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‘In Rogers (1997b) we introduced a new class of
models, three-dimensional tree manifolds (3-TM),
that can serve as both the derived and derivation
structures for TAGs in the same way that trees serve
as both derived and derivation structures for CFGs.
These tree-manifolds are higher-dimensional analogs
of trees; in a 3-TM the children of a node form an
ordinary (two-dimensional) tree just as in ordinary
trees the children of a node form a string. From
this point of view the elementary structures of a
TAG can be interpreted as labeled local 3-ThMs—
a root node and its set of children (a pyramidal
structure)—analogous to the interpretation of the
rewrite rules of a CFG as local trees. Adjunction
in TAGs and substitntion in CFGs both reduce to
a form of concatenation, of local trees in CFGs, of
local 3-TMs in TAGs. In Figure 1, for example, the
local 3-TMs corresponding to the elementary trees
«y and J; are concatenated to form the 3-TM corre-
sponding to the result of adjoining 4, into ;. The
two-dimensional yield of this structure is the corre-
sponding derived tree and its one-dimensional yield
is the derived string.

This analogy can be extended downward to en-
compass the regular languages and upward generat-
ing the control language hierarchy of Vijay-Shanker
et al. (1987), Weir (1988), Weir (1992). And it
turns out to be quite deep. The ordinary finite-state
automata (over strings—the one-dimensional level)
accepting the regular languages becoine, at the two-
dimensional level, the tree-automata accepting the
recognizable sets of trees. The corresponding au-
tomata over 3-TM turn out to accept exactly the sets
of tree manifolds that are generated by TAGs (with
adjoining constraints} modulo a relaxation of the
usual 1equimment that the root and foot of an aux-
iliary tree be labeled identically to cach other and te
the node at which it adjoins. (We refer to these sets
as the recognizable sets of three-dimensional tree
manifolds.) Moreover, essentially all of the famil-
iar antomata-theoretic proofs of properties of reg-
ular languages lift divectly to automata over tree-
manifolds of arbitrary dimension—the dimensional-
ity of the structures is simply a parameter of the

proof and plays no essential role.

In Rogers {1998) we exploit this regularity to ob-
tain results analogous to Biichi’s characterization
of the regular languages in terms of definability in
w518 (the weak monadic second-order theory of the
natural numbers with successor) (Biichi, 1960) and
Doner’s (1970) and Thatcher and Wright’s (1968)
characterizations of the recognizable sets (of trees)
in terms of definability in wSnS (the weak monadic
second-order theory of n successor functions—the
complete n-branching tree). The recognizable sets
of 3-TM are cxactly the finite 3-TM definable in the
weak monadic second-order theory of the complete
n-branching three-dimensional tree manifold, which
we refer to as wSnT3. This raises the prospect of
defining TALs through the medium of collections
of logical constraints expressed in the signature of
wSnT3 rather than with explicit TAGs. In this pa-
per, we introduce this approach and begin to explore
some of its ramifications in the context of TAGs for
natural languages.

Rather than work in wSnT3 directly, we work with
an equivalent class of structures that is linguistically
more natural. A Labeled Headed Finite 3-THM is a
structure:

5. A. A + 4+ 4t
(T) d3, d2, 91, 93, 42, 9, q,‘i ,dg 7q] )Hl!Pa)a’Ezw

where T is a rooted, connected, finite subset of the
complete n-branching 3-TM (for some n); <; is im-
mediate domination, El,- is local proper domination
(among siblings) and <} is global proper domina-
tion {inherited), all in the 7t dimension;! Hy is the
set of Heads (exactly one in each string of children—
these are undetlined in the figures) and P, are the
labels (each picking out the set of nodes labeled o,
not necessarily mutually exclusive).

We begin by looking at a simnple example: assign-

ment of case in XTAG main verh {a) and anxiliary

verh (B;) trees. We interpret node names as first-
order variables and tree names as monadic second-

order variables with, e.g., a;(x) satisfied iff z is

I'Domination, in its familiar form in trees, is domination
in the second dimension here. Domination in the {irst dimen-
sion is usually known as linear precedence. VWe will refer to
domination in the third dimension as abone.
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Figure 1: Tree Manifolds

the (3" -dimensional) root of the local 3-TM cor-
responding to ay:

ni(s) ©
(357, npo, vp, v, np1)|
SA3 S, AS A3 npp ASBUPASQUAS QG A
Ming(s,) A Maxa(npg) A Maxa(v) A Maxg(np;)A
5p <2 npp A sp 9 vp A Hy(vp)A
Minj {npe) A npo <1 vp A Maxy (vp)A
up <2 v Avp <9y npy AH, (V)A
Min; (v) A v <y np; A Max (npy )A
Initial(s) A Anchor(v) A Subst{npg) A Subst(np,;)

]

Here Min; and Max; pick out minimal (root) and
maximal (leaf) nodes wrt the i*" dimension—these

are defined predicates:
Min;(z) = -(3y)[y «; z].

