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We consider the use of language models 
whose size and accuracy are intermedi- 
ate between different order n-gram models. 
Two types of models are studied in partic- 
ular. Aggregate Markov models are class- 
based bigram models in which the map- 
ping from words to classes is probabilis- 
tic. Mixed-order Markov models combine 
bigram models whose predictions are con- 
ditioned on different words. Both types 
of models are trained by Expectation- 
Maximization (EM) algorithms for maxi- 
mum likelihood estimation. We examine 
smoothing procedures in which these mod- 
els are interposed between different order 
n-grams. This is found to significantly re- 
duce the perplexity of unseen word combi- 
nations. 

1 I n t r o d u c t i o n  

The purpose of a statistical language model is to as- 
sign high probabilities to likely word sequences and 
low probabilities to unlikely ones. The challenge 
here arises from the combinatorially large number 
of possibilities, only a fraction of which can ever be 
observed. In general, language models must learn 
to recognize word sequences that  are functionally 
similar but lexically distinct. The learning problem, 
one of generalizing from sparse data, is particularly 
acute for large-sized vocabularies (Jelinek, Mercer, 
and Roukos, 1992). 

The simplest models of natural language are n- 
gram Markov models. In these models, the prob- 
ability of each word depends on the n -  1 words 
that precede it. The problems in estimating ro- 
bust models of this form are well-documented. The 
number of parameters- -or  transition probabili t ies-- 
scales as V n, where V is the vocabulary size. For 
typical models (e.g., n = 3, V = 104), this num- 
ber exceeds by many orders of magnitude the total 
number of words in any feasible training corpus. 

The transition probabilities in n-gram models are 
estimated from the counts of word combinations in 
the training corpus. Maximum likelihood (ML) esti- 
mation leads to zero-valued probabilities for unseen 
n-grams. In practice, one adjusts or smoothes (Chen 
and Goodman,  1996) the ML estimates so that 
the language model can generalize to new phrases. 
Smoothing can be done in many ways--for  example, 
by introducing artificial counts, backing off to lower- 
order models (Katz, 1987), or combining models by 
interpolation (Jelinek and Mercer, 1980). 

Often a great deal of information:is lost in the 
smoothing procedure. This is due to the great dis- 
crepancy between n-gram models of different order. 
The goal of this paper is to investigate models that  
are intermediate, in both size and accuracy, between 
different order n-gram models. We show that  such 
models can "intervene" between different order n- 
grams in the smoothing procedure. Experimentally, 
we find that  this significantly reduces the perplexity 
of unseen word combinations. 

The language models in this paper were evalu- 
ated on the ARPA North American Business News 
(NAB) corpus. All our experiments used a vo- 
cabulary of sixty-thousand words, including tokens 
for punctuation, sentence boundaries, and an un- 
known word token standing for all out-of-vocabulary 
words. The training data  consisted of approxi- 
mately 78 million words (three million sentences); 
the test data, 13 million words (one-half million 
sentences). All sentences were drawn randomly 
without replacement from the NAB corpus. All 
perplexity figures given in the paper are com- 
puted by combining sentence probabilities; the prob- 
ability of sentence wow1 . . .w~wn+l  is given by 
yIn+lP(wilwo ..wi-1), where w0 and wn+l are i = 1  
the start- and end-of-sentence markers, respectively. 
Though not reported below, we also confirmed that 
the results did not vary significantly for different ran- 
domly drawn test sets of the same size. 

The organization of this paper is as follows. 
In Section 2, we examine aggregate Markov mod- 
els, or class-based bigram models (Brown et al., 
1992) in which the mapping from words to classes 
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is probabilistic. We describe an iterative algo- 
ri thm for discovering "soft" word classes, based on 
the Expectation-Maximization (EM) procedure for 
maximum likelihood estimation (Dempster, Laird, 
and Rubin, 1977). Several features make this algo- 
r i thm attractive for large-vocabulary language mod- 
eling: it has no tuning parameters, converges mono- 
tonically in the log-likelihood, and handles proba- 
bilistic constraints in a natural way. The number 
of classes, C, can be small or large depending on 
the constraints of the modeler. Varying the number 
of classes leads to models that  are intermediate be- 
tween unigram (C = 1) and bigram (C = V) models. 

