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Abstract  
This paper presents a Word Sense Disambiguation method based on the idea of semantic density 

between words. The disambiguation is done in the context of WordNet. The Internet is used as a 
raw corpora to provide statistical information for word associations. A metric is introduced and 
used to measure the semantic density and to rank all possible combinations of the senses of two 
words. This method provides a precision of 58% in indicating the correct sense for both words at 
the same time. The precision increases as we consider more choices: 70% for top two ranked and 
7'3% for top three ranked. 

1 I n t r o d u c t i o n  

Word Sense Disambiguation (WSD) is an open prob- 
lem in Natural Language Processing. Its solution 
impacts other tasks such as discourse, reference reso- 
lution, coherence, inference and others. WSD meth- 
ods can be broadly classified into three types: 

1. WSD that make use of the information pro- 
vided by machine readable dictionaries (Cowie 
et a1.1992), (Miller et a1.1994), (Agirre and 
Rigau, 1995), (Li et a1.1995), (McRoy, 1992); 

2. WSD that use information gathered from train- 
ing on a corpus that has already been semanti- 
cally disambiguated (supervised training meth- 
ods) (Gale, Church et al., 1992), (Ng and Lee, 
1996}; 

3. WSD that use information gathered from 
raw corpora (unsupervised training methods) 
(Yarowsky 1995) (Resnik 1997). 

There are also hybrid methods that combine sev- 
eral sources of knowledge such as lexicon informa- 
tion, heuristics, collocations and others (McRoy, 
1992) (Bruce and Wiebe, 1994) (Ng and Lee, 1996) 
(Rigau, Asterias et al., 1997). 

Statistical methods produce high accuracy results 
for small number of preselected words. A lack of 
widely available semantically tagged corpora almost 
excludes supervised learning methods. On the other 
hand, the disambiguation using unsupervised meth- 
ods has the disadvantage that the senses are not well 
defined. To our knowledge, none of the statistical 
methods disambiguate adjectives or adverbs so far. 

One approach to WSD is to determine the concep- 
tual distance between words, that is to measure the 
semantic closeness of the words within a semantic 
network. Essentially. it is the length of the short- 
est path connecting the concepts (Rada et a1.1989), 
(Rigau. Asterias et al., 1997). By measuring the 

conceptual distance between words, it is possible to 
determine the likelihood of word sense associations. 
For example, the method proposed in (Li et a1.1995) 
tries to determine the possible sense of a noun asso- 
ciated with a verb using WordNet and a large text. 
Based on other occurrences of the verb or semanti- 
cally related verbs in the text, the possible object 
is determined by measuring the semantic similarity 
between the noun objects. 

Methods that do not need large corpora are usu- 
ally based exclusively on MRD. A proposal in this 
sense has been made in (Agirre and Rigau, 1995): 
they measure the conceptual density between nouns, 
by using WordNet, but the method proposed in their 
paper cannot be applied to measuring a concep- 
tual distance between a verb and a noun, as no di- 
rect links are provided in MRDs between the nouns 
and verbs hierarchies. A WordNet-based method 
for measuring the semantic similarity between nouns 
was also proposed in (Richardson et ai., 1994). Their 
method consists of using hierarchical concept graphs 
constructed from WordNet data files, and a semantic 
similarity formula. Still, the method does not pro- 
vide a link between different part-of-speech words. 

2 O u r  a p p r o a c h  

The approach described in this paper is based on the 
idea of semantic density. This can be measured by 
the number of common words that are within a se- 
mantic distance of two or more words. The closer the 
semantic relationship between two words the higher 
the semantic density between them. The way it is 
defined here. the semantic density works well in the 
case of uniform MRD. In reality there are gaps in the 
knowledge representations and the semantic density 
can provide only an estimation of the actual seman- 
tic relatedness between words. 

We introduce the semantic density because it is 
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relatively easy to measure it on a MRD like Word- 
Net. This is done by counting the number of con- 
cepts two words have in common.  A metric is intro- 
duced in this sense which when applied to all possible 
combinations of the senses of two or more words it 
ranks them. 

Another idea of this paper is to use the Internet 
as a raw corpora. Thus we have two sources of in- 
formation: (1) the Internet for gathering statistics 
and (2) WordNet for measuring semantic density. 
As will be shown below, a ranking of words senses 
results from each of these two sources. The  issue 
now is how to combine these two rankings in order 
to provide an overall ranking. One possibility is to 
use them in parallel and the other one is to use them 
serially. We have tried both and the serial approach 
provided better results. Thus, for a verb - noun pair, 
the WSD method consists of  two Algorithms, the 
first one ranks the noun senses, of which we retain 
only the best two senses; and a second Algorithm 
takes the output produced by the first Algorithm 
and ranks the pairs of verb - noun senses. Exten- 
sions of this method to other pairs than verb - noun 
are discussed, and larger windows of more than two 
words are considered. 

An essential aspect of the WSD method presented 
here is that we provide a raking of possible asso- 
ciations between words instead of a binary yes/no 
decision for each possible sense combination. This 
allows for a controllable precision as other modules 
may be able to distinguish later the correct sense 
association from such a small pool. 

WordNet is a fine grain MRD and this makes it 
more difficult to pinpoint the correct sense combina- 
tion since there are many to choose from and many  
are semantically close. For applications such as ma- 
chine translation, fine grain disambiguation works 
well but for information extraction and some other 
applications this is an overkill, and some senses may 
be lumped together. 

A simple sentence or question can usually be 
briefly described by an action and an object; for 
example, the main idea from the sentence He has 
to investigate all the reports can be described by 
the action-object pair investigate-report. Even the 
phrase may" be ambiguous by having a poor context, 
still the results of a search or interface based on such 
a sentence can be improved if the possible associa- 
tions between the senses of the verb and the noun 
are determined. 

In WordNet (Miller 1990), the gloss of a verb 
synset provides a noun-context for that  verb, i.e. the 
possible nouns occurring in the context of that  par- 
ticular verb. The glosses are used here in the same 
way a corpus is used. 
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3 R a n k i n g  t h e  p o s s i b l e  s e n s e s  o f  

t h e  n o u n  

In order to improve the precision of determining the 
conceptual density between a verb and a noun, the 
senses of the noun should be ranked, such as to in- 
dicate with a reasonable accuracy the first possible 
senses that  it might  have. 

