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Abstract 

Recently I have been intrigued by the reappearance of an 
old friend, George Kingsley Zipf, in a number of not 
entirely expected places. The law named for him is 
ubiquitous, but Zipf did not actually discover the law so 
much as provide a plausible explanation. Others have 
proposed modifications to Zipf's Law, and closer 
examination uncovers systematic deviations from its 
normative form. We demonstrate how Zipf's analysis can 
be extended to include some of these phenomena. 

1. Introduction and Motivation 
In this paper we wish to revisit Zipf 's  study of  the 
relationship between rank and frequency of  various 
linguistic and social units and constructions. The paper 
arises out of  observations in Natural Language Learning 
experiments of  deviations from the received version of  
Zipf's Law. As it may not be immediately obvious why 
this relationship is of significance in NLL, we very 
briefly mention some of the places where the relationship 
affects research in our field, and which we feel could 
usefully be further explored. 

1.1 Quantitative Linguistics 

The field of  which Zipf was the pioneer is discovering 
lots of interesting empirical laws, but how much has it 
advanced in explanation or application (K6hler,1991)? 

1.2 Statistical Learning Methods 

Zipf's Law tells us how much text we have to look at 
and how precise our statistics have to be to achieve what 
level of expected error. (Finch, 1993; Powers, 1996). For 
example, the most frequent 150 words typically account 
for around half the words of  a corpus, although this figure 
varies significantly with the size of  the corpus, the size of  
the lexicon, the genre, register and medium of 
communication and the linguistic complexity of  the text 
- -  and this is one of the phenomena we wish to start to 
examine in this paper. Zipf 's  Law is also closely related 
to the Good-Turing smoothing technique, and a better 
law could lead to better smoothing (Samuelsson, 1996). 
Note that Samuelsson showed that Zipf 's  Law implies a 
smoothing function slightly different from Geod-Turing. 

1.3 Semantics and Information Retrieval 

Zipf's Law provides a base-line model for expected 
occurence of target terms and the answers to certain 
questions may provide considerable information about 
its role in the corpus (Steele,1998): What does it mean to 
ask if a word is significant in a corpus, beyond mere 
oecurence or relative probability? What is the range of 
the semantic influence of  a word in a corpus? What does 
the pattern ofoceurences contribute to our assessment of  
its relevance in the corpus? 

1.4 Parser Evaluation 

Zipf's Law provides a basis for evaluating parsers and 
taggers (Entwisle and Powers, 1998). Again we 
summarize the potential role in the form of a series of  
questions: How does a language model developed on one 
corpus transfer to another? How do we translate 
performance estimates on a few test corpora to estimates 
for the language as a whole? How do differences in 
register, genre and medium affect the utility of a system, 
and how do we compensate for these differences? 

1.5 Computational Psycholinguistics 

Zipf's Law provides a distributional foundation for 
models of the language learner's exposure to segments, 
words and constructs, and permits evaluation of  learning 
models (Brent, 1997). It also provides a basis for 
evaluation of models of  linguistic and cognitive access 
and storage models (Segui, Mehler, Frauenfelder and 
Morton, 1982). Whilst qualitative explanations and 
evaluations have been given on the basis o f  an 
assumption of the general relationship, a more precise 
account .will lead to more quantitative models. 

Whilst the law's qualitative or coarsely quantitative 
roles across these areas may seem rather fuzzy, and it 
stretches the imagination to see how a more precise 
characterization of  the law could improve the 
performance in these applications and models, we note 
that the relationships, particularly from a Psycho- 
linguistic point of  view, demonstrate that the law is 
relevant to several aspects of  our field, and that 
explanation and understanding of the law is an 
intrinsically valuable scientific objective. 
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2. Zipf's Principle of  Least Effort 

Zipf 's  major work on this subject explores a theory based 
on a competitive process balancing the minimization of  
the effort o f  both speaker and hearer. He uses an analogy 
in which words are regarded as tools, which are so 
constructed and arranged as to be able to achieve the 
communication task as efficiently as possible. Note that 
this culmination of  his research into this relationship 
coincided with the publication of  Sharmon's proposals in 
information theory, and we will seek to make the 
connections clear shortly. 