In Section 3, we examine another sort of "inter- 
mediate" model, one that  arises from combinations 
of non-adjacent words. Language models using such 
combinations have been proposed by Huang et al. 
(1993), Ney, Essen, and Kneser (1994), and Rosen- 
feld (1996), among others. We consider specifically 
the skip-k transition matrices, M(wt_k, wt), whose 
predictions are conditioned on the kth previous word 
in the sentence. (The value of k determines how 
many words one "skips" back to make the predic- 
tion.) These predictions, conditioned on only a sin- 
gle previous word in the sentence, are inherently 
weaker than those conditioned on all k previous 
words. Nevertheless, by combining several predic- 
tions of this form (for different values of k), we can 
create a model that  is intermediate in size and ac- 
curacy between bigram and trigram models. 

Mixed-order Markov models express the predic- 
tions P(wt[wt-1, wt-2, . . . ,  Wt-m) as a convex com- 
bination of skip-k transition matrices, M(wt-k, wt). 
We derive an EM algorithm to learn the mixing co- 
efficients, as well as the elements of the transition 
matrices. The number of transition probabilities in 
these models scales as mV 2, as opposed to V m+l. 
Mixed-order models are not as powerful as trigram 
models, but they can make much stronger predic- 
tions than bigram models. The reason is that  quite 
often the immediately preceding word has less pre- 
dictive value than earlier words in the same sentence. 

In Section 4, we use aggregate and mixed-order 
models to improve the probability estimates from 
n-grams. This is done by interposing these models 
between different order n-grams in the smoothing 
procedure. We compare our results to a baseline tri- 
gram model that  backs off to bigram and unigram 
models. The use of "intermediate" models is found 
to reduce the perplexity of unseen word combina- 
tions by over 50%. 

In Section 5, we discuss some extensions to these 
models and some open problems for future research. 
We conclude that  aggregate and mixed-order models 
provide a compelling alternative to language models 
based exclusively on n-grams. 
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2 A g g r e g a t e  M a r k o v  m o d e l s  

In this section we consider how to construct class- 
based bigram models (Brown et al., 1992). The 
problem is naturally formulated as one of hidden 
variable density estimation. Let P(clwl ) denote the 
probability that  word wl is mapped into class c. 
Likewise, let P(w21c) denote the probability that  
words in class c are followed by the word w2. The 
class-based bigram model predicts that  word wl is 
followed by word w2 with probability 

c 
P(w21wl) = Z P(w21c)P(clwx)' (1) 

c = l  

where C is the total number of classes. The hidden 
variable in this problem is the class label c, which 
is unknown for each word wl. Note that  eq. (1) 
represents the V 2 elements of the transition matr ix  
P(w21wa) in terms of the 2CV elements of P(w2]c) 
and P(clwl ). 

The Expectation-Maximization (EM) algorithm 
(Dempster, Laird, and Rubin, 1977) is an iterative 
procedure for estimating the parameters of hidden 
variable models. Each iteration consists of two steps: 
an E-step which computes statistics over the hidden 
variables, and an M-step which updates the param- 
eters to reflect these statistics. 

The EM algorithm for aggregate Markov models 
is particularly simple. The E-step is to compute,  for 
each bigram WlW 2 in the training set, the posterior 
probability 

P(w2]c)P(C[Wl) (2) 
P(ClWl, w2) = ~c, P(w2lc')P(c'lwl)" 

Eq. (2) gives the probability that  word wl was as- 
signed to class c, based on the observation that  it 
was followed by word w2. The M-step uses these 
posterior probabilities to re-estimate the model pa- 
rameters. The updates for aggregate Markov models 
are: 

~ w  N(wl, w)P(ClWl, w) 
P(clwl) ~ ~wc, N(wl ' , , w)P(c [wl, w) (3) 

Ew N(w, w2)P(clw, w~) 
P(w2[c) ~- Eww'g(w,w')P(clw,  w')' (4) 

where N(Wl, w2) denotes the number of counts of 
wlw2 in the training set. These updates are guar- 
anteed to increase the overall log-likelihood, 

g= Z N(Wl'W2)lnP(w21wl)' (5) 
W l W 2  

at each iteration. In general, they converge to a local 
(though not global) maximum of the log-likelihood. 
The perplexity V* is related to the log-likelihood by 
V* : e - ~ / N ,  where N is the total number  of words 
processed. 

