
Automatie Extraction of
Stochastic Lexicalized Tree Grammars

from Treebanks

Günter Neumann
DFKI

66123 Saarbrücken, Germany
neumann@dfki.de

Abstract

We present a method for the extraction
of stochastic lexicalized tree grammars (S­
LTG) of different complexities from exist­
ing treebanks, which allows us to analyze
the relationship of a grammar automati­
cally induced from a treebank wrt. its size,
its complexity, and its predictive power on
unseen data.

Processing of different S-LTG is performed
by a stochastic version of the two-step
Early-based parsing strategy introduced in
(Schabes and Joshi, 1991).

1 Introduction

In this paper we present a method for the extraction
of stochastic lexicalized tree grammars (S-LTG) of
different complexities from existing treebanks, which
allows us to analyze the relationship of a grammar
automatically induced from a treebank wrt . its size,
its complexity, and its predictive power on unseen
data. The use of S-LTGs is motivated for two rea­
sons. First, it is assumed that S-LTG better cap­
ture distributional and hierarchical information than
stochastic CFG (cf. (Schabes, 1992; Schabes and
\Vaters, 1996)), and second, they allow the factor­
ization of recursion of different kinds, viz. extrac­
tion of left, right, and wrapping auxiliary trees and
possible combinations. Existing treebanks are used
because they allow a corpus-based analysis of gram­
mars of realistic size. Processing of different S-LTG
is performed by a stochastic version of the two-phase
Early-based parsing strategy introduced in (Schabes
and Joshi, 1991).

This abstract describes work in progress. So far,
we have concentrated on the automatic extraction
of S-LTGs of different kinds (actually S-LTSG, S­
LTIG, and S-LTAG). This phase is completed and

we will report on first experiments using the Penn­
Treebank (Marcus et al., 1993) and Negra, a tree­
bank for German (Skut et al., 1997). A first version
of the two-phase parser is implemented, and we have
started first tests concerning its performance.

2 Grammar extraction

Given a treebank, grammar extraction is the process
of decomposing each parse tree into smaller units
called subtrees. In our approach, the underlying de­
composition operation

1. should yield lexically anchored subtrees, and

2. should be guided by linguistic principles.

The motivation behind (1) is the observation that
in practice stochastic CFG perform worse than non­
hierarchical approaches, and that lexicalized tree
grammars may be able to capture both distribu­
tional and hierarchical information (Schabes and
Waters, 1996). Concerning (2) we want to take ad­
vantage of the linguistic principles explicitly or im­
plicitly used to define a treebank. This is motivated
by the hypothesis that it will better support the de­
velopment of on-line or incremental learning strate­
gies (the cutting criteria are less dependent from the
quantity and quality of the existing treebank than
purely statistically based approaches, see also sec.
5) and that it renders possible a comparison of an
induced grammar with a linguistically based com­
petence grammar. Both aspects (but especially the
latter one) are of importance because it is possible
to apply the same learning strategy also to a tree­
bank computed by some competence grammar, and
to investigate methods for combining treebanks and
competence grammars (see sec. 6).

However, in this paper we will focus on the use of
existing treebanks using the Penn-Treebank (Mar­
cus et al., 1993) and Negra, a treebank for German
(Skut et al., 1997). First, it is assumed that the

120

treebank comes with a notion of lexical and phrasal
head, i.e„ with a kind of head principle (see also
(Charniak, 1997)). In the Negra treebank, head ele­
ments are explicitly tagged. For the Penn treebank,
the head relation has been determined manually. In
case it is not possible to uniquely identify one head
element there exists a parameter called DIRECTION

which specifies whether the left or right candidate
should be selected. Note that by means of this pa­
rameter we can also specify whether the resulting
grammar should prefer a left or right branching.

Using the head information, each tree from the
treebank is decomposed from the top downwards
into a set of subtrees, such that each non-terminal
non-headed subtree is cut off, and the cutting point
is marked for substitution. The same process is then
recursively applied to each extracted subtree. Due
to the assumed head notion each extracted tree will
automatically be lexically anchored (and the path
from the lexical anchor to the root can be seen as
a head-chain). FUrthermore, every terminal element
which is a sister of a node of the head-chain will also
remain in the extracted tree. Thus, the yield of the
extracted tree might contain several terminal sub­
strings, which gives interesting patterns of word or
POS sequences. For each extracted tree a frequency
counter is used to compute the probability p(t) of a
tree t, after the whole treebank has been processed,
such that l:t:root(t)=a p(t) = 1, where a denotes the
root labe! of a tree t.