The approach we considered for this task is the use 
of unsupervised statistical methods on large texts. 
The larger the collection of texts, the bigger is the 
probability to provide an accurate ranking of senses. 
As the biggest number  of  texts electronically stored 
- and thus favoring an automat ic  processing - is con- 
tained on the Web, we thought of using the Internet 
as a source of corpora for ranking the senses of the 
words. 

This first step of our method takes into consid- 
eration verb-noun pairs V - N, and it creates pairs 
in which the verb remains constant, i.e. V, and the 
noun is replaced by the words in its similari ty lists. 
Using WordNet, a similarity list is created for each 
sense of the noun. and it contains: the words from 
the noun synset and the words from the noun hy- 
pernym synset. 

A l g o r i t h m  1 
Input: untagged verb - noun pair 
Output: ranking of noun senses 
Procedure: 

1. Form a similarity list f o r  each noun sense. 
Consider, for example,  that  the noun N has 
m senses. This means that  N appears  in m 
similarity lists, 
(N t ,  ,Vt(t), .W(2) ..... :Vl{ kt )) 
( N  2 ' N ~(~), ,V2(2) . . . . .  :V 2(.2) ) 

(N', .V r~l), N "(~) ..... N "~ k" )) 
where ,V l, N "~ ..... N" represent the different 
senses of :V, and ,V i(') represents the synonym 
number s of the sense N i of the noun N as 

defined in WordNet. 

2. Form verb - noun pairs. The pairs tha t  may be 
formed are: 
(V - N l , V - N 1(11, V - N 1(2) ..... V - N l{~t) ) 
( V  - N 2, V - N 2(~),  V - N 2 ~ ) ,  . . . ,  V - N 2(k2) ) 

(V - N ' ,  V - N =(~), V - N "(2) ..... V - N " ( k ' )  ) 

. Search the [nternet  and rank senses. A search 
performed on the Internet for each of these 
groups will indicate a ranking over the possi- 
ble senses of the noun N.  

In our experiments we used (AhaVis ta )  since 
it is one of the most  powerful search engines 
currently available. 



I 
I 
I 
i 
I 
I 
.I 
! 

I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 

Verb Noun 
Sense  

of noun 
in S e m C o r  

rescind act ion 6 
se t -as ide  resolution 7 
reject  a m e n d m e n t  1 
allow legislator 1 
a*k person 1 
endorse support  8 
e x p e n d  fund 1 
provide  increase  2 
defea t  person 1 
w a i t  t e r m  2 
receive vote 1 
revi~e law 2 
expect  resignation 3 
c o m m e n t . o n  topic 2 
hold " meeting: 1 
remedy problem 2 
place  burden 4 
award fee 1 
award c o m p e n s a t i o n  I 
protect court  1 

l Hits provided by Al taVis ta  for V-N I 
Result  

9 49  o i o i 2 27 1 [ o 1 
S 0 75 7 0 0 17 2 2 
48 1 

172 I 
15628 0 1912 0 1 

101 162 31 13 361 3 0 134 4 
846 123 1 

110189 5268 4429 1543 0 2 
340 0 428 ,,j 

i 

2 
0 27321 1 0 762 1 

1271 0 0 406  62  1 
224 2829 648 640 37 397 0 1 
12 0 554  1 

1801 5517 1 
205 128 8 1164 20 69 2227 3 
107 345 266 1 

2327 2031 12842 3271 2 
1 1284 2 

22 126 2 
2574 3120 360 540 916 722 433 2 

Table 1: A sample 
Using the operators provided by AltaVista, the 
verb-noun groups derived above can be ex- 
pressed in two query-forms: 

of the result we obtained in ranking the noun senses using the Internet 

(a) ("V* N 1." OR "V* N I(1)*" OR "V* N ~(2)*" 
OR ... OR "V* N i(k')*') 

(b) ((V* NEAR N 1.) OR (V* NEAR N ~(1)*) OR 
(V* NEAR N i(2)*) OR ... OR (V* NEAR 
N'(~,)*)) 

where the asterisk (*) is used as a wildcard indi- 
cating that we want to find all words containing 
a match for the specified pattern of letters. 
Using one of these queries, we can get the num- 
ber of hits for each sense i of the noun and this 
provides a ranking of the m senses of the noun 
as they relate with the verb V. 

We tested this method for 80 verb-noun pairs ex- 
tracted from SemCor 1.5 of the Brown corpus, i 

Using query form (a) as an input to the search en- 
gine, we obtained an accuracy of 83% in providing a 
ranking over the noun senses, such as the sense in- 
dicated in SemCor was one of the first two senses in 
this classification. [n Table 1, we present a sample 
of the results we obtained. The column Resul t  in 
this table presents the ranking over the noun senses: 
a I in this column means that the sense indicated in 
SemCor was also indicated by our method: 2 means 
that the sense indicated in SemCor was in top two of  
the sense ranking provided by our method; similarly, 
3 or 4 indicates that the sense of the noun, as spec- 
ified in :~emCor, was in the top three, respectively 
four, of 1;his sense ranking. 

We u.,ed also the query form (b), but the results 
we obtained have been proved to be similar; using 
the operator N E A R ,  a bigger number of hits is re- 
ported, but the sense ranking remains the same. 

It is i:ateresting to observe that even we are cre- 
ating queries starting with a verb-noun pair, it is 

ITh~: verb-noun pairs have been extracted from the 
file br-aO:. 

not guaranteed that the search on the web will iden- 
tify only words linked by such a lexical relation. We 
based our idea on the fact that: (1) the noun directly 
following a verb is highly probable to be an object 
of the verb (as in the expression "Verb* Noun*") 
and (2) for our method, we are actually interested 
in determining possible senses of a verb and a noun 
that can share a common context. 

4 D e t e r m i n i n g  t h e  c o n c e p t u a l  
d e n s i t y  b e t w e e n  v e r b s  a n d  n o u n s  

A measure of the relatedness between words can 
be a knowledge source for several decisions in the 
NLP applications. The conceptual density between 
verbs and nouns seems difficult to determine, with- 
out large corpora or a without a machine-readable 
dictionary having semantic links between verbs and 
nouns. Such semantic links can be traced however 
if we consider the glosses for the verbs, which are 
providing a possible context of a verb. 

A l g o r i t h m  2 
Input: untagged verb - noun pair and a ranking of 
noun senses (as determined by Algorithm 1) 
Output: sense tagged verb - noun pair 
Procedure: 

1. Given a verb-noun pair V - N, determine all 
the possible senses for the verb and the noun, 
by using WordNet. Let us denote them by 
< vl, v2 ..... t,~ > and < nt ,  n2 . . . . .  nl > respec- 
tively. 

