
Hdrug. A Flexible and Extendible Development Environment for
Natural Language Processing.

G e r t j a n v a n N o o r d
G o s s e B o u m a

A b s t r a c t

Al fa - in format ica & BCN,

Univers i ty of Groningen
{ v a n n o o r d , g o s s e } @ l e t , r u g . n l

Hdrug is an environment to develop gram-
mars, parsers and generators for natural
languages. The package is written in Sic-
stus Prolog and Tcl/Tk. The system pro-
vides a graphical user interface with a com-
mand interpreter, and a number of visuali-
sation tools, including visualisation of fea-
ture structures, syntax trees, type hierar-
chies, lexical hierarchies, feature structure
trees, definite clause definitions, grammar
rules, lexical entries, and graphs of statis-
tical information of various kinds.

Hdrug is designed to be as flexible and
extendible as possible. This is illustrated
by the fact that Hdrug has been used
both for the development of practical real-
time systems, but also as a tool to ex-
periment with new theoretical notions and
alternative processing strategies. Gram-
matical formalisms that have been used
range from context-free grammars to con-
catenative feature-based grammars (such
as the grammars written for ALE) and non-
concatenative grammars such as Tree Ad-
joining Grammars.

1 I n t r o d u c t i o n

Hdrug is an environment to develop grammars,
parsers and generators for natural languages. The
system provides a number of visualisation tools, in-
cluding visualisation of feature structures, syntax
trees, type hierarchies, lexical hierarchies, feature
structure trees, definite clause definitions, grammar
rules, lexical entries, and graphs of statistical infor-
mation e.g. concerning cputime requirements of dif-
ferent parsers. Visualisation can be requested for
various output formats, including ASCII text for-

mat, TK Canvas widget, ~TEX output, and CLiG
output (Konrad et ah, 1996).

Extendibility and flexibility have been major con-
cerns in the design of Hdrug. The Hdrug system
provides a small core system with a large library of
auxiliary relations which can be included upon de-
mand. Hdrug extends a given NLP system with a
graphical user interface and a number of visualisa-
tion tools. Applications using Hdrug typically add
new features on top of the functionality provided by
Hdrug. The system is easily extendible because of
the use of the Tcl/Tk scripting language, and the
availability of a large set of libraries. Flexibility is
obtained by a large number of global flags which
can be altered easily to change aspects of the sys-
tem. Furthermore, a number of hook predicates can
be defined to adapt the system to the needs of a
particular application.

The flexibility is illustrated by the fact that Hdrug
has been used both for the development of grammars
and parsers for practical systems (Boves et al., 1995;
van Noord et al., 1996), but also as a tool to ex-
periment with new theoretical notions and alterna-
tive processing strategies, such as those discussed by
(Carpenter, 1992), (van Noord and Bouma, 1994),
(van Noord, 1994). Furthermore, Hdrug has been
used extensively both for batch processing of large
text corpora, and also for demonstrating particular
applications for audiences of non-experts.

Hdrug is implemented in SICStus Prolog version
3, exploiting the built-in Tcl/Tk library. The Hdrug
sources are available free of charge under the Gnu
Public Licence copyright restrictions. Further infor-
mation, including the sources and an on-line manual,
is available on the World Wide Web. 1

In this paper we illustrate the functionality of
Hdrug, and its extendible and flexible nature, by

1The URL is:
http ://www. let. rug. nl/-vannoord/Hdrug/

91

means of two examples: ALE and OVIS.

2 Overview

This section gives an overview of the functionality
provided by Hdrug.

2.1 I n t e r f a c e

Hdrug provides three ways of interacting with the
underlying NLP system:

• Using an extendible command interpreter.

• Using Prolog queries.

• Using an extendible graphical user interface
(based on Tc l /Tk) .

The first two approaches are mutually exclusive:
if the command interpreter is listening, then you
cannot give ordinary Prolog commands and vice
versa. In contrast, the graphical user interface (with
mouse-driven menu's and buttons) can always be
used. This feature is very important and sets Hdrug
apart from competing systems. It implies that we
can use at the same time the full power of the Prolog
prompt (including tracing) and the graphical user
interface. Using the command interpreter (with a
history and alias mechanism) can be useful for ex-
perienced users, as it might be somewhat faster than
using the mouse (but note that many menu options
can be selected using accelerators). Furthermore, it
is useful for situations in which the graphical user
interface is not available (e.g. in the absence of an
X workstation). The availability of a command-line
interface in combination with mouse-driven menu's
and buttons illustrates the flexible nature of the in-
terface.

