
A LEXICAL DATABASE TOOL FOR
QUANTITATIVE PHONOLOGICAL RESEARCH

Steven Bird
The University of Edinburgh
Centre for Cognitive Science
Edinburgh EH8 9LW, UK

Abstract

SIL Cameroon
B.P. 1299
Yaound6, Cameroon

Steven. Birdied. ac. uk

I N T R O D U C T I O N

A lexical database tool tailored for phonological res-
earch is described. Database fields include transcrip-
tions, glosses and hyperlinks to speech files. Database
queries are expressed using HTML forms, and these
permit regular expression search on any combination
of fields. Regular expressions are passed directly to
a Perl CGI program, enabling the full flexibility of
Perl extended regular iexpressions. The regular expres-
sion notation is extended to better support phonologi-
cal searches, such as search for minimal pairs. Search
results are presented fin the form of HTML or I~TEX
tables, where each call is either a number (represent-
ing frequency) or a designated subset of the fields.
Tables have up to four dimensions, with an elegant
system for specifying iwhich fragments of which fields
should be used for tile row/column labels• The tool

[• •

offers several advantages over traditional methods of
• • I •

analysts: (i) it suppo~s a quantitative method of doing
phonological researcfi; (ii) it gives universal access
to the same set of informants; (iii) it enables other

r

researchers to hear the original speech data without
having to rely on published transcriptions; (iv) it makes
the full power of regular expression search available,
and search results are full multimedia documents; and
(v) it enables the earl), refutation of false hypotheses,
shortening the analysis-hypothesis-test loop. A life-
size application to an African tone language (Dschang)
is used for exemplificgtion throughout the paper. The
database contains 2200 records, each with approxi-
mately 15 fields. Running on a PC laptop with a stand-
alone web server, the 'Dschang HyperLexicon' has
already been used ex!ensively in phonological field-
work and analysis in Cameroon.

Initial stages of phonological analysis typically focus
on words in isolation, as the phonemic inventory and
syllable canon are established. Data is stored as a
lexicon, where each word is entered as a transcription
accompanied by at least a gloss (so the word can be
elicited again) and the major syntactic category. In
managing a lexicon, the working phonologist has a
variety of computational needs: storage and retrieval;
searching and sorting; tabular reports on distributions
and contrasts; updates to database and to reports as
distinctions are discovered or discarded. In the past
the analyst had to do all this computation by hand
using index cards kept in shoeboxes. But now many of
these particular tasks are automated by software such
as the SIL programs Shoebox (Buseman et al., 1996)
and Findphone (Bevan, 1995), 1 or using commercial
database packages.

Of course, many tasks other than those listed above
have already benefitted from (partial) automation. 2 Addi-
tionally, it has been shown how a computational inher-
itance model can be used for structuring lexical infor-
mation relevant for phonology (Reinhard & Gibbon,
1991). And there is a body of work on the use of finite
state devices - closely related to regular expressions
- for modelling phonological phenomena (Kaplan &
Kay, 1994) and for speech processing (cf. Kornai's

1Unlike regular database management systems, these include
international and phonetic character sets and user-defined
keystrokes for entering them, and a utility to dump a database into
an RTF file in a user-defined lexicon format for use in desktop
publishing.

2For example, see (Ellison, 1992; Lowe & Mazaudon, 1994;
Coleman, Dirksen, Hussain & Waals, 1996).

~3

kid 1612

\v

\w m b h ~
\as #m.bhU#
\ rt #bhU#
\ t L D H

\sd mbh~
\pg *bd+ ~,
\ p n
\ p l me-
\ c l 9/6
k e n dog
\ f r chien

identifier (used for hyperlinks)
validation status
orthographic form
ascii transcription
transcription of word root
tone transcription
southern dialect form
Proto-Grassfields form
part of speech
plural prefix
noun class (singular/plural)
english gloss
french gloss (used with
informants)

Figure 1: Format of Database Records

work with HMMs (Kornai, 1995)). However, compu-
tational phonology is yet to provide tools for manipu-
lating lexical and speech data using the full expressive
power of the regular expression notation in a way that
supports pure phonological research.