After a tree has been decomposed completely we
obtain a set of lexicalized elementary trees where
each nonterminal of the yield is marked for substi­
tution. In a next step the set of elementary trees
is divided into a set of initial and auxiliary trees.
The set of auxiliary trees is further subdivided into
a set of left, right, and wrapping auxiliary trees fol­
lowing (Schabes and Waters, 1995) (using special
foot note labels, like :lfoot, :rfoot, and :wfoot). Note
that the identification of possible auxiliary trees is
strongly corpus-driven. Using special foot note la­
bels allows us to trigger carefully the corresponding
inference rules. For example, it might be possible
to treat the :wfoot labe! as the substitution labe!,
which means that we consider the extracted gram­
mar as a S-LTIG, or only highly frequent wrapping
auxiiiary trees wiil be wnsidered. It is also possible
to treat every foot labe! as the substitution labe!,
which means that the extracted grammar only al­
lows substitution.

3 Two-phase parsing of S-LTG

The resulting S-LTG will be processed by a two­
phase stochastic parser along the line of (Schabes

and Joshi, 1991). In a first step the input string
is used for retrieving the relevant subset of elemen­
tary trees. Note that the yield of an elementary tree
might consist of a sequence of lexical elements. Thus
in order to support efficient access, the deepest left­
most chain of lexical elements is used as index to an
elementary tree. Each such index is stored in a deci­
sion tree. The first step is then realized by means of a
recursive tree traversal which identifies all (langest)
matching substrings of the input string (see also sec.
4). Parsing of lexically triggered trees is performed
in the second step using an Earley-based strategy. In
order to ease implementation of different strategies,
the different parsing operations are expressed as in­
ference rules and controlled by a chart-based agenda
strategy along the line of (Shieber et al., 1995). So
far, we have implemented a version for running S­
LTIG which is based on (Schabes and Waters, 1995).
The inference rules can be triggered through boolean
parameters, which allows flexible hiding of auxiliary
trees of different kinds.

4 First experiments

We will briefty report on first results of our method
using the Negra treebank (4270 sentences) and the
section 02, 03, 04 from the Penn treebank (the first
4270 sentences). In both cases we extracted three
different versions of S-LTG (note that no normaliza­
tion of the treebanks has been performed): (a) lex­
ical anchors are words, (b) lexical anchors are part­
of-speech, and (c) all terminal elements are substi­
tuted by the constant :term, which means that lex­
ical information is ignored. For each grammar we
report the number of elementary trees, left, right,
and wrapping auxiliary trees. The following table
summarizes the results:

Negra words pos :term
eiern. trees: 26553 10384 6515
leftaux trees 184 60 40
rightaux trees 54 35 25
wrapping trees 39 36 29

Penn words pos :term
eiern. tree: 31944 11979 8132
leftaux trees 701 403 293
riuht<>nv t .rPP.Q 649 246 153 ··o···--·· .. ---
wrapping trees 386 306 249

In a second experiment we evaluated the perfor­
mance of the implemented S-LTIG parser using the
extracted Penn treebank with words as lexical an­
chors. We applied all sentences on the extracted
grammar and computed the following average valnes
for the first phase: sentence length: 27.54, number

121

of matching snbstrings: 15.93, number of elementary
trees: 492.77, number of different root labels: 33.16.
The average run-time for each sentence (measnred
an a Sun Ultra 2 (200 mhz): 0.0231 sec. In a next
step we tested the run-time behaviour of the whole
parser on the same input, however ignoring every
parse which took langer than 30 sec. (about 20 %).
The average run-time for each sentence (exhaustive
mode): 6.18 sec. This is promising, since the parser
is still not optimized.

We also tried first blind tests, but it turned ont
that the current considered size of the treebanks is
too small to get reliable results on unseen data (ran­
domly selecting 10 % of a treebank for testing; 90 %
for training). The reason is that if we consider only
words as anchors then we rarely get a complete parse
result (around 10 %). If we consider only POS then
the number of elementary trees retrieved through
the first phase increases causing the current parser
prototype to be slow (due to the restricted annota­
tion schema). 1 A better strategy seems to be the
use of words only for lexical anchors and POS for
all other terminal nodes, or to use only closed-class
words as lexical anchors (assuming a head principle
based on functional categories). In that case it would
also be possible to adapt the strategies described in
(Srinivas, 1997) wrt. supertagging in order to reduce
the set of retrieved trees before the second phase is
called.

5 Related work

Here we will discuss alternative approaches for con­
verting treebanks into lexicalized tree grammars,
namely the Data-oriented Parsing (DOP) frame­
work (Bad, 1995) and approaches based on applying
Explanation-based Learning (EBL) to NL parsing
(e.g„ (Samuelsson, 1994; Srinivas, 1997)).