An important and interesting property of both
the command interpreter and the graphical user in-
terface is extendibility. It is very easy to add fur-
ther commands (and associated actions) to the com-
mand interpreter (using straightforward DCG syn-
tax). The graphical user interface can be extended
by writing T c l / T k scripts, possibly in combination
with some Prolog code. A number of examples will
be given in the remainder of this paper.

Finally note that it is also possible to run Hdrug
without the graphical user interface present (simply
give the - n o t k option at startup). This is some-
times useful if no X workstation is available (e.g. if
you connect to the system over a slow serial line),
but also for batch processing. At any point you can
start or stop the graphical user interface by issuing
a simple command.

Figure 1: Example of visualisation provided by
Hdrug. In this example the derivation tree for the
sentence 'ik wil vroeger' (I want earlier) is shown in
a TK widget.

2.2 V i s u a l i s a t i o n

Hdrug supports the visualisation of a large collection
of data-structures into a number of different formats.

These formats include 2:

* ASCII text

* Tk Canvas

•~TEX

• CLiG

The Tk Canvas format is the format best inte-
grated with the graphical user interface. The data-
structures for which visualisation is provided are:

2At the moment not all datastructures are supported
for all formats. For example, plots of two dimensional
data is only available for Tk.

92

• Trees. Various tree definitions can exist in par-
allel. For example, the system supports the
printing of syntax trees, derivation trees, type
hierarchy trees, lexical hierarchies etc. Actions
can be defined which are executed upon clicking
on a node of a tree. New tree definitions can be
added to the system by simple declarations.

• Feature structures. Clicking on attributes of a
feature-structure implode or explode the value
of that attribute. Such feature structures can
be the feature structures associated with gram-
mar rules, lexical entries, macro definitions and
parse results.

• Trees with feature structure nodes. Again, new
tree definitions can be declared. An example is
provided in figure 1.

• Graph (plots of two variable data), e.g. to dis-
play the (average) cputime or memory require-
ments of different parsers.

• Tables.

• Prolog clauses.

• Definite clauses with feature structure argu-
ments. This can be used e.g. to visualise macro
definitions, lexical entries, and g rammar rules
(possibly with associated constraints).

2 .3 P a r s e r a n d G e n e r a t o r M a n a g e m e n t

Hdrug provides an interface for the definition of
parsers and generators. Hdrug manages the results
of a parse or generation request. You can inspect
these results later. Multiple parsers and generators
can co-exist. You can compare some of these parsers
with respect to speed and memory usage on a single
example sentence, or on sets of pre-defined exam-
ple sentences. Furthermore, actions can be defined
which are executed right before parsing (generation)
starts, or right after the construction of each parse
result (generation result), or right after parsing is
completed. For example, in the ALE system to be
discussed in the next section, a parse-tree is shown
automatical ly for each parse result. As another ex-
ample, for the OVIS system discussed in section 4,
a word graph is read-in in an ASCII buffer and con-
verted to an appropriate Prolog format before pars-
ing starts.

2.4 U s e f u l l i b r a r i e s

Most of the visualisation tools are available through
libraries as well. In addition, the Hdrug library con-
tains mechanisms to translate Prolog terms into fea-

ture structures and vice versa (on the basis of a num-
ber of declarations). Furthermore, a library is pro-
vided for the creation of 'Mellish' Prolog terms on
the basis of boolean expressions over finite domains
(Mellish, 1988). The reverse translation is provided
too. Such terms can be used as values of feature
structures to implement a limited form of disjunc-
tion and negation by unification.

A number of smaller utilities is provided in the
library as well, including libraries which extend
term_expansion, an add_clause mechanism (based
on chapter 9.1 of (O'Keefe, 1990)), management of
global variables (the predicate f l a g / 3 from (Ross,
1989)), support for debugging, etc.

2.5 E x a m p l e A p p l i c a t i o n s

A number of example applications is included in the
Hdrug distribution.

* ALE (Carpenter, 1992), including the exam-
ple HPSG g rammar and CG grammar . Adding
other ALE grammars is trivial.

• Definite-clause G r a m m a r (Pereira and Warren,
1980) for Dutch to illustrate semantic-head-
driven generation (Shieber et al., 1989), and to
compare different parsers for speed (Bouma and
van Noord, 1993).