This paper describes a lexical database system tai-
lored to the needs of phonological research and exem-
plified for Dschang, a language of Cameroon. An
online lexicon (originally published as Bird & Tadad-
jeu, 1997), contains records with the format in Fig-
ure 1. Only the most important fields are shown.

The user interface is provided by a Web browser. A
suite of Perl programs (Wall & Schwartz, 1991) gener-
ates the search form in

HTML and processes the query. Regular expressions
in the query are passed directly to Perl, enabling the
full flexibility of Perl extended regular expressions. A
further extension to the notation allows searches for
minimal sets, groups of words which are minimally dif-
ferent according to some criterion. Hits are structured
into a tabular display and returned as an HTML or IrTEX
document.

In the next section, a sequence of example queries
is given to illustrate the format of queries and results,
and to demonstrate how a user might interact with the
system. A range of more powerful queries are then
demonstrated, along with an explanation of the nota-
tions for minimal pairs and projections. Next, some
implementation details are given, and the component

modules are described in detail. The last two sections
describe planned future work and present the conclu-
sions.

display:
root:

loanwords:
suffixed:
phrases:

time-limit:
vars:

E X A M P L E

This section shows how the system can be used to sup-
port phonological analysis. The language data comes
from Dschang, a Grassfields Bantu language of Camer-
oon, and is structured into a lexicon consisting of 2200
records. Suppose we wished to learn about phonotac-
tic constraints in the syllable rhyme. The following
sequence of queries were not artificially constructed,
but were issued in an actual session with the system
in the field, running the Web server in a stand-alone
mode. The first query is displayed below. 3

Search Attributes:
count
*([$V]) ([$C]) #

exclude
include
exclude
2 minutes
$B = "\.#-"; # boundaries
$S = "pbtdkgcj'"; # stops
$F = "zsvfZS"; # fricatives
$O = $S.$F; # obstruents
$N = "mnN"; # nasals
SG = "wy"; # glides
$C = $O.$N.$G."hi"; # cons
$V = "ieaouEOU@"; # vowels

The main attribute of interest is the r o o t attribute. 4
The . * expression stands for a sequence of zero or
more segments. The expressions $V and $C are vari-
ables defined in the v a t s section of the query form.
These are strings, but when surrounded with brackets,
as in [$V] and [$C], they function as wild cards
which match a single element from the string. The
character is a boundary symbol marking the end of
the root. Observe that the r o o t attribute contains
two parenthesised subexpressions. These will be called
parameters and have a special role in structuring the
search output. This is best demonstrated by way of an
example. Consider the table below, which is the result

aThe display is only a crude approximation to the HTML form.
Note that the query form comes with the variables already filled in
so that it is not necessary for the user to supply them, although they
can be edited. The transcription symbols used in the system have
the following interpretation: U=u, @=a, E=e, O=3, N=ij, '=?.

4|n the following discussion, 'attribute' refers to a line in the
query form while 'field' refers to part of a database record.

~4

of the above query. In: this table, the row labels are all
the segments which matched the variable $V, while the
column labels are just the segments that matched $C.

Search Results:

P
i 5

U 9
u 14
@

O

E 51
a 30
O 15

t k ' m N
10 24 9 32

38 1 9
60 10 39

15 41 75
31 12

,14
1 46 61 76

1 12 36 49

There are sufficient gaps in the table to make us wonder
if all the segments are actually phonemes. For example,
consider o and u, given that they are phonetically very
similar ([co] and [u] respectively). We can easily set
up o as an allophone Of u before k. Only the case of
glottal stop needs to be considered. So we revise the
form, replacing $V with just the vowels in question,
and replacing the $C df the coda with apostrophe (for
glottal stop). We add a term for the syllable onset and
resubmit the query. See Figure 2. This time, several
attributes are omitted from the display for brevity.