2. Using the method described in section 3, the 
senses of the noun are ranked. Only the first 
two possible senses indicated by this step will 
be considered. 

3. For each possible pair V i  - -  n), the conceptual 
density is computed as follows: 

18 



(a) extract all the glosses from the sub- 
hierarchy including vi (the rationale of 
the method used to determine these sub- 
hierarchies is explained below) 

(b) Determine the nouns from these glosses. 
These constitute the noun-context of the 
verb. All these nouns are stored together 
with the level of the associated verb within 
the sub-hierarchy of vi.  

(c) Determine the nouns from the sub- 
hierarchy including ni .  

(d) Determine the number Cij  of  common 
concepts between the nouns obtained at 
(b) and the nouns obtained at (c). 

4. The most suitable combinations between the 
senses of the verb and the noun vi - n j  are the 
ones that provide the biggest values for Cij. 

In order to determine the sub-hierarchies that 
should be used for vl and nj ,  we used statistics 
provided by SemCor, a sense tagged version of the 
Brown corpus (Francis and Kucera, 1967) (Miller, 
Leacock et al., 1993), containing 250,000 words. 
Each word (noun, verb, adjective, adverb) is in- 
eluded in a synset within a hierarchy. The tops of 
these hierarchies denominate the class of the word. 
The sense in SemCor for a word W is indicated by 
the class C of the word W, and the sense of the word 
within the class C. For example, the SemCor entry: 

<el  c n d f d o n e  pos=PIN l e ~ m a = i n v e s t i g a t i o n  g n s n = l  
l e x s n =  1 : 0 9 :  O0 : : > i n v e s t  i g a t  i o n < / e f >  

indicates: 
word: investigation 
part of speech: common noun 
sense in WordNet: 1 

A statistic measure performed on SemCor, indi- 
cates the following probabilities for the sense of a 
word within a class: 

~ PsrtJ Of Number Of ~ within a cla, ss. the probability I 
speech wordl in to have ~en~e number: 

SemCor 0 I x I 2 [ 3 I 4 I s 
. . . .  4L799 13% j ,%j. j .  ] 
v e r b  27,637 60% 14% 5% 12% 3% 2% 

Table 2: The probabilities for the sense of a word within 
a class 

As shown in Table 2, the class of the noun in- 
dicates with a probability of 85% a correct sense 1 
within that class. 

Thus, for this algorithm, we consider for a noun 
the hierarchy including the noun (if the class of the 
noun ni is C', then the method considers all the 
nouns from the class C). 

This does not work for the verbs, as the probabil- 
ity to indicate a correct sense knowing the class is 
much smaller (only 60%). For this reason, and based 
on the experiments we computed, the sub-hierarchy 
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including a verb vi is determined as follows: (i) con- 
sider the hypernym hi of the verb oi and (ii) consider 
the hierarchy having hi as top. 

It is necessary to consider a bigger hierarchy then 
just the one provided by synonyms and direct hy- 
ponyms, since providing accuracy in a metric com- 
putation needs large corpora. As we replaced the 
corpora with the glosses, better results are achieved 
if more glosses are considered. Still, we do not have 
to enlarge too much the context, in order not to miss 
the correct answers. 

C o n c e p t u a l  D e n s i t y  M e t r i c  
For determining the conceptual density between a 
noun ni and a verb v j ,  the algorithm considers: 

• the list of nouns sv~ associated with the glosses 
of the verbs within the hierarchy determined by 
hi:  ( s v k , w ~ ) ,  where: 

- hj is the hypernym of vj 

- w~ is the level in this hierarchy 

• the list of nouns sn t  within the class of ni : 
(snt) 

The common words between these two lists 
( s v k , w k )  and (snt) will produce a list of common 
concepts with the associated weights cdij  < w~ >.  
The conceptual density between rli and vj is given 
by the formula: 

Icd.,l 

(1) C'/j = log(desc i )  

where: 

• Icdijl is the number of common concepts be- 
tween the hierarchies of ni and uj 

• w~ are the weights associated with the nouns 
from the noun-context of the verb vj 

• desci  is the total number of words within the 
hierarchy of noun nl 

As the nouns with a big hierarchy tend to indicate 
a big value for Icdijl ,  the weighted sum of common 
concepts has to be normalized in respect with the 
dimension of the noun hierarchy. This is estimated 
as the logarithm of the total number of descendants 
in the hierarchy (i.e. Io9(desc i ) ) .  

We also took into consideration other metrics, 
like: 

(2) The number of common concepts between the 
noun and verb hierarchies, without considering 
the weights. 

(3) A weighted summation of the common concepts 
between the noun and verb hierarchies, as in- 
dicated in (1), but without a normalization in 
rapport with the noun hierarchy. 
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We considered also the metrics indicated in 
(Agirre and Rigau, 1995). But after running the 
program on several examples, the formula indicated 
in (1)  provided the best results. 

A possible improvement to the metric (1 )  is to 
consider the weights for the levels in the noun hier- 
archy, in addition to the levels in the verb hierarchy. 

5 A n  e x a m p l e  

Consider as example of a verb-noun pair the phrase 
revise lau¢. The verb revise has two possible senses 
in WordNet 1.5: 
Sense 1 
revise, make revisions in 
gloss: (revise a thesis, for example) 

=~ rewrite, write differently, alter by writing 
gloss: ("The student rewrote his thesis") 

Sense 2 
re tool, revise 

=~ reorganize, shake up, organize an 

The noun law has 7 possible senses 
Sense 1 
law, jurisprudence 
gloss: (the collection of rules imposed by authority; ~civilization 
presupposes respect for the law") 

collection, aggregation, accumulation, assemblage 
gloss: (several things grouped together) 

Sense 2 
law 
gloss: (one of a set of rules governing a particular activity or a 
legal document setting forth such a rule; "there is a law against 
kidnapping" ) 

~, rule, prescript 
gloss: (prescribed guide for conduct or  act ion) 

=~ legal document, legal instrument, ofl~icial docu- 
ment, instrument 

Sense 3 
law, natural law 
gloss: (a rule or body of rules ofconduct inherent in human nature 
and essential to or binding upon human society) 

=~ concept, conception 
gloss: (an abstract or general idea inferred or derived 
from specific instances) 

Sense 4 
law, law of nature 
gloss: (a generalization based on recurring facts or events (in 
science or mathematics etc): "the laws of thermodynamics) 

concept, conception 
gloss: (an abstract or general idea inferred or derived 
from specific instances) 