• Constraint-based Categorial Grammar , with
delayed evaluation of constraints (Bouma and
van Noord, 1994).

• HPSG with lexical rules as delayed constraints
(van Noord and Bouma, 1994).

• Head-driven Parsing for Tree Adjoining Gram-
mars, as described in (van Noord, 1994)

• A few toy g rammars in the Extraposit ion Gram-
mar formalism (Pereira, 1981).

3 A L E

To illustrate the functionality of Hdrug we use Bob
Carpenter and Gerald Penn's ALE system (Carpen-
ter, 1992). To quote the authors:

ALE is an integrated phrase structure pars-
ing and definite clause logic programming
system in which the terms are typed feature
structures. Typed feature structures com-
bine type inheritance and appropriateness
specifications for features and their values.
The feature structures used in ALE gen-
eralize the common feature structure sys-
tems found in the linguistic programming

93

Figure 2: Main Hdrug window for ALE. The nodes of the derivation tree can be clicked to obtain the
associated feature structure in the right-most canvas. By clicking on attributes of the feature structures it
is very easy to implode and explode parts of feature structures to concentrate on those parts of particular
importance for the user. The VIEW menu provides an interface to the visualisation of all ALE datastructures
including (lexical) rules, macro's, definite clauses, lexical entries, and edges of the chart.

systems PATR-II and FUG, the grammar
formalisms HPSG and LFG, as well as
the logic programming systems Prolog-II
and LOGIN. Programs in any of these lan-
guages can be encoded directly in ALE.

Because ALE is available for SICStus Prolog, and
because ALE only provides a very limited user in-
terface, it provides a particular simple and useful
example of an application for Hdrug. The com-
bined ALE/Hdrug system consists of the original
ALE sources plus about 450 lines of Prolog code
and 250 lines of Tcl code. These define the inter-
face to Hdrug and provide some useful extensions
to the graphical user interface. Apart from this, any
specific ALE grammar further specifies a small num-
ber of declarations. For the example HPSG gram-
mar which is included in the ALE distribution (a
rather large grammar: 1650 lines of ALE code) this
required only 8 lines of Prolog code. The following
examples assume the HPSG example grammar.

Figure 2 shows the main Hdrug window after load-
ing the ALE system with the HPSG grammar and
after the parse of the example sentence she sees a

book.

The Hdrug window consists of two large canvases
which are used to display important data-structures.
In this case the left-most canvas displays the deriva-
tion tree of one of the analyses of the example sen-
tence and the right-most canvas displays the feature
structure containing the semantic representation of
the top-node of one of the parse results. Immedi-
ately under the menu-bar a sequence of buttons is
displayed which are labelled '1' and '2'. These repre-
sent the results of parsing. If such a but ton is pressed
a pull-down menu is displayed which allows the user
to visualise that particular result of the parser in one
of the available formats. For example, it is possible
to inspect the parse tree of this object, where each
node of the tree is a feature structure (the result
would be to large to be displayed in a readable form
here). Note that it is also possible to obtain a visu-
alisation of the feature structure associated with the
top-most node of the parse tree in a specific format.
These formats include a straightforward interface to
ALE's built-in pretty print routines.

The menu-bar provides an interface to many of
the standard functions of Hdrug. The FILE menu-

94

subcat._principle(: -

append()~i,)~),)~))) •

Figure 3: Display of the Ale definite clause definition of the subcat principle.

button includes options to load g r ammar files, Pro-
log files and T c l / T k files. The OPTIONS menu
provides an interface to global Hdrug variables.
Such variables include the value of the top-category
for parsing (the start symbol); the default parser;
whether or not the system should check if an ob-
ject is created whether such an object already exists
(this feature is used to recognize spurious ambigu-
ities), etc. The PARSE and GENERATE menu but-
tons are straightforward means to parse a sentence
or to generate a sentence for a given logical form.
Note that ALE does not provide a generator, so this
menu-button is inactive. If a parse is requested a
dialog box is displayed in which you can choose a
sentence from a predefined set of example sentences,
or in which you can type in a new sentence.

The VIEW menu-but ton is associated with a pull-
down menu which is specific to the Ale application.
It provides an interface to visualisation routines for
the following important ALE datastructures:

• Edges of the chart

• Lexical entries

• Macro definitions

• Phrase structure rules

• Lexical rules

• Types

• Empty Categories

• Definite Clauses

Figure 4: Visualisation of part of the type signature
of the HPSG g ram m ar distributed with ALE.

