
Global Thresho ld ing and Mult ip le -Pass Parsing*

Joshua Goodman
Harvard University

40 Oxford St.
Cambridge, MA 02138

goodman@das.harvard.edu

Abstract

We present a variation on classic beam
thresholding techniques that is up to an or-
der of magnitude faster than the traditional
method, at the same performance level. We
also present a new thresholding technique,
global thresholding, which, combined with
the new beam thresholding, gives an ad-
ditional factor of two improvement, and a
novel technique, multiple pass parsing, tha t
can be combined with the others to yield
yet another 50% improvement. We use a
new search algorithm to simultaneously op-
timize the thresholding parameters of the
various algorithms.

1 Introduction
In this paper, we examine thresholding techniques
for statistical parsers. While there exist theoretically
efficient (O (n 3)) algorithms for parsing Probabilistic
Context-Free Grammars (PCFGs) and related for-
malisms, practical parsing algorithms usually make
use of pruning techniques, such as beam threshold-
ing, for increased speed.

We introduce two novel thresholding techniques,
global thresholding and multiple-pass parsing, and
one significant variation on traditional beam thresh-
olding. We examine the value of these techniques
when used separately, and when combined. In or-
der to examine the combined techniques, we also
introduce an algorithm for optimizing the settings

*This material is based in part upon work supported
by the National Science Foundation under Grant No.
IRI-9350192 and a National Science Foundation Grad-
uate Student Fellowship. I would also like to thank
Michael Collins, Rebecca Hwa, Lillian Lee, Wheeler
Ruml, and Stuart Shieber for helpful discussions, and
comments on earlier drafts, and the anonymous review-
ers for their extensive comments.

11

of multiple thresholds. When all three thresholding
methods are used together, they yield very signif-
icant speedups over traditional beam thresholding,
while achieving the same level of performance.

We apply our techniques to CKY chart parsing,
one of the most commonly used parsing methods in
natural language processing. In a CKY chart parser,
a two-dimensional matr ix of cells, the chart, is filled
in. Each cell in the chart corresponds-to a span of
the sentence, and each cell of the chart contains the
nonterminals that could generate that span. Cells
covering shorter spans are filled in first, so we also
refer to this kind of parser as a bo t tom-up chart
parser.

The parser fills in a cell in the chart by examining
the nonterminals in lower, shorter cells, and combin-
ing these nonterminals according to the rules of the
grammar. The more nonterminals there are in the
shorter cells, the more combinations of nonterminals
the parser must consider.

In some grammars , such as PCFGs, probabilities
are associated with the g rammar rules. This in-
troduces problems, since in many PCFGs, almost
any combination of nonterminals is possible, per-
haps with some low probability. The large number of
possibilities can greatly slow parsing. On the other
hand, the probabilities also introduce new opportu-
nities. For instance, if in a particular cell in the
chart there is some nonterminal tha t generates the
span with high probability, and another tha t gen-
erates that span with low probability, then we can
remove the less likely nonterminal from the cell. The
less likely nonterminal will probably not be par t of
either the correct parse or the tree returned by the
parser, so removing it will do little harm. This tech-
nique is called beam thresholding.

If we use a loose beam threshold, removing only
those nonterminals that are much less probable than
the best nonterminal in a cell, our parser will run
only slightly faster than with no thresholding, while

80

78

76

74

72

70

68

66

........................... T : U

/
/

/
/
/

/

10O00
Time

Figure 1: Precision and Recall versus Time in Beam
Thresholding

performance measures such as precision and recall
will remain virtually unchanged. On the other hand,
if we use a tight threshold, removing nonterminals
tha t are almost as probable as the best nonterminal
in a cell, then we can get a considerable speedup, but
at a considerable cost. Figure 1 shows the tradeoff
between accuracy and time.

In this paper, we will consider three different kinds
of thresholding. The first of these is a variation on
tradit ional beam search. In tradit ional beam search,
only the probabili ty of a nonterminal generating the
terminals of the cell's span is used. We have found
tha t a minor variation, introduced in Section 2, in
which we also consider the prior probabili ty tha t
each nonterminal is par t of the correct parse, can
lead to nearly an order of magnitude improvement.

The problem with beam search is tha t it only
compares nonterminals to other nonterminals in the
same cell. Consider the case in which a particular
cell contains only bad nonterminals, all of roughly
equal probability. We can ' t threshold out these
nodes, because even though they are all bad, none
is much worse than the best. Thus, what we want
is a thresholding technique tha t uses some global
information for thresholding, ra ther than just us-
ing information in a single cell. The second kind of
thresholding we consider is a novel technique, global
thresholding, described in Section 3. Global thresh-
olding makes use of the observation tha t for a non-
terminal to be par t of the correct parse, it must be
par t of a sequence of reasonably probable nontermi-
nals covering the whole sentence.