Sense 5 
jurisprudence, law, legal philosophy 
gloss: (the branch of  philosophy concerned wi th the law) 

philosophy 
gloss: (the rational investigation of  questions about 
existence and knowledge and ethics) 

Sense 6 
police, police force, constabulary, law 
gloss: (the force or policemen and officer~; " the  law came looking 
for him" } 

=~ force, personnel 
gloss: (group of people wil l ing to obey orders} 

Sense T 
law. practice of law 
gloss: Ithe learned profession that is mastered by graduate study 
in a law school and that is responsible for  the judicial  system; "he 
studied law at Yale") 
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:*. learned profession 
gloss: (one of the three professions traditionally be- 
lieved to require advanced [earning and high princi- 
ples) 

We searched on lnternet, using AltaVista, for all 
possible pairs V-N that may be created using re- 
vise and the words from the similarity lists of law. 
Over the seven possible senses for this noun, the first 
step of our method indicated the following ranking 
(we indicate the number of hits between parenthe- 
sis):law#e(2829), !aw#3(648), law#4(640), law#6(397), 
1aw#1(224), 1aw#5(37), taw#7(0). Thus, only the 
sense #• and # 3  of the noun law are eligible to be 
used for the next algorithm. 

For each of the two senses of the verb, we deter- 
mined the noun-context, including the nouns from 
the glosses in the sub-hierarchy of the verb, and the 
associated weights. 

For each of the two possible senses of the noun, we 
determined the nouns from the class of each sense. 

In Table 3, we present: (1) the values obtained for 
the combinations of different senses, i.e. the number 
of common concepts between the verb and noun hi- 
erarchies- [cdq[ (columns 2-3); (2) the summations 
of the weights associated with each noun within the 
noun-context of the verb vj (columns 4-5); (3) the 
total number of nouns within the hierarchy of each 
sense hi, i.e. desci (columns 6-7); (4) the conceptual 
density Cq for each pair ni - vj, derived using the 
formula presented above (columns 8-9). 

~ edl, l[ 3 weights des¢, C,  1 
4 5 6 7 8 9 

n2 n3 n2 n3 n2 n3 n2 n3 
V["~ ,  5 4 2.06 2 975 |265 0.30 O. 28 

 r-6-1 0 0 0 0 975 1265 0 0 

Table 3: Values used in computing the conceptual den- 
sity and the conceptual density C,j 

In this table: 
- vi indicates the sense number i of verb revise 
- ni indicates the sense number i of noun law 

The biggest value for conceptual density is given 
by vt - n2: 

revise~l /2 - 1aw~ 2 /5  Cll = 0.30 

This combination of verb-noun senses 2 appears in 
SemCor, file br-a01. 

6 T e s t s  a g a i n s t  S e m C o r  

We tested this method by using verb-noun pairs 
from SemCor. A randomly selected sample from the 
entire table with 80 pairs is presented in Table 4. 

For each pair verb-noun, we indicate the sense of 
the verb (column B). the sense of the noun (col- 
umn C), as they result from SemCor; the total num- 
ber of possible senses for both the verb (column D) 

2The notation #iln means sense i out of n possible. 
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these cases, the NEAR operator should be used 
for the first step of this algorithm). 

2. The number of words considered at a time can 
be increased, from two to three, four or even 
more words. 

7 Conclusion 

In this paper, we have presented a method for WSD 
that is based on measuring the conceptual density 
between words using WordNet. The metric proposed 
may be further improved by considering the weights 
for verbs as well as for nouns. The senses of the 
words are ranked, and an user may select the first 
choice or the first few choices, depending upon the 
application. We have also proposed to use the Inter- 
net as a source of statistics on a raw corpora. 

The method extends well to considering more 
than two words at a time, and also for all parts of 
speech covered by WordNet. 

It is difficult to compare the precision obtained by 
this method with other methods, since we consider 
here the collective meaning of two or more words, 
while most of other methods consider one word at 
a time. However, an estimation can be done by ex- 
tracting the square root of the accuracy for a pair 
of verb-noun words; and that is 76.15% for the first 
choice, 83.66% for the first two choices and 85.44% 
for the first three choices. Since the disambiguation 
precision for nouns is usually higher than for verbs, 
those numbers provide only an average. 
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Abstract 

This paper describes a probabilistic model that is 
formed from the integration of an analytical and 
empirical component. The analytical component 
is a Bayesian network derived from WordNet, and 
the empirical component is composed of compatible 
probabilistic models formulated from tagged train- 
ing data. The components are integrated in a for- 
real, uniform framework based on the semantics of 
causal dependence. The paper explores various rep- 
resentational issues that must be addressed when 
formulating a Bayesian network representation of 
lexical iaformation such as that expressed in Word- 
Net. These issues are essential to the design of such a 
network and they have not been previously explored. 
We describe two choices for the representation of 
lexical items and two choices for the representation 
lexical relations. The effect of each combination of 
choices on evidence propagation in the network is 
discussed. 

1 Introduction 

There is a long tradition in AI of resolving interde- 
pendent lexical ambiguities through spreading acti- 
vation, from QuiUian's (1968) seminal work on se- 
mantic networks, through Hirst's work (1988) on 
Polaroid words, to more recent work by Voorhees 
(1993) and Veronis and Ide (1990) on large-scale 
disambiguation. This research investigates a proba- 
bilistic realization of spreading activation to resolve 
interdependent word-sense ambiguities. The core 
idea is to exploit belief propagation in Bayesian net- 
works: Words are mapped to nodes, lexical relations 
are mapped to edges, and evidence is propagated 
from word senses to other related word senses. 

The lexical relations are derived from an exist- 
ing knowledge source, because this information can- 
not be automatically extracted from training data 
with existing techniques. The knowledge source we 
use is the WordNet ~-a hierarchy, i.e., the hyper- 
nym/h~onym taxonomy (Miller, 1990). Although 
this hierarchy was developed for other purposes, it 

" This research wa~ supported in part by the Office of Naval 
Research under grant number N00014-95-1-0776. 

has been frequently applied to word-sense disam- 
bignation (Resnik, 1995; Sussna, 1993). In this 
work, we investigate various approaches to con- 
structing a Bayesian network representation of the 
~-a hierarchy for use in word-sense disambigua- 
tion. As this work continues, other relations such 
as part/whole and entailment relations will also be 
included in the network. 