Initial{x) is true at the root of each local 3-TM
encoding an initial tree, Anchor(z) is true at each
anchor node (we will ignore insertion of the lexical
iterns), and Subst(z) is true at each node marked for
substitution-—these are labels, in L. We require all
Subst nodes to have children in the 3'¢ -dimnension
and require the set of Initial nodes to be exactly the
Subst nodes plus the root of the entire 3-TM:

(Va)}[Subst{r) = (3y)[= <1 y]]
(Vr)[Initial{z) ¢ (Subst(z) V Mins(z})]

Figure 2 shows the distribution of features respon-
sible for case assignment in the XTAG grammar.
Following the approach of Rogers (1997a) we inter-
pret the paths occurring in the feature structures
decorating the trees as monadic predicates: I in-
cludes each sequence of features that is a prefix of
a path occurring in a feature-structure derivable in
the grammar.? We will refer to this set of sequences

As is typical in FTAG, we assume finite feature-
structures.

as Feat., Each node is multiply labeled: the feature-
structure associated with it is the union of the paths
labeling it. In order to capture the distinction be-
tween top and bottom feature-structures we will pre-
fix their paths with ‘" arid ‘b’, respectively, We can
then add to the definition of a;:

(t : case : acc)(np;) A (b : assign-case : nom){v).

This encoding of feature-structures gives us a
straightforward definition of predicates for path
equations as well. For any sequences w, v € Feat:

(w = v)(z,y) = /\ [0 s u)(@) & (v u)(w)].
w:u€Feat
ar mucFeat

With this we can add the re-entrancy tags:

{b : assign-case = t : assign-case){vp, v)A
(b : assign-case = t : assign-case) (s,, vp)A
{b : assign-case = t.: case){s,, npp)A

(t = t)(s,s,).

The labeling of the elementary trees can then be
interpreted as a collection of constraints on local 3-
TM, with the set of structures licensed by the gram-
mar being the set of 3-TM in which every node sat-
isfies one of these collections of constraints. Note
that for a 3-TM in which the 3; 3-TM expands the
VP node in an a; 3-TM to be licensed, the VP node
must satisfy both the constraints of the a; 3-TM and
the constraints on the voot. of the 3; 3-TM. Thus the
top feature-structure of the VP is unified with the
top feature-structure of VP, and the bottom feature-
structure with the bottom feature-structure of the
foot VP by simple transitivity of equality. There is
no need for additional path equations and no exira-
logical mechanisms of any sort; licensing is simply a
matter of ordinary model-theoretic satisfaction. To
get the (default) unification of top and bottom fea-
ture structures of nodes that are not expanded by
adjunction we add a single universal principle:

(Va)Maxa () = (¢ = D), »)].
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Figure 2: Case assignment in XTAG.

Taken literally, this approach yields little more
than a fully declarative restatement of the original
grammar. But. in fact, a large proportion of the fea-
tures decorating elementary trees are there only to
facilitate the transport of features through the tree:
there is no obvious linguistic motivation for posit-
ing that “assign-case” is a feature of VPs or of S.
In the language of wSnT3 there is no need for these
intermediate “functional” features or even any need
to distinguish top and bottom feature structures—
we can state directly that the value of the case fea-
ture of the subject NP, for instance, must agree with
the value of the assign-case feature of the verb. Of
course, what is interesting about this relationship is
the effect of adjoined auxiliaries. The TAG analysis
includes an assign-case feature for the jntermediate
VP in order to allow auxiliary verbs adjoined at the
VI to intercept this relationship by interposing be-
tween the VP's top and bottom feature structures.
In wSn'T3 we obtain the same result from the way
in which we identify the relevant verb. For instance,
if we take it to be the last adjoined verb3—the one
most deeply embedded in the third dimension-—we
can add to the definition of ag:

(Fr, ) [wp 95 @ A Maxg{x) Az 2y gh
{assign-case) (y) A {assign-case = case)(npo,¥)].

In somewhat more linguistically natural terms? we

might say that a verbal head governs, for the pur-
poses of case assignment, all arguments in its lo-
cal tree manifold (i.e., the minimal associated strue-
ture). Furthermore a verbal liead in an auxiliary tree
governs all nodes in the structure it adjoins into, as
well as all nodes governed by them-—effectively each
case assigner governs every child of each node prop-
erly above it up to the first Initial node:

Governs(r, y) =
{assign-case) {w:jA
(F2)[z of = Az a3 yA

(V=)[(z of 2’ A 2" «f &) — —Initial(2")]).