Zipf  considered that the speaker  had to build a 
continuous stream of  specified products, that is an 
ongoing stream of  utterances conveying specified 
meanings, in such a way as to minimize his effort as 
speaker consistent with effective communication to the 
hearer, her task being simplified as the relationship 
between utterances and meanings approached one to one: 
the work involved in producing a construction consists of  
the work involved in fetching the tool, which is directly 
in proportion to the cost o f  fetching the tool and includes 
both the mass of  the tool, m, and the distance, d, that it 
needs to be fetched, given increasing either increases the 
effort required. Mass corresponds to length in Zipf 's 
model, and distance to access time. Fequency, f and 
work, w, must also be directly related, so: w = f *  m * d, 
assuming direct proportionality to work in each case. 
Also the age of  the tool (word) and number of  different 
uses (meanings) vary directly with frequency. 

2.1 Access Method 

We now consider what Zipf called the "close packing" 
of  our tools. Zipf in fact considered only one model 
which fitted the empirical Pacts, but we will consider 
more in order to explore to what extent the law really 
does correspond to optimality: What is the optimum 
access t ime for a set of  N tools? In computer science, the 
optimum organization structures which we typically 
think o f  our hash tables and trees, with o(1) and o(logN) 
access times respectively. The former assumes that 
encoding of  arbitrary length words is done in the same 
amount o f  time, and thus implies both a limit on the 
length o f  words and suboptimality of  this hash coding 
scheme since best ease and worst ease axe the same (in 
machine architecture terms, the machine uses fixed 
length words and is synchronous and cycle limited, and 
this fixed length must be at least o(logN) in order to 
permit full addressability). The tree access technique 
makes similar assumptions except that length 
independence may be relaxed (in machine architectures, 
the access would be pipelined or serialized so that length 
of  the word and depth of storage add without increasing 
the order). 

The theoretical o(1) and o(logN) access times which 
we are familiar with in computer science are however not 
physically sustainable (Powers,1995). Thus encoding 
process for hashing also takes at least o(logN) time given 
a limitation on the degree (fanin/fanoot) of the logic 
elements or neurons (which turns it into a tree anyway). 
Worse still, as we seek to pack neurons into an n- 
dimensional space the speed of propogation limits our 
access time to o(N TM) and our optimal tree is not 
practically achievable (this can be hidden in the cycle 
time, which then defines an upper limit for N). 

Thus our class of  optimal solutions is limited to the set 
of o(N TM) solutions where n is 3, 2 Or 1, which 
correspond to volumetric, areal and linear constraints 
respectively. Hence our access time or storage depth for 
a word of rank r, d r is related by w/m r =fr * dr =fr * rl/n" 
(Note that we simplify equations for the moment by 
leaving units and constants.) 

The three dimensional solution clearly leads to the 
most efficient packing, with n = 3, but Zipf's law seems 
to corresponds to linear packing, with n = 1. Does this 
mean that optimality is not reached? 

We answer this question in two parts: we look at 
information theory as a measure of  efficiency, and we 
consider the physical constraints further. But first we 
look at how we move from rank to a more natural 
measure. The rank of  a word type represents the number 
of word types of  greater frequency - -  our conventional 
definition of  the most frequent word as having rank 1 is 
slightly defective when ties are taken into consideration, 
and calling this rank 0 would lead to a more consistent 
definition. Thus sometimes a constant 1 needs to be 
added or subtracted in our formulae to allow for this. The 
rank associated with a particular frequency, ~ is thus the 
sum of  the numbers of  words, nf, of greater frequency, 
and rfmay thus be approximated by the integral of  nf 
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Figure 1: Error approximating series by integral 
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2.2 E r r o r  Es t ima te s  

In fact, approximating a monotonic series by an 
integral leads to an error which can be characterized as 
being slightly more than half o f  the first term of  the series 
(as illustrated in Figure 1), or alternatively as representing 
an error o f  slightly under a half in the index, l Zipf 's law 
for rank is thus approximated either by r = l / f  r +  0.64/f~ 
given that we use Zipfs law for number as nf= 1/fr 2 or by 
r = l/fr if  we u s e  n / =  1/0rr+0.43) 2. Figure 2 illustrates the 
general inverse and inverse square laws, where we plot 
rank and number against frequency both for individual 
frequencies (ragged plots near gradient -1 and -2 resp.) 
and aggregated frequencies (step function and piecewise 
linear curves near gradient -1). The aggregation was by 
powers of  two (n' = 2 II°gn*l ) as suggested by the scale. 
Note that we see the integrating effect not only for rank 
but for aggregated number. 