The last technique we consider, multiple-pass
parsing, is introduced in Section 4. The basic idea is
tha t we can use information from parsing with one

grammar to speed parsing with a~other. We run two
passes, the first of which is fast and simple, elimi-
nating from consideration many unlikely potential
constituents. The second pass is more complicated
and slower, but also more accurate. Because we have
already eliminated many nodes in our first pass, the
second pass can run much faster, and, despite the
fact that we have to run two passes, the added sav-
ings in the second pass can easily outweigh the cost
of the first one.

Experimental comparisons of these techniques
show tha t they lead to considerable speedups over
traditional thresholding, when used separately. We
also wished to combine the thresholding techniques;
this is relatively difficult, since searching for the opti-
mal thresholding parameters in a multi-dimensionai
space is potentially very t ime consuming. We .de-
signed a variant on a gradient descent search algo-
r i thm to find the optimal parameters . Using all three
thresholding methods together, and the paramete r
search algorithm, we achieved our best results, run-
ning an estimated 30 times faster than tradit ional
beam search, at the same performance level.

2 B e a m T h r e s h o l d i n g

The first, and simplest, technique we will examine is
beam thresholding. While this technique is used as
par t of many search algorithms, beam thresholding
with PCFGs is most similar to beam thresholding
as used in speech recognition. Beam thresholding
is often used in statistical parsers, such as tha t of
Collins (1996).

Consider a nonterminal X in a cell covering the
span of terminals tj...tk. We will refer to this as node
NjXk, since it corresponds to a potential node in the
final parse tree. Recall tha t in beam thresholding,
we compare nodes N~, k and N~, k covering the same
span. If one node is much more likely than the other,
then it is unlikely tha t the less probable node will
be par t of the correct parse, and we can remove it
from the chart, saving t ime later.

There is a subtlety about what it means for a node
N~, k to be more likely than some other node. Ac-
cording to folk wisdom, the best way to measure the
likelihood of a node N~, k is to use the probabil i ty
that the nonterminal X generates the span tj...tk,
called the inside probability. Formally, we write this
a s P (X =~ tj...tk) , and denote it by x ~(Nj,k). How-
ever, this does not give information about the proba-
bility of the node in the context of the full parse tree.
For instance, two nodes, one an NP and the other a
FRA G (fragment), may have equal inside probabili-
ties, but since there are far more NPs than there are
FRAG clauses, the NP node is more likely overall.

12

Therefore, we must consider more information than
just the inside probability.

The outside probability of a node N~k is the prob-
ability of that node given the surrounding terminals
of the sentence, i.e. P(S =~ tl...tj-xXtk+l...tn),
which we denote by a(N~k). Ideally, we would mul-
tiply the inside probability by the outside probabil-
ity, and normalize. This product would give us the
overall probability that the node is part of the cor-
rect parse. Unfortunately, there is no good way to
quickly compute the outside probability of a node
during bottom-up chart parsing (although it can be
efficiently computed afterwards). Thus, we instead
multiply the inside probability simply by the prior
probability of the nonterminal type, P(X), which
is an approximation to the outside probability. Our
final thresholding measure is P(X) xfl(Nj,Xk). In Sec-
tion 7.4, we will show experiments comparing inside-
probability beam thresholding to beam thresholding
using the inside probability times the prior. Using
the prior can lead to a speedup of up to a factor of
10, at the same performance level.

To the best of our knowledge, using the prior
probability in beam thresholding is new, al-
though not particularly insightful on our part.
Collins (personal communication) independently ob-
served the usefulness of this modification, and
Caraballo and Charniak (1996) used a related tech-
nique in a best-first parser. We think that the
main reason this technique was not used sooner is
that beam thresholding for PCFGs is derived from
beam thresholding in speech recognition using Hid-
den Markov Models (HMMs). In an HMM, the
forward probability of a given state corresponds to
the probability of reaching that state from the start
state. The probability of eventually reaching the
final state from any state is always 1. Thus, the
forward probability is all that is needed. The same
is true in some top down probabilistic parsing al-
gorithms, such as stochastic versions of Earley's al-
gorithm (Stolcke, 1993). However, in a bottom-up
algorithm, we need the extra factor that indicates
the probability of getting from the start symbol to
the nonterminal in question, which we approximate
by the prior probability. As we noted, this can be
very different for different nonterminals.

3 Global Thresholding

As mentioned earlier, the problem with beam thresh-
olding is that it can only threshold out the worst
nodes of a cell. It cannot threshold out an entire
cell, even if there are no good nodes in it. To rem-
edy this problem, we introduce a novel thresholding
technique, global thresholding.

A B C

Figure 2: Global Thresholding Motivation

The key insight of global thresholding is due to
Rayner and Carter (1996). Rayner et al. noticed
that a particular node cannot be part of the cor-
rect parse if there are no nodes in adjacent cells. In
fact, it must be part of a sequence of nodes stretch-
ing from the start of the string to the end. In a
probabilistic framework where almost every node
will have some (possibly very small) probability, we
can rephrase this requirement as being that the node
must be part of a reasonably probable sequence.