Though several algorithms (Brown et al., 1992; 
Pereira, Tishby, and Lee, 1993) have been proposed 
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Figure 1: Plots of (a) training and (b) test perplexity versus number of iterations of the EM algorithm, for 
the aggregate Markov model with C = 32 classes. 

C train test 
1 964.7 964.9 
2 771.2 772.2 
4 541.9 543.6 
8 399.5 401.5 
16 328.8 331.8 
32 278.9 283.2 
V 123.6 - -  

Table 1: Perplexities of aggregate Markov models on 
the training and test sets; C is the number of classes. 
The case C = 1 corresponds to a ML unigram model; 
C = V, to a ML bigram model. 

0.2 0.4 0.6 0.8 
winning assignment probability 

Figure 2: Histogram of the winning assignment 
probabilities, maxc P(clw), for the three hundred 
most commonly occurring words. 

for performing the decomposition in eq. (1), it is 
worth noting that  only the EM algorithm directly 
optimizes the log-likelihood in eq. (5). This has ob- 
vious advantages if the goal of finding word classes is 
to improve the perplexity of a language model. The 
EM algorithm also handles probabilistic constraints 
in a natural way, allowing words to belong to more 
than one class if this increases the overall likelihood. 

Our approach differs in important  ways from the 
use of hidden Markov models (HMMs) for class- 
based language modeling (Jelinek et al., 1992). 
While HMMs also use hidden variables to represent 
word classes, the dynamics are fundamentally dif- 
ferent. In HMMs, the hidden state at t ime t ÷ 1 is 
predicted (via the state transition matrix) from the 
hidden state at t ime t. On the other hand, in aggre- 
gate Markov models, the hidden state at t ime t + 1 
is predicted (via the matrix P(ct+llwt)) from the 
word at t ime t. The state-to-state versus word-to- 
state dynamics lead to different learning algorithms. 
For example, the Baum-Welch algorithm for HMMs 
requires forward and backward passes through each 
training sentence, while the EM algorithm we use 
does not. 

We trained aggregate Markov models with 2, 4, 
8, 16, and 32 classes. Figure 1 shows typical plots 
of the training and test set perplexities versus the 
number of iterations of the EM algorithm. Clearly, 
the two curves are very close, and the monotonic 
decrease in test set perplexity strongly suggests lit- 
tle if any overfitting, at least when the number of 
classes is small compared to the number of words in 
the vocabulary. Table 1 shows the final perplexities 
(after thirty-two iterations of EM) for various ag- 
gregate Markov models. These results confirm that  
aggregate Markov models are intermediate in accu- 
racy between unigram (C = 1) and bigram (C = V) 
models. 

The aggregate Markov models were also observed 
to discover meaningful word classes. Table 2 shows, 
for the aggregate model with C = 32 classes, the 
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las cents made make take 
ago day earfier Friday Monday month quarter 
reported said Thursday trading Tuesday 
Wednesday ( . . . )  
even get to 
based days down home months up work years 

those (,) (--) 
(.) (?) 
eighty fifty forty ninety seventy sixty thirty 

19 bilfion hundred million nineteen 
20 did (") (') 
21 but called San (:) (start-of-sentence) 

22 

23 

bank board chairman end group members 
number office out part percent price prices rate 
sales shares use 
a an another any dollar each first good her his its 
my old our their this 

24 long Mr. year 

7 twenty (0 (') 25 
8 can could may should to will would 

9 about at just only or than (&) (;) 
i 10 economic high interest much no such tax united i 27 

well 
11 president 
12 because do how if most say so then think very 

what when where 29 
13 according back expected going him plan used way 
15 don't I people they we you [ 

Bush company court department more officials ] 30 16 pofice retort spokesman [ 
17 former the 

American big city federal general house mifitary 
18 national party political state union York i 

business California case companies corporation 
dollars incorporated industry law money 
thousand time today war week 0) (unknown) 

26 also government he it market she that there 
which who 
A. B. C. D. E. F. G. I. L. M. N. P. R. S. T. U. 

