira and D. H. D. Warren. 1980. Definite
clause grammars for language analysis - A sur-
vey of the formalism and a comparison with aug-
mented transition networks. Artificial Intelligence
13:231-278.

Kawasaki, Takida and Tafima 286 Language Model and Sentence Structure Manipulations

I

B

m

II

m
|

m

m

m

m

m