Another contribution of our work is a novel pro- 
posal for integrating symbolic and statistical infor- 
mation for the purpose of performing NLP tasks. 
Statistical approaches to word-sense disambiguation 
have had the most success to date, when evaluated 
on unseen test data. The "analytical" Bayesian net- 
work component of our method is actually built on 
top of "empirical" probabilistic classifiers induced 
statistically from training data. In particular, an 
empirical classifier is induced for each word in the 
current sentence to be disambiguated (i.e., for each 
target word). Each empirical classifier is developed 
independently of the empirical classifiers for other 
target words. A Bayesian network is constructed 
from the segment of the WordNet is-a hierarchy 
that is connected to the target words. The results 
of the empirical classifiers axe fed as evidence into 
the Bayesian network, thus initiating belief propa- 
gation. All of the information is represented in a 
formal, uniform framework: a probabilistic model 
embodying conditional independence relationships 
among the variables that form the joint distribu- 
tion. Conditional independence relationships sim- 
plify the formulation of ~he joint distribu~.ion making 
it possible to work with a large number of variables. 
Further, models that characterize conditional inde- 
pendence relationships have desirable computational 
properties (e.g., see the discussion on decomposable 
models in (Pearl, 1988)). These properties form the 
basis of the evidence propagation scheme used for 
Bayesian networks discussed in Section 7. We also 
make use of these properties in formulating the em- 
pirical classifiers as described in (Bruce and Wiebe, 
1994). Bayesian networks are a very rich and com- 
plex representational framework. They support easy 
integration of diverse information sources and form 
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the basis for much of the current work on reasoning 
under uncertainty (Pearl, 1988). 

This paper explores the representational issues 
that  must be addressed when mapping the lexical in- 
formation in WordNet to a Bayesian network. The 
implications of the various choices are analyzed in 
depth. In section 2, we introduce the basic con- 
cepts and illustrate them with an example in sec- 
tion 3, which also includes a brief description of the 
empirical component. The Bayesian network repre- 
sentations of lexical items and lexical relations are 
discussed in sections 4 and 5, respectively. In sec- 
tion 6, we describe the integration of the empirical 
component into the Bayesian network The process of 
sense disambiguation is described in section 7. Sec- 
tion 8 discusses related work followed by conclusions 
in section 9. 

2 Bayesian Networks: Background 
Bayesian networks model dependencies among nodes 
through the use of conditional probabilities. Specif- 
ically, ff a node (Cause2) is considered as a 
cause for another node (Syrnptoml), then the 
second node is defined relative to the first (i.e., 
P(SymptomllCause2)). Some nodes don't have as- 
sociated causes, so they are just defined via un- 
conditional probabilities (e.g., P(Cause2)). Taken 
together; the set of all the conditional and un- 
conditional probabilities determine a joint distri- 
bution for all the nodes being modeled (e.g., 
P( Symptoml .... , SymptomN, Cause l, ...CauseM) ). 
Such global distributions are usually difficult to as- 
sess directly; hence, the Bayesian network provides a 
convenient formalism for specifying the same distri- 
bution via local distributions, under conditional in- 
dependence assumptions. Furthermore. without the 
conditional independence relations, the full joint dis- 
tribution for cases with hundreds of senses would be 
infeasible to process--the independence assumptions 
are key. Pearl (1988) presents an in-depth coverage 
of the theory of Bayesian networks and provides an 
etficient algorithm for evaluating them. 

In a Bayesian approach to statistical inference, we 
distinguish between prior and posterior probabili- 
ties. Prior probabilities express the beliefs that we 
hold about the likelihood of events prior to being 
given any evidence, posterior probabilities express 
our beliefs in the likelihood of events given all the 
evidence that is currently known. Thus, the poste- 
rior probability of an event changes as new evidence 
is learned. The conditional and unconditional prob- 
abilities mentioned above are the prior probabilities. 
The posterior probabilities are calculated using the 
Bayesian network propagation algorithm each time 
new evidence is added. We discuss propagation in 
greater detail in Section 7. Intuitively, the posterior 
probability of a node, say the node GATHERING~I 
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(switching to a word-sense disambiguation example), 
is a combination of the beliefs received from its chil- 
dren and the beliefs received from its parents. Once 
a node has calculated its own belief, it calculates 
outgoing messages to send to its parents and to its 
children, which enable them, in turn, to calculate 
their posterior probabilities. In this way informa- 
tion is propagated throughout the network. 

3 An Ex_~mple 
In this section, we illustrate how a simple Bayesian 
network can be constructed to model the interde- 
pendencies among words. This identifies the basic 
steps in the overall process and helps to motivate 
the representational issues discussed later. 

Suppose that the words "community" and "town" 
appear in a single sentence, and that  their cor- 
rect senses in that context are COMMUNITY,1 and 
TOWN~2, respectively. Our task is to assign the cor- 
rect word senses to both of them, considering infor- 
mation automatically derived from the corpus and 
gathered individually for each word, as well as in- 
formation derived from the WordNet /s-a hierarchy 
and represented in a Bayesian network. The basic 
strategy is to add the corpus-derived information to 
the Bayesian network representations of "commu- 
nity" and "town," in such a way that  it initiates 
propagation. 

Let us consider this process in more detail. The 
words "community" and "town" have the following 
senses in WordNet: 

community: 
1. people living in a particular local area 
2. an association of people with similar 

interests 
3. common ownership 
4. the body of people in a learned occupation 
town: 
1. an urban area with a fixed boundary that 

is smaller than a city 
2. the people living in a municipality smaller 

than a city 
3. an administrative division of a county 

These senses are represented as sets of synonyms, or 
slmsets. In the/s-a hierarchy, each synset is linked to 
its hypernym, i.e., the synset representing its concep- 
tual parent. For example, the synset corresponding 
to 

{occupation, vocation, occupational group} 
is the hypernym of the synset corresponding to 

{profession, community}. 

A new Bayesian network is created for each sen- 
tence. It includes all of the synsets for the tar- 
get words in the sentence, together with all of the 
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synsets reachable from them in the WordNet/s-a hi- 
erarchy. Extracting this information from WordNet 
is straightforward. 

Figure 1 illustrates one way that the Bayesian net- 
work for the example sentence containing "town" 
and "community" can be constructed. In this rep- 
resentation, each word sense is mapped to a node in 
the network, and there is an edge from X to Y iff 
word sense X is a hypernym (i.e., a superordinate) 
of word sense Y (please ignore the octagonal nodes 
at the bottom for now). Notice that the relation 
between COMMUNITY#1 and TOWN#2 is mediated 
by GATHERINGS1, a type of GROUP#I. Our goal is 
for the contextual evidence provided by the empir- 
ical classifiers to propagate along this path in such 
a way that the correct senses of the target words 
reinforce one another. 