28 both foreign international major many new oil 
other some Soviet stock these west world 
after all among and before between by during for 
from in including into like of off on over since 
through told under until while with 
eight fifteen five four half last next nine oh one 
second seven several six ten third three twelve 
two zero (-) 

31 are be been being had has have is it's not still 
was were 

32 chief exchange news public service trade 

Table 2: Most probable assignments for the 300 most frequent words in an aggregate Markov model with 
C = 32 classes. Class 14 is absent because it is not the most probable class for any of the selected words.) 

most probable class assignments of the three hun- 
dred most commonly occurring words. To be precise, 
for each class c*, we have listed the words for which 
c* = arg maxe P(c]w). Figure 2 shows a histogram of 
the winning assignment probabilities, maxe P(c[w), 
for these words. Note that  the winning assignment 
probabilities are distributed broadly over the inter- 
val [-~, 1]. This demonstrates the utility of allowing 
"soft" membership classes: for most words, the max- 
imum likelihood estimates of P(clw ) do not corre- 
spond to a winner-take-all assignment, and therefore 
any method that assigns each word to a single class 
("hard" clustering), such as those used by Brown et 
al. (1992) or Ney, Essen, and Kneser (1994), would 
lose information. 

We conclude this section with some final com- 
ments on overfitting. Our models were trained by 
thirty-two iterations of EM, allowing for nearly com- 
plete convergence in the log-likelihood. Moreover, 
we did not implement any flooring constraints 1 on 
the probabilities P(clwl ) or P(w21c). Nevertheless, 
in all our experiments, the ML aggregate Markov 

lit is worth noting, in this regard, that individual 
zeros in the matrices P(w2[c) and P(c[wl) do not nec- 
essarily give rise to zeros in the matrix P(w21wt), as 
computed from eq. (1). 

models assigned non-zero probability to all the bi- 
grams in the test set. This suggests that  for large 
vocabularies there is a useful regime 1 << C << V 
in which aggregate models do not suffer much from 
overfitting. In this regime, aggregate models can be 
relied upon to compute the probabilities of unseen 
word combinations. We will return to this point in 
Section 4, when we consider how to smooth n-gram 
language models. 

3 M i x e d - o r d e r  M a r k o v  m o d e l s  

One of the drawbacks of n-gram models is that  their 
size grows rapidly with their order. In this section, 
we consider how to make predictions based on a con- 
vex combination of'pairwise correlations. This leads 
to language models whose size grows linearly in the 
number of words used for each prediction. 

For each k > 0, the ski_p-k transition matrix 
M(wt-k, wt) predicts the current word from the 
kth previous word in the sentence. A mixed-order 
Markov model combines the information in these 
matrices for different values of k. Let m denote 
the number of bigram models being combined. The 
probability distribution for these models has the 
form: 

P(wdwt-1,..., wt_~) = (6) 
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k - 1  

f i  Ak(wt-k) Mk(wt-k,Wt) II[1- Aj(w,_~)]. 
k = l  j = l  

The terms in this equation have a simple interpreta- 
tion. The V x V matrices Mk (w, w') in eq. (6) de- 
fine the skip-k stochastic dependency of w' at some 
position t on w at position t - k; the parameters  
Ak (w) are mixing coefficients that  weight the predic- 
tions from these different dependencies. The value of 
Ak (w) can be interpreted as the probabili ty tha t  the 
model, upon seeing the word wt-k,  looks no further 
back to make its prediction (Singer, 1996). Thus the 
model predicts from wt-1 with probabili ty A1 (wt-1), 
from wt-2 with probabili ty [1 - Al(wt-1)]A2(wt-~), 
and so on. Though included in eq. (6) for cosmetic 
reasons, the parameters  Am (w) are actually fixed to 
unity so that  the model never looks further than m 
words back. 