These approximations may be used to estimate stepsize 
and expected error as indicated in Figure 3. The centre 
line is Zipf 's law for rank based on the highest frequency 
(the .word ' the '  occurs 1642 times in "Alice in 
Wonderland") and the outermost pair of  curves are based 
on on the highest and lowest ranks associated with the 
frequency 1, namely 1486 and 2620, plus or minus the 
maximum error. Note that the difference between these 

amber  & rank against individual & inflog grouped freq 

number for aggregated frequencies "aliee.nintln'p" --  
rank for aggregated frequencies "alice.rintlnp" -- 

~ .  nuraber for raw frequencies "aliee.nrawlnpi'-- 
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Figure 2. Effect of aggregation of numbers to ranks 

This characterization of the error, closely related to a formulation 
due to Euler (Stanaitis, 1967), is actually considerably more accu- 
rate than that used by Zipf, and may be verified graphically from 
Figure I where the inscribed step function represents the sum 
whose area is underestimated by the integral of  the continuous 
curve. The circumscribed step function represents the sum dis- 
placed by l, corresponding to omission of the first term, f(1), The 
error is not only bounded above by the sum of the areas enclosed 
between the two stcpfunctions, which is equal to the value of the 
first term, but it can be see to be bounded even more closely below 
by the chord function which excludes half this difference, c(1). 
Thus f(1)/2 < e(1) < ffl). Since ]~n "2 converges to rc2/6 ~ 1.64, we 
have that e(1) ~ 0.64. Alternatively we can use ~(n+0.43) "2 ~ I. 
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Figure 3. Actual and expected range of rank vs freq 

actual and predicted freq range vs rank: f(x)=1486:1642:2620/x12 
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Figure 4. Actual and expected range of freq vs rank 

ranks for frequency 1 (plus one) gives the number of  
words of  frequency 1. This number, hi, sets the maxima 
of  the aggregated and unaggregated number curves 
(2 II°gnd and nlresp. ) that we saw in Figure 2. The number 
nfat any given frequencyfis represented as the stepsize, 
and the number of  words that would have been expected 
to occur with this frequency is assumed to be of  this order. 

The error bound functions may easily be inverted to 
allow the more conventional plotting of  frequency (and 
error estimates) as a function of  rank, as in Figure 4. Here 
f(x) represents half the estimated frequency based on the 
highest frequency, and f0(x) and fl(x) represent those 
based directly on the upper and lower bounds on 
frequency I. In this ease we we use error e(1) = 0.64 but 
do not allow for error in the frequency 1 ranks themselves. 

Note that Zipf associates the "top-downward 
concavity' with'informal colloquial speech' (1949, p82), 
an association which had been recognized by other 
researchers as early as 1936. The effect 'is not found in 
more formal material' and is attributed by Zipf to an 
expansion of the dosed class vocabulary to include the 
personal pronouns (1949, p122). Both the phenomenon 
and the role of closed class words are of  interest to us here. 
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2.3 I n f o r m a t i o n  T h e o r y  

Zipf's book on Human Behaviour and the Principle of 
Least Effort and Shannon's book on The Mathematical 
Theory of Communication were both published in 1949, 
and were developed totally independently, so it is 
interesting to look at how their concepts of efficiency 
interrelate. Interesting Crystal finds Zipf 's  explanations 
unsatisfactory and appeals to "a more conventional 
explanation in terms of  probability theory" (1987, p87), 
by which he presumably means information theory, but 
he cites no literature in support of  this claim. 

Let us consider the probability distribution defined by 
dividing the frequency of  each word by the length of  our 
corpns, p r =fr/L (possibly taken as a limit as our corpus 
increases indefinitely). An assumption that the lexicon 
can increase without bound is inconsistent with Zipf 's  
Laws prediction that Pr = C/r since summing over the 
distribution gives a non-convergent series, violating the 
constraint that the probabilities must sum to 1. Some 
prefer to hold onto this assumption and to seek a faster 
converging probability distribution for which the series 
converges to 1 (Brent, 1997). Such series include 1/r 2, 
1/r.log2r, 1/r.log r.log21og r, ... all o f  which converge, 
whilst the series 1/r, 1/r.logr, 1/r.log r.log log r, ... all fail 
to converge. 