After the topology of the network has been es- 
tablished, the conditional probability tables required 
for each node must be defined. As will be discussed 
later in section 5, we can make independence as- 
sumptions that make estimating the necessary prob- 
abilities more easier. 

Next, an empirical classifier is developed for each 
ambiguous word, in this case, "town" and "commu- 
nity". Each classifier defines a probability distribu- 
tion describing the likelihood of each sense of the tar- 
geted word given the automatically derived features 
of the context. An example of the type of feature 
used is the part-of-speech of the word to the right; 
see (Bruce and Wiebe, 1994) for the other ones we 
use. 

The distributions determined by the empirical 
classifiers are added as evidence to the Bayesian net- 
work, initiating belief propagation. Once the net- 
work reaches equilibrium, the posterior probabilities 
of the nodes for "town" and Ucomrnunity" determine 
the senses assigned to each ambiguous word. 

4 Representing Lexical Items: What 
does a Node mean? 

There are two basic approaches to representing 
WordNet synsets in a Bayesian network. Since the 
lexical relations are among synsets and not words, 
a natural approach is to represent the synsets as 
nodes. Alternatively, one node could be used to rep- 
resent all senses of a word. 

4.1 The One Node Per Word Approach 

When nodes correspond to words, the possible val- 
ues for each node are senseO through senseN, where 
N is the number of WordNet synsets representing 
senses of the target word. SenseO represents the 
composite of all other meanings, i.e., of all meanings 
that are not represented by WordNet synsets. Fig- 
ure 2 shows the graph for the Bayesian network when 
word nodes are used for the relations. It also illus- 
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trates the use of logical links, which are described 
in the next section. This involves more than just a 
change in link direction. 

4.2 The  One Node  Pe r  Sense Approach  
Figure 1 illustrates the approach in which each 
syuset (each sense) is mapped to a node. An impor- 
tant advantage of using the node per sense approach 
is that it facilitates handling dependencies among 
the senses of a word. In the node per word approach, 
single node cycles are produced when modeling the 
dependencies of words that have a meaning that is 
defined in terms of other meanings for that same 
word. 

A disadvantage of this approach is that modeling 
mutual exclusion among the senses of a single word 
becomes more di$cult. The most straightforward 
approach modeling mutual exclusion is to create a 
dependency from each sense node to a separate node 
with a CPT enforcing mutual exclusion. But since 
the table must have 2 ~v entries, this approach be- 
comes impractical for words with a large number of 
senses. To get around this problem, two levels of 
mutual-exclusion dependencies could be introduced: 
one at which mutual exclusion among small groups 
of senses is enforced, and another enforcing mutual 
exclusion of the groups. 

5 Representing Lexical Relations: 
What does an edge mean? 

Here, we address issues concerning the representa- 
tion of WordNet /s-a relationships as causal depen- 
dencies. The two primary issues to be addressed 
are: (1) expressing the Hypernym/Hyponym rela- 
tionship as a causal dependency, and (2) quantifying 
the causal dependencies with conditional probability 
distributions. 

5.1 Hypernym-4Hyponym Representations 

The Hypernym -4 Hyponym Representation was il- 
lustrated above in section 3: there is an edge from 
node X to node Y iff X represents a hypernym of 
node Y in the WordNet/s-a hierarchy. Consider the 
node per sense representation (see figure 1). Sup- 
pose Hyper is a synset that is a hypernym of synsets 
Hypol... Hypok. Then, the relevant part of the 
Bayesian network expresses the following: 

Hyper -4 Hypot v . . .  V Hypok 

As such, we are making a closed world assumption. 
If, for example, there is a synset ANIMAL#I with 
three hyponyms DoG#l,  CAT#l, and MOUSE#l, 
we are assuming that these three are the only kinds 
of ANIMAL#1'S there are. 

When using this link representation with either of 
the node per sense or the node per word representa- 
tions, the roots of the network are the most superor- 
dinate synsets reachable from the target words, and 
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Figure I: Sense per node Bayesian network with hypernym--+hyponym links 

the target words are typically (but not necessarily) 
the leafs of the network. 

We now turn to defining the CPT. We discuss this 
with respect to the node per sense representation (in 
figure 1) because it is easier to discuss and similar 
conditional probabilities must be defined under the 
node per word representation. 

To define the CPT for each child node in the 
Bayesian network, where each child node corre- 
sponds to a hyponym node in WordNet, we assign 
the conditional probability P(hyponymlhypernym) 
to be inversely proportional to the number of chil- 
dren that the hypernym has. For instance, MU- 
NICIPALITY#I has two children in WordNet, so 
we assign the following conditional probability for 
TOWN#I given this hypernym. 

P(town#1 [ municipality#i) 
municipa~.ty# 1 P(town#1) 

F 0.000 + 
T 0.500 

work, we will consider using frequency of occurrence 
information in tagged training data to define these 
CPTs. 

For the root nodes, which represent the most su- 
perordinate concepts, prior probabilities must be 
specified. With no evidence to the contrary, uniform 
prior distributions are assigned to the root nodes; 
the empirical classifiers are relied upon to provide 
contextual support (through the leafs of the net- 
work). 

5.2 Hyponym-+Hypernym Representations 

Under the Hyponyrn ~ Hypernym Representation, 
there is an edge from node X to node Y iff X rep- 
resents a hyponym of node Y in the WordNet /s-a 
hierarchy. Consider the node per sense representa- 
tion (see figure 2). The Bayesian network represents 
the following: 

(Hypo i  = si -+ H y p e r j  = s i )  
A . . .  ^ ( H y p o .  = s .  -+ H y p e r . ,  = sin) 

In so doing we are: (I) considering each hyponym 
of a given hypernym to be equally likely, and (2) 
maintaining the closed world assumption by requir- 
ing that these conditional probabilities sum to one. 
In all CPTs, we add a small positive probability 
to all zero probability values in order to allow the 
realization of all possible configurations of node val- 
ues (e.g., to handle inconsistent evidence). In future 

Under the semantics of the WordNet /s-a hierar- 
chy, all instances of a hyponym are instances of its 
hypernym. So, a typical CPT for this representation 
is as follows: 

P(municipality# 1 [ town#l) 
town P (municipality# I) 
F 0.0+~ 
T 1.0 - 
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suppo~_town 

association ) ( ownership ) ( occupation 

possession ) ( body ) / / ( urban_area 

Figure 2: Word per node Bayesian network with hyponym~hypernyrn links 

Note that this case is not illustrated in the graphs 
shown: these only cover two of the four main possi- 
bilities. 