We can view eq. (6) as a hidden variable model. 
Imagine tha t  we adopt the following strategy to pre- 
dict the word at t ime t. Starting with the previous 
word, we toss a coin (with bias Ai(Wt_i) ) to see if 
this word has high predictive value. If  the answer 
is yes, then we predict from the skip-1 transit ion 
matr ix ,  Ml(Wt-l,Wt). Otherwise, we shift our at- 
tention one word t o t h e  left and repeat the process. 
If  after m -  1 tosses we have not settled on a pre- 
diction, then as a last resort, we make a prediction 
using Mm(wt-m, wt). The hidden variables in this 
process are the outcomes of the coin tosses, which 
are unknown for each word wt-k. 

Viewing the model in this way, we can derive an 
EM algori thm to learn the mixing coefficients Ak (w) 
and the transition matrices 2 Mk(w, w'). The E-step 
of the algori thm is to compute,  for each word in the 
training set, the posterior probabili ty that  it was 
generated by Mk(wt-k, wt). Denoting these poste- 
rior probabilities by Ck(t), we have: 

Ck(t) = (7) 
Aa(wt-a)Mk(wt-k wt) k-1 , 

P(wt Iw,-1, w,-2,..., w,_~) 

where the denominator  is given by eq. (6). The 
M-step of the algorithm is to update  the parame-  
ters Ak(W) and Mk(w, w') to reflect the statistics in 
eq. (7). The updates  for mixed-order Markov models 
are given by: 

,s(w, wt-k)¢k (0 A (w) (8) 

~Note that the ML estimates of Mk(w,w') do not 
depend only on the raw counts of k-separated bigrams; 
they are also coupled to the values of the mixing coef- 
ficients, Aa(w). In particular, the EM algorithm adapts 
the matrix elements to the weighting of word combina- 
tions in eq. (6). The raw counts of k-separated bigrams, 
however, do give good initial estimates. 
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Figure 3: Plot of (training set) perplexity versus 
number  of iterations of the EM algorithm. The re- 
sults are for the m = 4 mixed-order Markov model. 

m train missing 
1 123.2 0.045 
2 89.4 0.014 
3 77.9 0.0063 
4 72.4 0.0037 

Table 3: Results for ML mixed-order models; m de- 
notes the number of bigrams that  were mixed into 
each prediction. The first column shows the per- 
plexities on the training set .  The s.ec0nd shows the 
fraction of words in the test set that  were assigned 
zero probability. The case m = 1 corresponds to a 
ML bigram model. 

Mk(w, W') +- ~ t  ~(W, Wt-k)~(W', Wt)¢k(t) 
E ,  w,-k)¢k(t) , (9) 

where the sums are over all the sentences in the 
training set, and J(w, w') = 1 iff w = w'. 

We trained mixed-order Markov models with 2 < 
m _< 4. Figure 3 shows a typical plot of the train- 
ing set perplexity as a function of the number of 
iterations of the EM algorithm. Table 3 shows the 
final perplexities on the training set (after four iter- 
ations of EM). Mixed-order models cannot be used 
directly on the test set because they predict zero 
probabili ty for unseen word combinations. Unlike 
standard n-gram models, however, the number of 
unseen word combinations actually decreases with 
the order of the model. The reason for this is that  
mixed-order models assign finite probabili ty to all n- 
grams wlw~ ... wn for which any of the k-separated 
bigrams wkwn are observed in the training set. To 
illustrate this point, Table 3 shows the fraction of 
words in the test set that  were assigned zero proba- 
bility by the mixed-order model. As expected, this 
fraction decreases monotonically with the number of 
bigrams that  are mixed into each prediction. 

Clearly, the success of mixed-order models de- 
pends on the ability to gauge the predictive value 
of each word, relative to earlier words in the same 
sentence. Let us see how this plays out for the 
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0.1 < Al(w) < 0.7 

(-) and of (") or (;) to (,) (&) by with S. from 
nine were for that eight low seven the (() (:) six 
are not against was four between a their two 
three its (unknown) S. on as is (--) five 0) into 
C. M. her him over than A. 