Interestingly, the terms of  both sequences of  series 
approach those of  the series Y~ 2 "L*(r) (where L*(x-1) is 
defined as log c + log x + log log x + ...) which does 
converge and is optimal in the sense that any monotonic 
decreasing distribution which satisfies our constraint 
must equal or exceed L*(x)-2k*(x) infinitely often 
(Rissanen, 1989, p35), where k*(x) is the number of  
positive log terms in L*(x) excluding the constant. Note 
that the integrals from r (upto infinity) of  the convergent 
series are 1/r, I/log r, l/log log r, ... whilst for the 
divergent series the integrals upto r are log r, log log r,... 

1 L(x) = x<=l ? 2.865 : (lg(x) + L(lg(x))) 

0.33/(x*sqr(lg(x))) - -  
2**(-L(x)) 

0.1 0.64/sqr(x) - -  
1/x 

0.01 

0.001 

0.0001 

le-05 - . 10 2"0 3'0 4'0 50 60 70 80 90 100 
Figure 5. Comparison of convering series with 1/x 

Now the information corresponding to probability pr  is 
1 r = log Pr For Pr = l/r, optimal encoding of the 
information should take log r bits, and must at least 
specify the rank r which requires log r bits too, but a 
sequence of such codes could not be decoded. Adding a 
boolean 'finished' flag after each bit doubles the length, 
corresponding to squaring the probability, and allows 
decoding and convergence m which follows as soon as 
each code is a leaf in the decoding tree. Another way of  
delimiting is to specify a length using a more primitive 
scheme, then allowing minimum length encoding of  the 
actual rank. In the extreme we specify lengths recursively 
till we flag we reach a length of 1, when we use our 
boolean flag - -  this corresponds to the near optimal 
L*(r), however for the range of lexicon size we need, one 
level o f  length encoding, l/r.log2r, is sufficient and in 
Figures 5 and 6 the corresponding curves are scarcely 
separable. In Figure 5 we see that for the first 100 words 
this applies to I/r  2 too. 

1 L(x) = x<=l ? 2.865 : (lg(x) + L0g(x))) 

2**(-L(x)) .--- 
0.64/sqr(x) w 

le-10 

10 100 1000 le+O41e+O51e+061e+O71'e~-0"8 ' 

Figure 6. Comparison of convering series with 1/x 

As discussed above, deviations from Zipf 's Law are 
known, and the logseale which Zipf used actually hid 
considerable deviations for high values of  either rank or 
frequency (and can amplify deviations for low values). 
We therefore now show the reeiprecal of  frequency 
against rank using a linear scale, and this in fact 
corresponds to a particular definition of  the average 
interval between words. We show how this looks in 
Figure 7 for three different definitions of  the average 
interval: 'interval' corresponding to dividing the corpus 
length by frequency (valid if imagine that the following 
text segments of  this size have the same structure); 
'initival' corresponding to treating the start of  the corpus 
as the first reference point (valid if the interval to the first 
occurence is a good predictor of  the interval between 
oeeurences); and 'intraval' corresponding to considering 
only the f - 1  intervals between actual successive 
oceurences. Note that the 'interval' which corresponds 
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00 0.2 0.4 0.6 0.8 
Figure 7. Comparison of  interval definitions and law. 

directly to a sealed reciprocal of  the rank, is guaranteed to 
have a step shape as many words have the same 
frequency. This diseretization is avoided by the other 
definitions. In Figure 7 we show these as a normalized 
intervals (divided by the corpus size, 26685) against 
normalized rank (divided by the lexicon size, 2620) 
along with lines corresponding to Zipf's Law, 
Mandelbrot's Modification (proposing an exponent o f  
1.05), the best fit power for our small test corpus (1.2) 
and the quadratic model o f  Brent (1997). 