We can now conclude that o and u are in comple-
mentary distribution, except for the five words corre-
sponding to pfand v onsets. But what are these words?
We revise the form again, further restricting the search
string as follows:

Search Attributes:
display: speech word gloss

root:, *(Pflv) [ou]'#

The display parametelr is set to speech word g loss
allowing us to see (arid hear) the individual lexical
items. The results are shown below.

Search Results:

pf []
[]

v []
[]
[]

lepfo ' mortar
m p f u ' blood pact
rrivo' space in front of bed
aVu' remainder
l evu ' t~ kitchen woodpile

The cells of the output ~table now contain fragments of
the lexical entries. The first part is an icon which, when

clicked, plays the speech file. The second part is a gif
of the orthographic form of the word. The third part
is the English gloss. Note that the above nouns have
different prefixes (e.g. le-, m-, a-). These are noun
class prefixes and are not part of the r o o t field. If
we had wanted to take prefixes into consideration then
the a s attribute, containing a transcription of the whole
word, could have been used instead.

Listening to the speech files it was found that the
syllables pro' and pfu ' sounded exactly the same, as
did vo' and vu' . The whole process up to this point
had taken less than five minutes. After some quick
informant work to recheck the data and hear the native-
speaker intuitions, it was clear that the distinction bet-
ween o and u in closed syllables was subphonemic.

M O R E P O W E R F U L Q U E R I E S

Constraining one field and displaying another

In some situations we are not interested in seeing the
field which was constrained, but another one instead.
The next query displays the tone field for monosyllabic
roots, classed into open and closed syllables. Although
the r o o t attribute is used in the query, the r o o t field
is not actually displayed. (This query makes use of a
projection function which maps all consonants onto C
and all vowels onto V, as will be explained later.)

Search Attributes:
display : tone

root: #C+V(C?)# ($CV-proj)

The C+ expression denotes a sequence of one or more
consonants, while C ? denotes an optienal coda conso-
nant. By making C? into a parameter (using paren-
theses) the search results will be presented in a two
column table, one column for open syllables (with a
null label) and one for closed syllables (labelled c).
A minor change to the r o o t attribute, enlarging the
scope of the parameter (\#c+ (vc?) \#) , will produce
the more satisfactory column labels V and VC.

Searching for near-minimal sets

Finding good minimal sets is a heuristic process. No
attempt has been made to encode heuristics into the
system. Rather, the aim has been to permit flexible
interaction between user and system as a collection
of minimal sets is refined. To facilitate this process,
the regular expression notation is extended slightly.

Search Attributes:

Search Results:

U

0

display: count
root: *([$C]+) ([ou])'#
axes: flip

w p pf b t ts d c j k g f v s z m n 13 1.
6 8 1 1 6 1 6 4 5 3 5 2 4 1 1 5

1 6 1 1 3

Figure 2: Query to Probe the Phonemic Status of the O/U Contrast

Recall the way that parameters (parenthesised subex-
pressions) allowed output to be structured. One of the
parameters will be said to be in focus, Syntactically,
this is expressed using braces instead of parentheses.
Semantically, such a parameter becomes the focus of a
search for minimal sets.

Typically, this parameter will contain a list of seg-
ments, such as { [o u] }, or an optional segment whose
presence is to be contrasted with its absence, such as
(h?}.

In order for a minimal set to be found, the parameter
in focus must have more than one possible instantia-
tion, while the other parameters remain unchanged. To
see how this works, consider the following example.
Suppose we wish to identify the minimal pairs for o / u
discussed above, but without having to specify glottal
stop in the query, as shown in Figure 3. Note this exam-
ple of a 3D table.

If this was not enough minimal pairs, we could relax
the restrictions on the context. For example, if we do
not wish to insist on the following consonant being
identical across minimal pairs, we can remove the sec-
ond set of parentheses thus: . * ([$c] +) { [ou] ~ [$c] #.
This now gives minimal pairs like legOk work and
13gu' year. Observe that the consonant preceding the
o / u vowel is fixed across the minimal pair, since this
was still parenthesised in the query string.