0.96 < Al(w) < 1 
officials prices which go way he last they earlier 
an Tuesday there foreign quarter she former 
federal don't days Friday next Wednesday (%) 
Thursday I Monday Mr. we half based part 
United it's years going nineteen thousand months 
(.) million very cents San ago U. percent billion 
(?) according (.) 

Table 4: Words with low and high values of Al(w) 
in an m = 2 mixed order model. 

second-order (m = 2) model in Table 3. In this 
model, a small value for ~l(w) indicates that  the 
word w typically carries less information that  the 
word that  precedes it. On the other hand, a large 
value for Al(w) indicates that  the word w is highly 
predictive. The ability to learn these relationships 
is confirmed by the results in Table 4. Of the three- 
hundred most common words, Table 4 shows the 
fifty with the lowest and highest values of Al(w). 
Note how low values of Al(w) are associated with 
prepositions, mid-sentence punctuation marks, and 
conjunctions, while high values are associated with 
"contentful" words and end-of-sentence markers. (A 
particularly interesting dichotomy arises for the two 
forms "a" and "an" of the indefinite article; the lat- 
ter, because it always precedes a word that  begins 
with a vowel, is inherently more predictive.) These 
results underscore the importance of allowing the 
coefficients Al(w) to depend on the context w, as 
opposed to being context-independent (Ney, Essen, 
and Kneser, 1994). 

4 S m o o t h i n g  

Smoothing plays an essential role in language models 
where ML predictions are unreliable for rare events. 
In n-gram modeling, it is common to adopt a re- 
cursive strategy, smoothing bigrams by unigrams, 
trigrams by bigrams, and so on. Here we adopt a 
similar strategy, using the (m - 1)th mixed-order 
model to smooth the ruth one. At the "root" of 
our smoothing procedure, however, lies not a uni- 
gram model, but an aggregate Markov model with 
C > 1 classes. As shown in Section 2, these models 
assign finite probability to all word combinations, 
even those that  are not observed in the training set. 
Hence, they can legitimately replace unigrams as the 
base model in the smoothing procedure. 

Let us first examine the impact of replacing uni- 
gram models by aggregate models at the root of the 

C 
1 
2 
4 
8 
16 
32 

validation test unseen 
163.615 
162.982 
161.513 
161.327 
160.034 
159.247 

167.112 
166.193 
164.363 
164.104 
162.686 
161.683 

293175 
259360 
200067 
190178 
164673 
150958 

Table 5: Perplexities of bigram models smoothed by 
aggregate Markov models with different numbers of 
classes (C). 

smoothing procedure. To this end, a held-out inter- 
polation algorithm (Jelinek and Mercer, 1980) was 
used to smooth an ML bigram model with the aggre- 
gate Markov models from Section 2. The smoothing 
parameters,  one for each row of the bigram transi- 
tion matrix,  were estimated from a validation set the 
same size as the test set. Table 5 gives the final per- 
plexities on the validation set, the test set, and the 
unseen bigrams in the test set. Note that  smooth- 
ing with the C = 32 aggregate Markov model has 
nearly halved the perplexity of unseen bigrams, as 
compared to smoothing with the unigram model. 

Let us now examine the recursive use of mixed- 
order models to obtain smoothed probability esti- 
mates. Again, a held-out interpolation algorithm 
was used to smooth the mixed-order Markov models 
from Section 3. The ruth mixed-order model had 
m V  smoothing parameters 0"k (w), corresponding to 
the V rows in each skip-k transition matrix.  The 
mth mixed-order model was smoothed by discount- 
ing the weight of each skip-k prediction, then fill- 
ing in the leftover probability mass by a lower-order 
model. In particular, the discounted weight of the 
skip-k prediction was given by 

k - 1  

[1 - O'k(wt -k ) lAk(Wt-k )  H I 1  --)~j(wt-j)]  , (10) 
j=l  

leaving a total mass of 

k - 1  

f i  O'k(Wt-k)~k(W,-k) H[1-- ,~j(W,_j)] (11) 
k= l  j=l  

for the ( m -  1)th mixed-order model. (Note that  
the m = 1 mixed-order model corresponds to a ML 
bigram model.) 