There are many details o f  Zipf's theory which we are 
unable to go into in the confines of  this paper, but at this 
point we need to note two things. First, that Zipfelaimed 
that claimed the reciprocal law applies only to an 
optimum sample size corresponding to a single cycle for 
the least frequent word, such that the maximum 
frequency and the maximum rank were equal to the 
intercepts of  the line of  best fit of  gradient -I (least 
squares in log scale). Of  course as the corpus grows, new 
words of  frequency 1 enter, so his principle is to select the 
size which gives gradient closest to -1 across a large 
number of  samples of  the corpus (which should be 
consistent as to genre, register, age of  speaker, etc.) For 
most published literature this should correspond to 
around 10000 words (thus this is the size of  the usual 
active lex!con) while for children around the time of  
starting school it is around 2000 words. Our corpus is 
around 2.5 times his optimum for literature, and as we are 
using Alice in Wonderland which is supposedly a 
children's book about a child, and is o f  informal 
character, perhaps he would probably have suggested 
using even smaller sample sizes. However, we are not 
content to characterize samples of  an optimum size, and 
we are aiming to determine how the law should be 
adjusted to take into account sample size. 

The second deviation from Zipf's practice is implicit in 
the mechanism for determining the optimum sample size 
as just explained: The correct line to draw is a line of  best 
fit, minimizing the least squares error in the prediction of  
the log of  frequency from the log of  rank. This means are 

Interval: over entire corpus (vs rel. ra_nki avrfl=2620) 
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Figure g. Comparison of top step cut points 

line should pass through the middle of  the steps in 
Figure 7 (as in Figure 2). This may also be viewed in 
another way. The midpoint of  a step may be viewed as 
showing close to its correct frequency and rank, whilst 
words which should not occur an integral number of  
times in a sample of  the selected size will be rounded to 
an integral frequency. They will necessarily occur more 
or less than the expected number of  times. This problem 
does not apply to our alternate definitions of  average 
intervals. Thus for 'intervals' we should fit the midpoint 
o f  the intervals, and in particular the midpoint o f  the 
frequency 1 step, for 'initivals' we have the full range of 
the corpus available and should fit the high point of  the 
frequency 1 step, and for 'intravals' we should fit the low 
point since frequency 1 does not define an intraval and 
the value is arbritrarily set to a limit of  1. 

Figures 8 and 9 show fits to these different points on 
the top step, and allow comparison with the convergent 
information theoretic functions we have discussed. In 
Figure 8c there is an evident log-squared bias. 
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From Figure 9 it will be observed that our new 
definitions of  average interval have a totally different 
characteristic from the old. Not only have we eliminated 
the 'steps', but the resulting functions are clearly far from 
linear, and from the slowly convergent log-based series. 
Clearly for words that occur locally rather than globally 
in the corpus, these methods progressively add a bias 
relating to the location of  a cluster of  oecurenees--  and 
better reflect the frequenct of  clusters. This is something 
else Zipf has considered: for words of a particular 
average frequency (and thus interval), the number of  
intervals of  a particular size also varies inversely with 
that interval size (1949, p42). In Zipf's model this results 
from spreading the workload away from costly words. 
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Figure 9. Comparison of interval definitions 

Whilst it is possible to fit higher order polynomials and 
exponentials to to these curves, the fits are not good. In 
Figure 9c we have fitted a 6th order polynomial which is 
indistinguishable in the range from an exponential 
formulated in terms of  the probability that a word does 
not occur. We do not see this as something where an 
explanation as a single distribution is appropriate, and 
later we view these as a joint distribution for open and 
closed class words, and in Figure 9c we show that the 
bends in the curves look more like transitions between 
two distinct distributions obeying different parameter- 
izations of some form of  Zipf's law. 

2.4 Psychological  P r e d i c t i o n s  

If we believe Zipf's law in its standard form, and scale 
frequencies to probabilities for a finite lexicon, then 
information theory suggest that the length of  words 
should look like the log of  frequency, and the access time 
for words should follow the log of word frequency. 
Assuming that the lexicon is unbounded, then 
information theory suggest that the length of  words 
should be L(x) or, less optimally, log x + 2 log log x. 

Zipf went further and predicted that the older words 
would be the more frequent, both in an etymological and 
a psycholinguistic sense, and performed experiments to 
demonstrate the law in relation to the etymology of  
English, as well as performing some analyses of  
children's speech which were also consistent with his 
model. However, his experiments on length did not 
quantiatively demonstrate what relationship was 
achieved, and he was expecting a negative power 
relationship again. Moreover, he did not perform any 
experiments to check the validity that access time would 
reflect an inverse relationship, and expected that length 
(mr) and access time (dr) would be proportional to r °'5. 