Usually, it is best for minimal pairs to have similar
syntactic distribution. We can add a restriction that all
minimal pairs must be drawn from the same syntactic
category by making the whole p a r t attribute into a
parameter as follows.

Search Attributes:
display:

root:

Search Results:

pf

v

word gloss
.*([$c]+){[ou]}([$c])#

lepfo' mortar
mpfu' blood pact

mvo' space in front of bed
avu' remainder
levu'tf kitchen woodpile

Figure 3: Minimal Sets for O/U

Search Attributes:
display: tone

root: *([$Cl+){[~ul}[$c]#
part: (.*)

Making the part attribute into a parameter adds an
extra dimension to the table of results. We now only
see an o / u minimal pair if the other parameters agree.
In other words, all minimal pairs that are reported
will contain the same consonant cluster before the o / u
vowel and will be from the same syntactic category.

Variables across attributes

There are occasions where we need to have the same
variable appearing in different attributes. For example,

suppose we wanted to Check where the southern dialect
• . . I

and the principal dialect have identical vowels: 5

Search Attributes::
displaY : root s_dialect

ro~t: .*(3[$V]+).*
s_dialect: .*$3.*

This query makes use of another syntactic extension
to regular expressions i An arbitrary one-digit number
which appears immediately inside a parameter allows
the parameter to be referred to elsewhere. This means
that whichever sequence of vowels matches [$V] +
in the root field must also appear somewhere in the
s_dialect field.

Negative restrictions

The simplest kind of qegative restriction is built using
the set complement operator (the caret). However this
only works for single character complements. A much
more powerful negation is available with the ? ! zero-
width negative lookahead assertion, available in Perl 5,
which I will now discu~ss.

The next example uses the tone attribute. Dschang is
a tone language, and the records in the lexicon include
a field containing a toni melody. Tone melodies consist
of the characters H (high), L (low), D (downstep) and
F (fall)• A single tone has the form D? [HL] F?, i.e. an
optional downstep, follbwed by H or L, followed by an
optional fall. The next 6xample finds all entries starting
with a sequence of unlike tones.

Search Attributes:
root: .*(1[ST]) (?!$i) [ST] .*
vars: $T = D?[HL]F?

The (1 [ST]) expression matches any tone and sets
the $1 variable to the tone which was matched. The
(? ! $1) expression requires that whatever follows the
first tone is different, and the final [ST] insists that
this same following material is a tone (rather than being
empty, for example). 6

5Roots are virtually all monosyllabic, so there will usually be a
unique vowel sequence for the [$V] + in the regular expression to
match with.

6Care must be taken to ensure that the alphabetic encodings of
distinct tones are sufficiently different from each other, so that one
is not an initial substfing of finother.

Projections

I earlier introduced the notion of projections. In fact,
the system allows the user to apply an arbitrary manip-
ulation to any attribute before the matching is carried
out. Here is the query again, this time with the $¢v-
proj variable filled out.

Search Attributes:
display: tone

root: #C+V(C?) # ($CV-proj)
vars: $CV-proj = {tr/$C/C/; tr/$V/V/;}

This causes the Perl t r (transliterate) function to be
applied to the r o o t attribute before the # c + v (C?) #
regular expression is matched on this field.

Projections can also be used to simulate second order
variables, such as required for place of articulation.
Suppose that the language has three places of articu-
lation: L (labial), A (alveolar) and V (velar). We are
interested in finding any unassimilated sequences in the
data (i.e, adjacent consonants with different places of
articulation). The following query does just this. Prior
to matching, the segments which have a place of artic-
ulation value are projected to that value, again using
t r . The query expression looks for a sequence of any
pair $PSP, where $p is a second order variable ranging
over places of articulation.