Table 6 shows the perplexities of the smoothed 
mixed-order models on the validation and test sets. 
An aggregate Markov model with C = 32 classes 
was used as the base model in the smoothing proce- 
dure. The first row corresponds to a bigram model 
smoothed by a aggregate Markov model; the second 
row corresponds to an m = 2 mixed-order model, 
smoothed by a ML bigram model, smoothed by an 
aggregate Markov model; the third row corresponds 
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m validation test 
1 160.1 161.3 
2 135.3 136.9 
3 131.4 133.5 
4 131.2 133.7 

Table 6: Perplexities of smoothed mixed-order mod-  
els on the validation and test sets. 

to an m = 3 mixed-order model, smoothed by a 
m = 2 mixed-order model, smoothed by a ML bi- 
gram model, etc. A significant decrease in perplex- 
ity occurs in moving to the smoothed m = 2 mixed- 
order model. On the other hand, the difference in 
perplexity for higher values of m is not very dra- 
matic.  

Our last experiment looked at the smoothing of 
a t r igram model. Our baseline was a ML tr igram 
model that  backed off 3 to bigrams (and when nec- 
essary, unigrams) using the Katz backoff procedure 
(Katz, 1987). In this procedure, the predictions of 
the ML tr igram model are discounted by an amount  
determined by the Good-Turing coefficients; the left- 
over probabili ty mass is then filled in by the backoff 
model. We compared this to a t r igram model that  
backed off to the m = 2 model in Table 6. This was 
handled by a slight variant of the Katz procedure 
(Dagan, Pereira, and Lee, 1994) in which the mixed- 
order model substi tuted for the backoff model. 

One advantage of this smoothing procedure is that  
it is straightforward to assess the performance of dif- 
ferent backoff models. Because the backoff models 
are only consulted for unseen word combinations, 
the perplexity on these word combinations serves as 
a reasonable figure-of-merit. 

Table 7 shows those perplexities for the two 
smoothed t r igram models (baseline and backoff). 
The mixed-order smoothing was found to reduce 
the perplexity of unseen word combinations by 51%. 
Also shown in the table are the perplexities on the 
entire test set. The overall perplexity decreased 
by 16%--a  significant amount  considering that  only 
24% of the predictions involved unseen word com- 
binations and required backing off from the t r igram 
model. 

The models in Table 7 were constructed from all 
n-grams (1 < n < 3) observed in the training data.  
Because many  n-grams occur very infrequently, a 
natural  question is whether truncated models, which 
omit  low-frequency n-grams from the training set, 
can perform as well as untruncated ones. The ad- 
vantage of truncated models is that  they do not need 
to store nearly as many  non-zero parameters  as un- 
truncated models. The results in Table 8 were ob- 

~We used a backoff procedure (instead of interpo- 
lation) to avoid the estimation of trigram smoothing 
parameters. 

backoff test unseen 
baseline 95.2 2799 
mixed 79.8 1363 

Table 7: Perplexities of two smoothed t r igram mod- 
els on the test set and the subset of unseen word 
combinations. The baseline model backed off to bi- 
grams and unigrams; the other backed off to the 
m = 2 model in Table 6. 

t baseline mixed t r igrams(× 105) missing 
1 95.2 79.8 25.4 0.24 
2 98.6 78.3 6.1 0.32 
3 101.7 79.6 3.3 0.36 
4 104.2 81.1 2.3 0.38 
5 106.2 82.4 1.7 0.41 

Table 8: Effect of truncating tr igrams that  occur 
less than t times. The table shows the baseline and 
mixed-order perplexities on the test set, the num- 
ber of distinct t r igrams with t or more counts, and 
the fraction of tr igrams in the test set that  required 
backing off. 

tained by dropping tr igrams that  occurred less than 
t t imes in the training corpus. The t = 1 row cor- 
responds to the models in Table 7. The most  in- 
teresting observation from the table is that  omit t ing 
very low-frequency tr igrams does not decrease the 
quality of the mixed-order model, and may  in fact 
slightly improve it. This contrasts with the s tandard 
backoff model, in which truncation causes significant 
increases in perplexity. 