Studies of latencies in various linguistics task have, 
however, been extensively studied by psychologists, and 
although the interpretation of  the results is controversial, 
and the results are more qualitative than quantitative, 
considerable evidence exists to support a logarithmic 
access time, and have been the basis for one of  the most 
influential models of  word recognition, the Logogen 
model (Morton, 1969). There is also Event-Related 
Potential evidence from EEG studies, but these results 
are even less precise and we ignore them here (although 
we have undertaken some ERP experiments ourselves 
and hope to further elucidate certain factors in this way). 

Looking more closely at the experimental data, we 
find, just as with the frequency data, that there are strong 
contextual effects (Becket, 1979) which tend to be 
additive, particularly for lew-frequeney words. An 
additional confusion factor is that subjective measures of  
familiarity which actually can better predict access time 
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than more objective frequency measures (Gemsbacher, 
1984). As Zipf  also knew, the number of  distinct also 
plays a role, and Zipf  himself found that the number of  
meanings decreased with the square root of  frequency 
(1949, p75). Other reported confusion factors include 
concreteness, level of  education, age, age of acquisition 
and word length. Also there is a correlation between 
word frequency and the signal to noise ratio which may 
be tolerated by a word, as well as the fixation time in 
reading a word. The mode of presentation and the method 
of testing may also influence the relationships found, as 
can even such factors as stress pattem and syntactic role. 
Thus the role of  frequency as a primary determiner of  
access time is highly controversial although the 
relationship itself is well accepted (Balota & Chumbley, 
1984 & 1990; Monsell, Doyle & Haggard, 1989). 

As we can see from Figure 10, the length data does 
support a logarithmic relationship, notwithstanding that a 
log-squared bias was observed in Figure 8, However the 
square root o f  the logarithm is best for this data. 
Nevertheless the information theoretic optimum is 
approximated for this corpus and we would further 
predict a similar function for the access time for words. 

Although the age of acquisition and length both show 
stronger correlation with latency than frequency in 
naming tasks, and this has been cited as evidence against 
word frequency having a significant effect on access time 
(Morrison, Ellis and Quinlan, 1992), this observation 
supports the predictions we made on the basis of Zipf 's  
Law and Information Theory. Even if the age of 
acquisition and phoneme length fully determine access 
time, the fact o f  correlation between frequency and 
latency is not disturbed, and we can hypothesize that high 

• frequency leads to early and frequent exposure to, and 
thus learning of, a word; and furthermore, that the early 
learning, in combination with constant refreshment; 
maintains the word at a relatively greater level o f  
accessibility than less frequent words. Similarly, we 
predicted a strong correlation between length and latency 

_ .  Wo~l~th , , m ~  F ~ , ~ c ~ ,  . 
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6 

5 

4 * "alice.lenp" • 
- x**-O.S*50 : "-: ~ \ 

3 ,  L(2620)-L(x) . . . . . . . . .  x ~ N ~  " 
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Figure 10. Wordlength versus Frequency 
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Figure 11. Approximation to numbers given frequency 

on the basis that the logarithmic relationship is required 
for optimality in each case. The results do however seem 
to contradict Zipf's prediction that length, m, and access 
time, d, would be proportional t o f  "0-5, although it must 
be emphasized that the correlations are far from perfect 
and the precise trends cannot be distinguished to any 
great degree of accuracy. Our own data in Firure 10 
suggests that the relation is actually log°'Sf, and the curve 
f o r f  "0"5 moves right away from the data at both extremes. 
However we have no accurate information for access 
time and we will simply note that both length and access 
time have a generally logarithmic relationship with 
frequency, and that L(1/f) is also a better fit thanf  -0-5. 

Nonetheless, this has implications for the principle of  
least effort in that the Zipf's relationship for work,, 
w = f *  m * d = f  / log2f = l/r.log2r, is not constant, and 
indeed Information Theory says we should actually do 
less work for more frequent items. Moreover, this 
relationship for work now obeys a law consistent with 
near optimality in an unbounded lexicon model. We 
could moreover replace Zipf's law by f =  I/r.log2r, 
consistent with the improved empirical fit of  Figure 8c. 