A This is corrret only if the foot nodes have null-adjoining
constraints, as s usual. '

4This is not meant to be a proposal of an analysis of as-
signment of ¢ase in XTAG. only to be an example of the style
ol analyses that can be supported by this approach.

Then v assigns case to npg iff it governs it and is
not, itself, governed by some other case assigner:

{(Vz, y)[(Governs(z, y} A -(3z)}[Governs(z, x)]) —
{assign-case = case){x, y)}.

Alternatively, we could adopt existing accounts
based on the more familiar relationships in the two-
dimensional projections of the 3-TMs such as tra-
ditional GB accounts or Rizzi's (1990} Relativized
Minimality. All of these are definable in wSnT3 and
all, therefore, correspond to soine TAG account of
case assignment to subjects. The central question,
perhaps, is which comes closest to the intuitions in-
forming the existing grammar.

This factoring of a TAG granmar into component
linguistic principles is not a new idea. Vijay-Shanker
and Schabes’s (1992) hierarchical encoding of TAG
lexicons using partial descriptions of trees becomes,
from this perspective, a matter of classifying the lex-
icon on the basis of shared properties—every verbal
anchor is associated with a subject aund the associ-
ated structure (see Figure 3):

(Vv}[(Anchor(v) A Verb(v)) —
{35y, npo, UP)[5r 92 npg A s 92 P A P Q3 VA
{case}(npo) A {(assign-case : nom){(v) A - -]},

transitive verbs, in addition, are associated with an
object:

{Vo)[(Anchor{v) A Verb{v) A Transitive(z)) —
(3npp){v 9 npy A {case:ace){(npy) A -+ -],

and so on. Note that, since concatenation of 3-
TMs does not. disturb relationships internal to them,
there is no non-monotonicity here {or,rather, the ap-
parent non-monotonicity is an artifact of the yield
operation)—there is no need to distinguish top and
hottom quasi-nodes, no need for partial trees.

connection can

A more ohvipug
A more opvious

Frank’s (1992) exploration of universal grammati-
cal principles as interactions of the TAG mechanism
with linguistically motivated constraints on the ele-
mentary structures. From the current perspective,
these constraints are just properties of the local 3-
TMs occurring in well-formed grammatical strue-
tures. Here, again, the coustraints are not disturbed
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Figure 3: Shared structure as shared properties

by the process of building 3-TMs from these local
structures—these are properties not just of the el-
ementary structures but of every local 3-TM in all
well-fornied structures. More interestingly, not all
of these constraints are simple properties of the cle-
mentary trees, some depend on the derivations. The
Specifier Licensing Condition (SLC), for instance, in
its basic form, can only be satisfied once an adjunc-
tion lias taken place. As it turns out, the mecha-
nism emploved in capturing this as a condition on
the elementary trees is to encode it as a require-
ment. that certain features of the sort we have been
calling “functional” are instantiated.> Again in this
context, in abstracting away from such implementa-
tion details, wSn'T3 offers a more direct expression
of the constraint.

The key feature of this approach is that it iso-
lates the linguistic theory being expressed from the
mechanical details of the grammar formalisin ex-
pressing it—in this respect there is a strong par-
allel to Mosier’s category theoretic approach to
HPSG (Moster, 1997)—mwithout losing the restric-
tions that the formalisimn imposes. Thus, while the
linguistic principles can usually be stated directly,
the fact that they must be expressible within the
signature of wSnT3 limits them to principles which
can be enforced by TAGs. In fact the characteriza-
tions of the recoguizable sets of 3-TM by definabil-
ity in wSnT3 and of TAG tree and string languages
as the vields of recognizable sets of 3-TM are con-
structive and when these constructions are carried
out many “functional” features of the sort that the
logical approach eschews are instantiated in the re-
sulting TAG. This raises the possibility of using the
logical definitions not just as an abstract means of
discussing the linguistic theory, bnt also as a sort
of higher-level language which can be compiled into
TAGs of the familiar sort.®

A Perhaps coincidentally, these attribute case-assignment to
1Ps and 1s in close parallel to the XTAG example we started
with.

" “There are some formidable obstacles to realizing this idea,
not the least of which is the fact that the process of compiling
w8nT3 formulae into 3- TNl automata has, at least potentially,
noen-elementary complexity. Nonetheless, prior experience at
the one- and two-dimensional levels suggests that the process
mav be Feasible even for relatively substantial theories and
here we have the knowledge that reasonably comnpact gram-
mars for similar theories exist (as witnessed by the XTAG
pranunar). Thus, in some sense, the potential intractability
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