Search Attributes:

display: word
root: .*(55P) (?!$5) ($P).* ($P-proj)
vars: $P-proj=tr/pbmtdnkgN/LLLAAAVVV/;

$P = [LAV] ;

Observe that the second $P must b~ different from
the first, because of the zero-width negative lookahead
assertion (? ! $ 5) . This states that immediately to
the right of this position one does not find an instance
of $ 5, where this variable is the place of articulation
found in the first position. The output of the query is a
3 x 3 table showing all words that contain unassimilated
consonant sequences•

S Y S T E M O V E R V I E W

Lexicon compiler

The base lexicon is in Shoebox format, in which the
fields are not required to be in a fixed order. To save
on runtime processing, a preprocessing step is applied
to each field• For example, the contents of the \w

field, comprising characters from the Cameroon char-
acter set, are replaced by a pointer a graphics file for
the word (i.e. a URL referencing a gif). 7 Each record
is processed into a single line, where fields occur in a
canonical order and a field separator is inserted, and
the compiled lexicon is stored as a DBM file for rapid
loading.

The query string
The search attributes in the query form can contain
arbitrary Peri V5 regular expressions, along with some
extensions introduced n above. A CGI program con-
structs a query string based on the submitted form data.
The query string is padded with wild cards for those
fields which were not restricted in the query form.

The dimensionality of the output and the axis labels
are determined by the appearance of 'parameters' in the
search attributes. These parenthesised subexpressions
are copied directly into the query string. So, for exam-
ple, the first query above contained the search expres-
s ion. * ([Sv]) ([$c]) # applied to the r o o t field. This
field occupies fifth position in the compiled version of
a record, and so the search string is as follows. The
variable $e matches any sequence of characters not
containing the field separator.
$search = /^$e;$e;$e;$e;.*([$V]) ([$C])#;

Se; Se; $e; $e; Se; Se; $e; $eS/

The search loop
Search involves a linear pass over the whole lexicon
%LEX. 8 The parameters contained in $ s e a r c h are
tied to the variables $1 - $4. These are stored in four
associative arrays $ d i r a l - $d im4 to be used later as
axis labels.

foreach Sentry (keys %LEX) {

if ($LEX{$entry} =~ /$search/) {
Sdiml{$1} ++ ;
Sdim2 {$2 } ++ ;

$dim3 {$3 } ++;
Sdim4 {$4} ++ ;
Shits{"$1;$2;$3;$4"} .= ";".Sentry;

}
)

7These gifs were generated using L~I'EX along with the utilities
p s t o g i f and g i f t o o l .

8 Inverting on individual fields was avoided because of the run-
time overheads and the fact that this prevents variable instantiation
across fields.

Finally, a pointer to the entry is stored in the 4D
array S h i t s (appended to any existing hits in that
cell.) Here we see that the structuring of the output
table using parameters is virtually transparent, with
Perl itself doing the necessary housekeeping.

As an example, suppose that the following lexical
entry is being considered at the top of the above loop:
Sentry =0107
SLEX{ Sentry] =

0107; ;;
#a.kup#;#kup#;LL; ;*k'ub';n;7/6,8;
skin, bark;peau,\'ecorce;

By matching this against the query string given in our
first example we endup matching. * ([$V]) ([$C]) #
with #kup#. This results in $1=u and $2=p. The
entries $ d i m l { u } and $dira2 {p} are incremented,
recording these values for later use in the $V and
$C axes respectively. Finally S h i t s (" u ; p ; ; ") is
updated with the index 0107.

The display loop

This module cycles through the axis labels that were
stored in 9 d i m l - $dira4 and combines them to access
the S h i t s array. At each level of nesting, code is
generated for the HTML or IbTEX table output. At the
innermost level, the fields selected by the user in the
d i s p l a y attribute are used to build the current cell.

FUTURE WORK

A number of extensions to the system are planned.
Since Dschang is a tone language, it would be partic-
ularly valuable to have access to the 15itch contours of
each word. These will eventually be displayed as small
gifs, attached to the lexical entries.

Another extension would be to permit updates to the
lexicon through a forms interface. A special instance
of the search form could be used to validate existing
and new entries, alerting the user to any data which
contradicts current hypotheses.

The regular expression notation is sometimes cum-
bersome and opaque. It would be useful to have a
higher level language as well. One possibility is the
notation of autosegmental phonology, which can be
compiled into finite-state automata (Bird & Ellison,
1994). The graphics capabilities for this could be pro-
vided on the client side by a Java program.