• Type Signature

For example, the s u b c a t _ p r i n c i p l e / 3 relation is
displayed as in Figure 3.

95

Figure 5: Example of Hdrug support for comparison of different parsers for the same grammar and test
sets. In this example a left-corner (lc_mixtus) parser, a head-corner (hc9_mixtus) parser, an inactive chart
parser (inact_p) and a bot tom-up active chart parser (bu) were compared on a test-set of 5000 word graphs.
Timings are in milliseconds and the input size is the number of transitions in the word graph. Note that in
this example the parsers only parse the best path through the word graph. The left-corner and head-corner
parsers perform this task much faster than the other two: average CPU-times are up to 500 milliseconds,
whereas the chart-based parsers require up to 8000 milliseconds on average.

4 OVIS

The NWO Priority Programme Language and
Speech Technology is a research programme aim-
ing at the development of spoken language informa-
tion systems. Its immediate goal is to develop a
demonstrator of a public transport information sys-
tem, which operates over ordinary telephone lines.
This demonstrator is called OVIS, Openbaar Ver-
voer Informatie Systeem (Public Transport Informa-
tion System). The language of the system is Dutch.
Refer to (Bores et al., 1995; van Noord et al., 1996)
for further information of this Programme.

The natural language understanding component
of OVIS analyses the output of the speech recog-
nizer (a word graph) and passes this analysis to the
dialogue manager (as an update expression). Word

graphs are weighted acyclic finite-state au tomata
which represent in a compact format the hypothe-
ses of a speech recognizer. Each path through the
word graph is a possible analysis of the user utter-
ance; weights indicate the confidence of the speech
recognizer.

The relation between such word graphs and up-
date expressions is defined by means of a Definite
Clause Grammar of Dutch. This DCG and a num-
ber of parsers have been developed with the Hdrug
system. The functionality of Hdrug has been used
to compare the different parsers with respect to ef-
ficiency on sets of sentences and word graphs. For
example, upon loading a specific set of such word
graphs, the system can be asked to parse each of the
word graphs with a specified subset of the available
parsers, and to display information concerning parse

96

Figure 6: This figure shows the proportion of inputs (word graphs in this case) (percentage of the test-set
of 380) can be treated per amount of CPU-t ime (in milliseconds) for a number of different parsers (a head-
corner parser hc, a left-corner parser lc, an inactive chart parser, an active chart parser, a bo t tom-up Earley
parser bu-earley and an LR parser lr_cyk. Note that in this example the parsers parse all paths through the
word graph. For this particular test-set the head-corner parser performs best. As can be seen in the graph
it treats 96% of the input word-graphs within 200 milliseconds.

times and memory usage for each of those parsers.
For example, figure 5 is the result of a test run of
5000 word graphs for four different parsers. For
slower parsers it is useful to implement a t ime-out to
make sure that test sets can be treated within a rea-
sonable amount of time. In such cases mean cputime
does not make sense; therefore, it is also possible to
obtain a graph in which the percentage of inputs
that can be completed within a certain amount of
cputime is displayed. This is supported in Hdrug as
well; an example is given in figure 6. Similar sup-
port is provided for the analysis of a given test-set of
sentences with respect to input size and with respect
to the number of readings assigned.

The functionality of Hdrug has been extended in
various ways for the OVIS application. For exam-
ple, a procedure has been implemented which can
be used to generate random sentences, as a means
to find errors in the grammar . The menu bar is
extended with a new menu-but ton which provides
an interface to this new feature. Incorporating such
new features in the user interface is very straightfor-
ward.

Furthermore, similar to the VIEW menu of Ale it

is also possible to obtain visualisation of datastruc-
tures such as lexical entries and g rammar rules. This
menu also provides an interface for the visualisation
of word graphs by piping these word graphs to ei-
ther the VCG (Sander, 1995) or dotty (Koutsofios
and North, 1994) graph drawing tools.

Apart from adding new menu buttons it is also
easy to add items to existing pull-down menus. For
example, in OVIS we are not only interested in the
speed of the parser, but also in the accuracy. A com-
ponent has been implemented which measures word
accuracy, sentence accuracy and concept accuracy
(by comparing the results of analysis with a given
annotation). This functionality is available through
a number of new items on the TEST-SUITE m e n u .