This gives us a new relation for the number of  words 
around eaeh frequency. For Zipf's Law, f =  c/r gave us n 
= c/f  2 = r/f. For our new version,f= c/r.log2r gives us n 
= log r/bf (where our new constant, b, depends on the 
base of  our log and is given by b = 2 log e). Thus for 
Zipf 's  Law, the number expected for each frequency is 
the corresponding fraction of the number of  words with 
higher frequency, but our new numbers grow more 
slowly, the frequency specifying a fraction of the log of 
the number of  words with higher frequency. Substituing 
an overestimate for the rank using Zipf's Law, in 
Figure 11 we approximate the number at f requeneyfby 
n = log(c/f)/bf (which is a bit steeper than the correct 
inverse would be) and is at least as good a fit as c/f 2 and 
indeed better reflects the distribution of the sparse ranks 
where the expected number of  words for a frequency is 
less than one. The corresponding optimal length 
function, again with rank overestimated using Zipf 's  law 
(and hence also too steep), is shown in Figure 10. 
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From the perspective of our own research in Natural 
Language Learning, the most significant results from 
these psychological explorations of access time are those 
which suggest that open class words show a more 
significant effect than closed class words, and have 
distinct roles and mechanisms in the early stages of  
morphological processing (Segui, Mehler, Frauenfelder 
and Morton, 1982; Matthei and Kean, 1989). 

3. Corpus Characteristics and Sample Size 

One of Zipf's claims was that a given text had particular 
characteristics which included a characteristic optimum 
sample size and lexicon size. He chose the optimum 
sample size to be the one with the best fit to Zipf's Law, 
and this implicitly specified a lexicon. However, as the 
sample is increased above that point, new word types 
continue to enter the lexicon. He furthermore notes that 
informal colloquial speech gets a hump in the first 150 
words, one which has generally been associated with 
increased usage of the personal pronouns. We further 
noted that there is evidence (Matthei & Kean, 1989; 
Segui et al., 1982) that open and closed class words are 
treated differently, and it could also be assumed that there 
is a primary subject, and hence lexicon, for any specific 
work, as well as secondary or incidental topics. As an 
average of independent topics, we might expect the law 
to re-emerge, but the closed class (including generics) 
cannot increase in size as the lexicon does. 

One of our motivations for undertaking this study was 
the observation during our language learning 
experiments that as corpus size increased, Zipf's Law 
tended to be increasingly invalidated, with the curvature 
increasing consistent with a move to a continually higher 
exponents. While it would be predicted for the highest 
ranks of each step to exhibit a quadratic component, due 
to the size of the step reflecting the number of words with 
that frequency, the tendency affected the lowest and 
median ranks as well. 

To investigate this analytically, we assume that we 
have two samples each of which has a lexicon of size N 
which includes a common vocabulary of pN, and that 
each sample obeys Zipf's Law. We further assume that 
the common vocabulary includes the closed class words, 
and more generally the most frequent words in the 
language and relating to the topic of the corpus. I f thepN 
words were the most frequent words of the individual 
samples, and were exhibiting their characteristic 
frequencies, they would exhibit exactly double the 
frequency for the same rank, thus retaining the same 
slope in a log-log plot. The converse is true for the 
remainder of the lexicon: the words will all the same 
frequency as in the smaller samples, but their ranks will 
have increased in proportion to their distance above the 
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Figure 12. Model with high freq. common vocabulary 

common set. These word types will thus exhibit a 
reduced slope, and there will be a jump and a sudden 
discontinuity in slope between the common and the 
distinct words as in Figure 12 In general, whereever new 
(or displaced) vocabulary enters the picture, there will be 
reduced s lope--  rank will increase without much change 
in frequency. Similarly, where disused vocabulary is 
displaced, rank will decrease without much change in 
frequency, giving rise to increased slope. In fact there is 
evidence of a jump and discontinuity which occur at a 
rank logarithmic in the size of the lexicon. 

In another model, we can imagine replacing a pair of 
equally likely synonyms by one member of the pair, and 
note that this will double it's frequency and halve its rank. 
This is consistent with Zipf's Law, although in between 
the old and new positions, ranks will increase without an 
increase in frequency, and atter the old position, ranks 
will decrease without a decrease in frequency. This will 
produce the kind of bulge Zipf identified with informal 
text. Shifting words can thus cause discontinuities too. 