5 D i s c u s s i o n  

Our results demonstrate  the utility of language mod- 
els that  are intermediate in size and accuracy be- 
tween different order n-gram models. The two 
models considered in this paper were hidden vari- 
able Markov models trained by EM algorithms for 
max imum likelihood estimation. Combinat ions of 
intermediate-order models were also investigated by 
Rosenfeld (1996). His experiments used the 20,000- 
word vocabulary Wall Street Journal corpus, a pre- 
decessor of the NAB corpus. He trained a maximum-  
entropy model consisting of unigrams, bigrams, tri- 
grams, skip-2 bigrams and trigrams; after selecting 
long-distance bigrams (word triggers) on 38 million 
words, the model was tested on a held-out 325 thou- 
sand word sample. Rosenfeld reported a test-set 
perplexity of 86, a 19% reduction from the 105 per- 
plexity of a baseline t r igram backoff model. In our 
experiments, the perplexity gain of the mixed-order 
model ranged from 16% to 22%, depending on the 
amount  of truncation in the t r igram model. 

While Rosenfeld's results and ours are not di- 
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rectly comparable, both demonstrate the utility of 
mixed-order models. It is worth discussing, how- 
ever, the different approaches to combining infor- 
mation from non-adjacent words. Unlike the max- 
imum entropy approach, which allows one to com- 
bine many non-independent features, ours calls for 
a careful Markovian decomposition. Rosenfeld ar- 
gues at length against naive linear combinations in 
favor of maximum entropy methods. His arguments 
do not apply to our work for several reasons. First, 
we use a large number of context-dependent mixing 
parameters to optimize the overall likelihood of the 
combined model. Thus, the weighting in eq. (6) en- 
sures that  the skip-k predictions are only invoked 
when the context is appropriate. Second, we adjust 
the predictions of the skip-k transition matrices (by 
EM) so that  they match the contexts in which they 
are invoked. Hence, the count-based models are in- 
terpolated in a way that  is "consistent" with their 
eventual use. 

Training efficiency is another issue in evaluating 
language models. The maximum entropy method 
requires very long training times: e.g., 200 CPU- 
days in Rosenfeld's experiments. Our methods re- 
quire significantly less; for example, we trained the 
smoothed m = 2 mixed-order model, from start  to 
finish, in less than 12 CPU-hours (while using a 
larger training corpus). Even accounting for differ- 
ences in processor speed, this amounts to a signifi- 
cant mismatch in overall training time. 

In conclusion, let us mention some open problems 
for further research. Aggregate Markov models can 
be viewed as approximating the full bigram tran- 
sition matr ix by a matr ix  of lower rank. (From 
eq. (1), it should be clear that  the rank of the class- 
based transition matr ix is bounded by the num- 
ber of classes, C.) As such, there are interesting 
parallels between Expectation-Maximization (EM), 
which minimizes the approximation error as mea- 
sured by the KL divergence, and singular value de- 
composition (SVD), which minimizes the approxi- 
mation error as measured by the L2 norm (Press 
et al., 1988; Schiitze, 1992). Whereas SVD finds a 
global minimum in its error measure, however, EM 
only finds a local one. It would clearly be desirable 
to improve our understanding of this fundamental 
problem. 

In this paper we have focused on bigram models, 
but  the ideas and algorithms generalize in a straight- 
forward way to higher-order n-grams. Aggregate 
models based on higher-order n-grams (Brown et al., 
1992) might be able to capture multi-word struc- 
tures such as noun phrases. Likewise, trigram-based 
mixed-order models would be useful complements to 
4-gram and 5-gram models, which are not uncom- 
mon in large-vocabulary language modeling. 

A final issue that needs to be addressed is 
scal ing-- that  is, how the performance of these mod- 
els depends on the vocabulary size and amount  

of training data. Generally, one expects that  the 
sparser the data, the more helpful are models that  
can intervene between different order n-grams. Nev- 
ertheless, it would be interesting to see exactly how 
this relationship plays out for aggregate and mixed- 
order Markov models. 
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