Interestingly, in this representation, the root 
nodes represent the target words. Thus, the root 
nodes are the sites where evidence from the empirical 
classifiers is added to then network. In the absence 
of this evidence, these nodes take on their prior prob- 
abilities. As above, we assign uniform distributions 
as the priors. Recall that, in the case of multiple 
parents, CPTs must specify the conditional distri- 
bution of the child node given the values of all of its 
parent nodes. The issues involved in working with 
multiple parent nodes are discussed below. 

5.3 CPT Entries when Multiple Parents: 
Causal Independence 

If a node has multiple parents, say n parents, then 
specifying all of the entries in the CPT for that 
node can be prohibitive. If no additional indepen- 
dence assumptions are made regarding the inter- 
actions among the parent nodes, then the number 
of probabilities that must be specified is exponen- 
tial in n, and probabilistic inference is made corre- 
spondingly more complex (Heckerman and Breese, 
1994). To overcome this problem, the noisy-OR 
model (Pearl, 1988) is often adopted. Under this 
model, certain independence assumptions are made 
regarding the interactions among the parent nodes, 
with the effect that the number of probabilities that 

must be specified is linear in n. Basically, one need 
only specify the conditional probabilities of the child 
and each parent individually. 

As presented in (Pearl, 1988), the noisy-OR model 
assumes that all of the variables axe binary. Heck- 
erman and Breese (1994) present a generalization of 
the noisy-OR model, causa/independence. In this 
model, the parents are assumed to be independent 
causes for the child. This allows us to formulate 
a CPT from the specification of only the following 
conditional probabilities: P(clpi j ) ,  where c ranges 
over the values of the child, and Pij ranges over the 
values of parent Pi. These values are combined via 
the constraints of the model to produce the CP T  for 
the child node. 

We assign the probabilities using a causal inde- 
pendence model which specializes to the noisy-OR 
model when applied to binary nodes. First consider 
that the inclusive-or connective can be viewed as 
outputting a true value iff none of the inputs is false: 

output  = -,((-,vt) ^ - "  ^ (-,v,,)) 
where each vi is a logical-valued input variable. The 
extension to the case where probabilities are associ- 
ated with each input is relatively straightforward: 

c h i t d =  -,((-,vl) ^ - - - A  (--vn)) 
P(childlV1 = vl , . . . ,  V~ = v,,) = 

1.0 - H(1.0 - P(chi ld lv i ) ) ,  Vv~vl = T. 
When extending to the general case; the relationship 
between the value of the child node and the values 
of its parent nodes is not necessarily defined by a 
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truth function. But, the probabilities are assigned 
analogously: 

P(Ch i ld  = clV1 = vl, . . . ,  V ,  = vn) = 
1.0 - 1"I(1.0 - P(chi ld  = clVi = vi)) 

V ~ P ( c h i l d  = clVi = vl) > ~. 
In their work on plan recognition, Charniak and 

Goldman (1993) use the noisy-OR model, specifi- 
cally for representing the dependencies of observed 
actions on the potential plans that could explain 
them. 

6 I n t e g r a t i n g  E m p i r i c a l  a n d  
A n a l y t i c a l  I n f o r m a t i o n :  V i r t u a l  
E v i d e n c e  N o d e s  

Due to space limitations, we consider just one 
method for integrating the empirical and analyti- 
cal components. In this technique, support from the 
empirical classifiers is added to the Bayesian network 
using virtual evidence nodes (Pearl, 1988). The usual 
way to add evidence to a Bayesian network is to in- 
stantiate a node to a particular value (called "damp- 
ing'); the influence of this evidence is then propa- 
gated through the network. However, that method 
is not appropriate for our task, because we do not 
know the sense of any word (so there is no node in 
the Bayesian network that can be initially instanti- 
ated). Virtual evidence nodes provide a way to spec- 
ify uncertain evidence, in the form of a distribution 
over node values (i.e., the probability of each node 
value). They are represented by the octagonal nodes 
in figures I and 2. There is one for each of the target 
words to be disambiguated. These nodes represent 
the support for each sense that was derived from the 
corpus by the empirical component. Each virtual ev- 
idence node is implemented as a binary-valued node 
whose parent is the node for which evidence is being 
provided. The evidence distribution determines the 
conditional probability table. 

7 E d g e  D i r e c t i o n  a n d  B e l i e f  
P r o p a g a t i o n  

There is a very important implication of the choice 
between the hyperuym ~ hyponym and the hy- 
ponym ~ hypernym representations. In a Bayesian 
network, suppose that evidence is added to a node 
(either by clamping or by virtual evidence nodes). 
This evidence will propagate to its ancestors in the 
Bayesian network, and also to the children of 
its ancestors. For example, in figure 1, evidence 
introduced at node SUPPORT_COMMUNITY will prop- 
agate, among other places, back to COMMUNITY~I, 
back to GATHERING~:I, and then down to MUNIC- 
IPALITY,2, and so on. Thus, this representation, 
hypernym ~ hyponym, supports the kind of propa- 
gation described in this paper. 

On the other hand, consider the hyponym ~ hy- 
pern.vm representations (figures I and 2). In these 
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r sense 
community# 1 
gathering#l 
municipality#2 
town#2 
community#4 
body#2 
location#l 
municipality#l 
town#l 

before after 
.20 .70 
.55 .87 
.25 .33 
.25 .33 
.20 .I0 
.20 .10 
.50 .67 
.25 .33 
.25 .33 

Table 1: Propagation w/hyponym--+hypernym links 

representations, the targeted words are the roots of 
the Bayesian network, so the evidence is added to the 
roots of the network. This evidence will not prop- 
agate from, say, COMMUNITY#1 tO TOWN#2 in fig- 
ure 1. Information propagates between such nodes 
only if evidence were added  to the i r  mu tua l  
descendents. As Pearl says, "evidence gathered 
at a particular node does not influence any of its 
spouses until their common child gathers diagnostic 
support" ((Pearl, 1988), p. 182). Thus, if evidence 
is only added at the virtual evidence nodes in figure 
2, evidence will not propagate from COMMUNITY=I 
tO MUNICIPALITY=2 (SO it will not propagate further 
to TOWN=2). The corresponding nodes are spouses, 
but their child (GATHERING) has not received diag- 
nostic support, by which Pearl means evidence prop- 
agated from below. 