3~

A final extension, dependent on developments with
HTML itself, would be to provide better support for spe-
cial characters and user-definable keystrokes for access-
ing them.

c O N C L U S I O N

This paper has presen!ed a hypertext lexicon tailored to
the practical needs of the phonologist working on large
scale data problems. The user accesses the lexicon via
a forms interface provided by HTML and a browser. A
CGI program processes the query. The user can refine a
query during the course of several interactions with the
system, finally switching the output to ~TEEX format for
direct inclusion of the results in a research paper. An
extension to the regular expression notation was used
for searching for minimal pairs. Parenthesised subex-
pressions are interpreted as parameters which control
the structuring of search results. These extensions,
though intuitively simple, make a lot of expressive
power available to the~user. The current prototype sys-
tem has been used hehvily for substantive phonologi-
cal fieldwork and analysis on the field, documented in
(Bird, 1997). There are a number of ensuing benefits of
this approach for phoriological research: (i) it supports
a quantitative method rof doing phonological research;
(ii) it gives universal access to the same set of infor-
mants; (iii) it enables other researchers to hear the orig-
inal speech data with6ut having to rely on published
transcriptions; (iv) it imakes the full power of regu-
lar expression search available, and search results are
full multimedia documents; and (v) it enables the early

i
refutation of false hypotheses, shortening the analysis-
hypothesis-test loop.

A C K N O W L E D G E M E N T S
I

This research is funde~l by the the UK Economic and
Social Research Council, under grant R00023 5540
A Computational Model of Tone and its Relationship
to Speech• My activilies in Cameroon were covered
by a research permit with the Ministry of Scientific
and Technical Research of the Cameroon government,
number 047/MINREST/DOO/D20. I am grateful to

b

Dafydd Gibbon for helpful comments on an earlier ver-
sion of this paper•

R e f e r e n c e s

Bevan, D. (1995). FindPhone User's Guide: Phono-
logical Analysis for the Field Linguist, Version
6.0. Waxhaw NC: SIL.

Bird, S. (1997). Dschang Syllable Structure. In H. van
der Hulst & N. Ritter (Eds.), The Syllable: Views
and Facts. Oxford University Press. To appear.

Bird, S. & Ellison, T. M. (1994). One level phonology:
autosegmental representations and rules as finite
automata. Computational Linguistics, 20, 55-90.

Bird, S. & Tadadjeu, M. (1997). Petit Diction-
naire Ydmba-Frangais (Dschang-French Dictio-
nary). Cameroon: ANACLAC.

Buseman, A., Buseman, K., & Early, R. (1996)• The
Linguist's Shoebox: Integrated Data Management
and Analysis for the Field Linguist. Waxhaw NC:
SIL.

Coleman, J., Dirksen, A., Hussain, S., & Waals, J.
(1996)• Multilingual phonological analysis and
speech synthesis. In Computational Phonology
in Speech Technology: Proceedings of the Sec-
ond Meeting of the ACL Special Interest Group
in Computational Phonology, (pp. 67-72). Asso-
ciation for Computational Linguistics.

Ellison, T. M. (1992). Machine Learning of Phonolog-
ical Structure. PhD thesis, University of Western
Australia•

Kaplan, R. M. & Kay, M. (1994). Regular models of
phonological rule systems. Computational Lin-
guistics, 20, 331-78.

Kornai, A. (1995). Formal Phonology. New York:
Garland Publishing.

Lowe, J. B. & Mazaudon, M. (1994). The Reconstruc-
tion Engine: a computer implementation of the
comparative method. Computational Linguistics,
20, 381-417.

Reinhard, S. & Gibbon, D. (1991). Prosodic inheri-
tance and morphological generalizations. In Pro-
ceedings of the Fifth Conference of the Euro-
pean Chapter of the Association for Computa-
tional Linguistics, (pp. 131-6). Association for
Computational Linguistics.

Wall, L. & Schwartz, R. L. (1991). Programming Perl.
O'Reilly and Associates.