At this stage, it may be worth saying a few words about 
the corpus used throughout this paper, Alice's Adventures 
in Wonderland (Carroll,1865) is an edited collection of 
children's stories, originally delivered verbally, and 
culminating at a Picnic in 1862 when Alice going down 
the rabbit hole provided the framework and cast the spell 
which eventually led to publication. As a series of 
adventures, there are some characters in common, some 
of whom recur, but entire vocabularies are limited to a 
single chapter. We used the Millennium Fulcrum Edition 
2.9, available through the Gutenberg Project, which is 
significant since this attribution occurs at the beginning 
of the book and affects our analysis. 
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Having made the above predictions about the shape of  
the curves under both extreme conditions and 
incremental change, we then proceeded to an analysis o f  
Alice produced by taking successive prefixes of the book. 
These are shown in Figure 13, where each prefix is twice 
the size of  its predecessor. Note the discontinuities that 
start in our first doubling, where closed class words start 
to sift above above the non-recurring words of  the title 
page, some of  which only occur once in the whole 
volume. This shift starts in the first order of  ranks and is 
visible well into the second order of  ranks. The dips 
which appear and disappear around rank 10 in the larger 
segments are due to the competition between the words 
'said' ,  ' in '  and ' i ' ,  and the name 'Alice' as the story 
alternately focuses on her involvement and scenes 
involving other characters, and changes its balance 
between narrative, soliloquy, and reported speech. The 
beginning of  the second order ranks marks the transition 
between closed class words and focal words. The first 20 
words are: the, and, to, a, she, it, o f  said, L Alice, in, you, 
was, that, as, her, at, on, all, with, and the remainder of  
the first 100 are all dosed class words (plus narrative 
devices like think and looked) orcharac te r s - -  with the 
single exception of  the word head (which is closely 
linked to the one character who wasn't in danger of  
losing hers). 

Thus in this range we see a number of  discontinuities 
as words move into and out of  the focal range, and two 
different slopes corresonding to the closed class and focal 
words, and the open class words. 

We have carried out a similar and more extensive study 
on the Bible in four languages. It also has the character of  
sequences of  stories focusing on different people and 
events, and is also largely and edited version of verbal 
accounts. Using multiple versions retains the thematic 

biases, so that if  the artifacts we are observing are 
primarily thematic, we should see similar artificacts in 
similar places. We should separately be able to see the 
effects of  language and translation style. Although some 
translations are targeted at a more popular level and use 
less teelmical vocabularly, we have selected four 
traditional translations three of  which use reasonably 
contemporary language (the versions are KJV, RSV, 
Louis Segond, Elberfelder). 

Whereas Alice allowed us to double only 11 times, the 
Bible allows us to double 16 times. We have however for 
consistency and convenience kept with the smaller Alice 
corpus for the graphs shown here (the equivalent of  
Figure 13 for each version of  the bible is about 1Meg of 
PostScript). In Figure 14 we show the results for French 
for the last seven samples, this being the one where the 
discontinuities were least pronounce. In each case there 
were one or two deep drops around rank 10, followed by 
a steepening of  slope. 

4. Conclusions 

At this stage, only tentative conclusions can be made 
from this preliminary studies, although further 
investigations are being undertaken using larger corpora 
in multiple languages. Zipf's theory requires effort to be 
constant independent o f  frequency, however Information 
Theory and Psychological experiments both indicate that 
this ought not to be the case, and that it in fact decreases 
in a way consistent with an optimal strategy for an 
unbounded lexicon. We have not been able to establish 
the validity of  an optimum sample size for a particular 
corpus, genre or lexicon, but observe that new words tend 
to enter faster than they repeat, as evidenced by the fact 
that the number of  words of  frequency 1 tends to increase 
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Figure 14. Frequency against Rank as corpus doubles in s~.e--French Bible (Louis Segond) 

as the size of sample increase. Given that language is 
productive, and an unbounded lexicon model has been 
indicated (or at least possible) in each of our experiments, 
this trend may well continue indefinitely, although it does 
seem to slow as the sample is increased (even though we 
increase by doubling). 
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