If a test suite has been loaded, then we can use this
component to measure word accuracy and sentence
accuracy of a number of difference analysis meth-
ods. Information is displayed in a window which is
updated every now and then (the interval can be set
by the user). Such an information window looks as
in figure 7.

97

', ', ', ',,', ',' i
~i~i@!i!~i!i~iiiii~i!i!~i!~;ii~i~i~ii~ii~ii~ii~;;ii;i;;ii~!!~!~i~iiiiii!~!!!i!i~iiiii !;i!!!!;iiii;!~iM~i~i~!i!~!~i~;J~;~iiiiii;i!i~iii~iii;i!!~i!~i~i~i!.... " i i i ; i i i i i i i i i ! i i i i~j iJi~!i i i ! i i i i~i i j j l i i i i i l i l i i i iF~ii i i i i i i~

Figure 7: Example of an extension to Hdrug as part of the Ovis development system. Such extensions can
be defined by means of a TCL script. The integration of such extensions with the Hdrug user interface is
trivial.

5 F i n a l r e m a r k s

The main characteristics of Hdrug are its extendabil-
ity and flexibility. We believe that. if such systems
are useful for computational linguists, then these two
criteria are of extreme importance.

A c k n o w l e d g m e n t s

Part of this research is being carried out within the
framework of the Priority Programme Language and
Speech Technology (TST). The TST-Programme is
sponsored by NWO (Dutch Organisation for Scien-
tific Research).

R e f e r e n c e s

Gosse Bouma and Gertjan van Noord. 1993. Head-
driven parsing for lexicalist grammars: Experimental
results. In Sixth Conference of the European Chap-
ter of the Association for Computational Linguistics,
Utrecht.

Gosse Bouma and Gertjan van Noord. 1994. Constraint-
based categorial grammar. In 32th Annual Meeting of
the Association for Computational Linguistics, New
Mexico.

Lou Boves, Jan Landsbergen, Remko Scha, and Gertjan
van Noord. 1995. Language and Speech Technology.
NWO Den Hang. Project plan for the NWO Priority
Programme 'Language and Speech Technology'.

Bob Carpenter. 1992. The attribute logic engine user
guide. Technical report, Laboratory for Computa-
tonal Linguistics, Carnegie Mellon University, Pitts-
burgh.

Karten Konrad, Holger Maier, and Manfred Pinkal.
1996. CLEARS - - an education and research tool for
computational semantics. In Proceedings of the 16th
International Conference on Computational Linguis-
tics (COLING), Copenhagen.

Eleftherios Koutsofios and Stephen C. North. 1994.
Editing graphs with dotty, dotty User Manual.

C.S. Mellish. 1988. Implementing systemic classification
by unification. Computational Linguistics, 14(1).

Richard A. O'Keefe. 1990. The Craft of Prolog. The
MIT Press.

Fernando C.N. Pereira and David Warren. 1980. Deft-
nite clause grammars for language analysis - - a survey
of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13.

Fernando C.N. Pereira. 1981. Extraposition grammars.
Computational Linguistics, 7(4).

Peter Ross. 1989. Advanced Prolog. Addison-Wesley.

G. Sander. 1995. Graph layout through the VCG
tool. In R. Tamassia and I.G. ToUis, editors, Graph
Drawing, DIMACS International Workshop GD '9~,
Proceedings; Lecture Notes in Computer Science 894,
pages 194-205. Springer Verlag.

Stuart M. Shieber, Gertjan van Noord, Robert C. Moore,
and Fernando C.N. Pereira. 1989. A semantic-head-
driven generation algorithm for unification based for-
malisms. [n 27th Annual Meeting of the Association
for Computational Linguistics, pages 7-17, Vancou-
ver.

Gertjan van Noord and Gosse Bouma. 1994. Adjuncts
and the processing of lexical rules. In Proceedings of
the 15th International Conference on Computational
Linguistics (COLING), Kyoto.

Gertjan van Noord, Gosse Bouma, Rob Koeling, and
Mark-Jan Nederhof. 1996. Conventional natural lan-
guage processing in the NWO priority programme on
language and speech technology. October 1996 De-
liverables. Technical Report 28, NWO Priority Pro-
gramme Language and Speech Technology.

Gertjan van Noord. 1994. Head corner parsing for TAG.
Computational Intelligence, 10(4).

98