However, there are many other possibilities for 
adding evidence to the network, under which de- 
sired propagation would occur. Thus, our discus- 
sion of the hyponym -~ hypernym representations is 
not just a cautionary tale. For example, one might 
use Yarowsky's (1992) unsupervised method for as- 
signing words to thesaural categories to add evi- 
dence to a node representing a superordinate con- 
cept in the WordNet i~-a hierarchy. (Virtual evi- 
dence nodes could be used for this purl:ose too.) In 
the hyponym ~ hypernym representations, this su- 
perordinate concept (say GATHERING~ i. or SOCIAL- 
GROUP#l) is a descendent  of the nodes repre- 
senting the targeted words. It would thus provide 
the needed diagnostic support to enable propaga- 
tion from one target word to another. Note that the 
hyponym ~ hypernym representation is conceptu- 
ally appealing, since its semantics is based directly 
on the semantics of the WordNet ia-a hierarchy. 

As an illustration, consider applying sample evi- 
dence of (.70, .10, .10, .10) for the senses of "com- 
munity" (with no evidence for town). Table 1 shows 
the posterior probabilities before and after applying 
this evidence. 

As can be seen, the high evidence for COMMU- 
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sense 
community#l 
gathering#1 
municipality#2 

. town#2 
community#4 
body#2 
location#l 
municipality#l 
town#l 

before after 
.054 . 5 6 2  
.126 .631 
.063 .312 
.060 . 2 9 0  
.020 .030 
.064 .296 
.500 .500 
.068 .063 
.053 . 0 5 0  

Table 2: Propagation w/hyperuym~hyponym links 

NITY~I increases the support for the hypernym 
GATHERINGS1 (as well as for the other ancestors 
in the same path not shown). However, no support 
is reaching MUNICIPALITY,2. 

If the hyperuym -~ hyponym representation is 
used instead (as in figure 1), an appropriate propa- 
gation does take place. The propagation occurs in 
two phases. First, the high evidence for COMMU- 
NITY~ 1 is propagated "upstream" to the hypernym 
node. Then, the increased support for this synset is 
propagated "downstream" to increase the likelihood 
of the value for the appropriate sense of "town". Ta- 
ble 2 shows the posterior probabilities in this case. 

7.1 Attenuation of Spreading Activation 

An important aspect of spreading activation ap- 
proaches is that the strength of the evidence being 
propagated is attenuated the further the evidence 
spreads from the original source. Traditional spread- 
ing activation schemes have used various heuristics 
to model this attenuation, often incorporating a dis- 
tance factor in terms of number of links. By using 
probabilistic propagation, we can account for both 
length of path and fan-out at the nodes along the 
path (i.e., how many children they have). The length 
of the path is taken into account by the propaga- 
tion algorithm. Intuitively, when a node calculates 
its posterior distribution, it calculates a distribu- 
tion taking into account all possibilities (e.g., gather- 
ing#1=l, municipality#2=1; gathering#l=1, mu- 
nicipality#2=0; and so on). As the evidence is dis- 
persed among the various possibilities at subsequent 
nodes, the evidence for any single possibility tends 
to decrease. This is so for either edge direction. 

8 Comparison to Related Work 

Spreading activation schemes have been common 
in various forms, starting with Quillian's (Quillian, 
1968) work on semantic memory. QuiUian used 
spreading activation to identify paths between con- 
cepts for the purpose of comparison and contrast. 
To construct the semantic networks, dictionary def- 
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initions were manually encoded in the form a graph: 
Hirst (1988) also used spreading activation to per- 

form word-sense disambiguation. The approach re- 
lies on the identification of paths between interde- 
pendent word meanings. To avoid extraneous con- 
nections, constraints were introduced; for instance, 
a limit on path length was introduced, and/s -a  links 
were normally not traversed in reverse direction. 
Furthermore, heuristics were used to give preference 
to shorter paths and to avoid connections through 
nodes with many out-going arcs. 

There have been several approaches that have re- 
lied upon word-overlap in dictionary definitions to 
resolve word-sense ambiguities in context, starting 
with (Lesk, 1986). Cowie et al. (1992) extend the 
idea by using simulated annealing to optimize a con- 
figuration of word senses simultaneously in terms of 
degree of word overlap. 

Veronis and Ide (1990) developed a neural network 
model to overcome the limitation of addressing only 
pairwise dependencies in word-overlap approaches. 
Using dictionary, definitions, they constructed a net- 
work containing links from each word node to the 
nodes for each of its senses and finks from each of 
the sense nodes to the nodes of the words used in 
the definition. 

Sussna (1993) produces a semantic network based 
on several different WordNet relations. His disam- 
biguation method minimizes the pairwise distance 
among senses via a weighting scheme that accounts 
for both fan-out and depth in the hierarchy. Of the 
approaches we have surveyed, his is most similar to 
our analytical component. 

Voorhees (1993) describes an unsupervised ap- 
proach that exploits the WordNet hypernym taxon- 
omy. In particular, the hierarchy for a given word 
is automatically partitioned so that the words oc- 
curring in the synsets of a partition (or hood) only 
occur with one of the senses for the word. Disam- 
biguation is based on the selecting the hood which 
has the highest estimated relative frequency for the 
context relative to training text. 

Resnik (1995) also describes an unsupervised ap- 
proach that is based on estimating synset frequen- 
cies. As with Voorhees, the estimated frequency of a 
synset is based on the frequency of the word plus the 
frequencies of all its descendant synsets in a large 
corpus. Therefore, the top-level synsets have the 
highest frequencies and thus the highest estimated 
frequency of occurrence. For each pair of nouns from 
the text to be disambiguated, the most-in[ormative- 
subsumer is determined by finding the common an- 
cestor with the highest information content, where 
information content is inversely related to frequency. 
Then each noun is disambiguated by selecting the 
synset that receives the most support (i.e., informa- 
tion content) from the all of the most-informative- 
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subsumers. 
Eizirik et al. (1993) also describe a Bayesian net- 

work model for word-sense disambiguation, which 
includes syntactic disambiguation as well as lexical 
information. However, their networks are not auto- 
matically constructed. 

9 C o n c l u s i o n  

This paper explores various representational issues 
that must be addressed when formulating a Bayesian 
network representation of lexical information such 
as is expressed in WordNet. We describe two 
choices for the representation of lexical items and 
two choices for the representation lexical relations. 
The effects on evidence propagation in the network 
is aho discussed. 
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