The general strategy of our approach is similar to
DOP with the notable distinction that in our frame­
work all trees must be lexically anchored and that in
addition to substitution, we also consider adjunction
and restricted versions of it. In the EBL approach
to NL parsing the core idea is to use a competence
grammar and a training corpus to construct a tree­
bank. The treebank is then used to obtain a special­
ized grammar which can be processed much faster
than -the original one at the price of a small lass
in coverage. Samuelsson (1994) presents a method
in which tree decomposition is completely autom­
atized using the information-theoretical concept of

1 Applying the same tcst as dcscribed above on POS,
the average number of elementary trecs retrieved is
2292.86, i.e„ the number seems to increase by a factor
of 5.

entropy, after the whole treebank has been indexed
in an and-or tree. This implies that a new grammar
has tobe computed if the treebank changes (i.e., re­
duced incrementallity) and that the generality of the
induced subtrees depends much more on the size and
variation of the treebank than ours. On the other
side, this approach seems to be more sensitive to the
distribution of sequences of lexical anchors than our
approach, so that we will explore its integration.

In (Srinivas, 1997) the application of EBL to pars­
ing of LTAG is presented. The core idea is to gen­
eralize the derivation trees generated by an LTAG
and to allow for a finite state transducer represen­
tation of the set of generealized parses. The POS
sequence of a training instance is used as the index
to a generalized parse. Generalization wrt. recur­
sion is achieved by introducing the Kleene star into
the yield of an auxiliary tree that was part of the
training example, which allows generalization about
the length of the training sentences. This approach
is an important candidate for improvements of our
two-phase parser once we have acquired an S-LTAG.

6 Future steps

The work described here is certainly in its early
phase. The next future steps (partly already
started) will be: (1) measuring the coverage of an
extracted S-LTG, (2) incremental grammar induc­
tion, (3) combination of a competence grammar and
a treebank. 1 already applied the same learning
strategy on derivation trees obtained from a !arge
HPSG-based English grammar in order to speed up
parsing of HPSG (extending the work described in
(Neumann, 1994)). Now 1 am exploring methods
for merging such an "HPSG-based" S-LTG with one
extracted from a treebank. The same will also be ex­
plored wrt. a competence-based LTAG, like the one
which comes with the XTAG system (Daran et al.,
1994).

1 Acknowledgment

The research underlying this paper was supported
by a research grant from the German Bundesmin­
isterium für Bildung, Wissenschaft, Forschung
und Technologie (BMBF) to t.he. DFT<T proje.r.t
PARADIME, FKZ ITW 9704. 1 would like to thank
Tilman Becker for many fruitful discussions.

References

R. Bod. 1995. Enriching Linguistics with Statistics:
Performance Models of Natural Langu.age. Ph.D.

122

thesis, University of Amsterdam. ILLC Disserta­
tion Series 1995-14.

E: Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In
AAAI-97, Providence, Rhode Island.

C. Doran, D. Egedi, B. Hockey, B. Srinivas, and
M. Zeidel. 1994. Xtag system - a wide cover­
age grammar for english. In Proceedings of the
15th International Conference on Computational
Linguistics {COLING), Kyoto, Japan.

M. P. Marcus, B. Santorini,
and M. A. Marcinkiewicz. 1993. Building a large
annotated corpus of english: The penn treebank.
Computational Linguistics, 19:313-330.

G. Neumann. 1994. Application of explana-
tion based learning for efficient processing of
constraint-based grammars. In Proceedings of the

· Tenth IEEE Conference on Artifical Intelligence
for Applications, pages 208-215, San Antonio,
Texas, March.

C. Samuelsson. 1994. Grammar specialization
through entropy thresholds. In Proceedings of the
32nd Annual Meeting of the Association forCom­
putational Linguistics, pages 188-195.

Y. Schabes and A. K. Joshi. 1991. Parsing with lexi­
calized tree adjoining grammar. In M. Tomita, ed­
itor, Current Issues in Parsing Technology, pages
25-48. Kluwer, Boston.

Y. Schabes and R. Waters. 1995. Tree insertion
grammar: A cubic-time parsable formalism that
lexicalizes context-free grammar without changing
the trees produced. Computational Linguistics,
21:479- 513.

Y. Schabes and Il. Waters. 1996. Stochastic lexi­
calized tree-insertion grammar. In H. Bunt and
M. Tomita, editors, Recent Advances in Pars­
ing Technology, pages 281-294. Kluwer Academic
Press, London.

Y. Schabes. 1992. Stochastic lexicalized tree­
adjoining grammars. In Proceedings of the L/th
International Con/erence on Computational Lin­
guistics (COLING), pages 426-432, Nantes.

S. Shieber, Y. Schabes, and F. Pereira. 1995. Prin­
ciples and implementation of deductive parsing.
Journal of Logic and Computation, 24:3-36.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit.
1997. An annotation scheme for free worder order
languages. In 5th lntematinnal Conference of Ap­
plied Natural Language, pages 88- 94, Washington,
USA, March.

123

B. Srinivas. 1997. Complexity of Lexical Restric­
tions and lts Relevance to Pat'tial Parsing. Ph.D.
thesis, University of Pennsylvania. IRCS Report
97-10.