Figure 2 shows an example of this insight. Nodes
A, B, and C will not be thresholded ou t , because
each is part of a sequence from the beginning to the
end of the chart. On the other hand, nodes X, Y,
and Z will be thresholded out, because none is part
of such a sequence.

Rayner et al. used this insight for a hierarchical,
non-recursive grammar, and only used their tech-
nique to prune after the first level of the grammar.
They computed a score for each sequence as the min-
imum of the scores of each node in the sequence, and
computed a score for each node in the sequence as
the minimum of three scores: one based on statistics
about nodes to the left, one based on nodes to the
right, and one based on unigram statistics.

We wanted to extend the work of Rayner et al. to
general PCFGs, including those that were recursive.
Our approach therefore differs from theirs in many
ways. Rayner et al. ignore the inside probabilities of
nodes; while this may work after processing only the
first level of a grammar, when the inside probabilities
will be relatively homogeneous, it could cause prob-
lems after other levels, when the inside probability
of a node will give important information about its
usefulness. On the other hand, because long nodes
will tend to have low inside probabilities, taking the
minimum of all scores strongly favors sequences of
short nodes. Furthermore, their algorithm requires
time O(n a) to run just once. This is acceptable if the
algorithm is run only after the first level, but run-
ning it more often would lead to an overall run time
of O(n4). Finally, we hoped to find an algorithm
that was somewhat less heuristic in nature.

13

f loat f [1 . . n+ l] := {1,0,0, ...,0};
for start := 1 to n

for each node N beginning at start
left := f [s t a r t] ;
score := left × Ninside x Nprior;
i f score > f[start + Nlength]

f[start + Ntength] := score;

f loat b[1..n+l] := {0, .. . ,0,0, 1};
for start := n downto 1

for e a ch node N beginning at start
right := b[start + Ntength];
score := right × Ninside × Nprior;
i f score > b[start]

b[start] := score;

bestProb := f [n+ 1];

for each node N
left := f[N~t~rt];
right := b[N~t~,rt + Ntenath];
total := left × Ninsid~ X Np~or x right;
i f total > bestProb x TG

Nacuve := T R U E ;
else

Nacuve := FALSE;

Figure 3: Global Thresholding Algorithm

Our global thresholding technique thresholds out
node N if the ratio between the most probable se-
quence of nodes including node N and the over-
all most probable sequence of nodes is less than
some threshold, To. Formally, denoting sequences
of nodes by L, we threshold node N if

TG relax P(L) > max P(L)
LINeL

Now, the hard part is determining P(L) , the prob-
ability of a node sequence. Unfortunately, there is
no way to do this efficiently as part of the intermedi-
ate computation of a bottom-up chart parser. 1 We
will approximate P(L) as follows:

P(L) = I I P(LilL1.. .Li_i) ~ H P(Li)
i i

1Some other parsing techniques, such as stochastic
versions of Earley parsers (Stolcke, 1993), efficiently
compute related probabilities, but we won't explore these
parsers here. We confess that our real interest is in
more complicated grammars, such as those that use head
words. Grammars such as these can best be parsed bot-
tom up.

That is, we assume independence between the el-
ements of a sequence. The probability of node
Li = N~k is just its prior probability times its inside
probability, as before.

The most important difference between global
thresholding and beam thresholding is that global
thresholding is global: any node in the chart can help
prune out any other node. In stark contrast, beam
thresholding only compares nodes to other nodes
covering the same span. Beam thresholding typi-
cally allows tighter thresholds since there are fewer
approximations, but does not benefit from global in-
formation.

3.1 G l o b a l T h r e s h o l d i n g A l g o r i t h m

Global thresholding is performed in a bot tom-up
chart parser immediately after each length is com-
pleted. It thus runs n times during the course of
parsing a sentence of length n.

We use the simple dynamic programming algo-
ri thm in Figure 3. There are O(n 2) nodes in the
chart, and each node is examined exactly three
times, so the run time of this algorithm is O(n2).
The first section of the algorithm works forwards,
computing, for each i, f[i], which contains the score
of the best sequence covering terminals tl . . . ti-1.
Thus f i n + l] contains the score of the best sequence
covering the whole sentence, maxL P(L). The algo-
r i thm works analogously to the Viterbi algorithm for
HMMs. The second section is analogous, but works
backwards, computing b[i], which contains the score
of the best sequence covering terminals ti...tn.

Once we have computed the preceding arrays,
computing maXL]NE L P(L) is straightforward. We
simply want the score of the best sequence cover-
ing the nodes to the left of N, f[Nstart], times the
score of the node itself, times the score of the best
sequence of nodes from Ns~art + Nt~ngth to the end,
which is just b[N~u, rt + Nt~ngth]. Using this expres-
sion, we can threshold each node quickly.

Since this algorithm is run n times during the
course of parsing, and requires time O(n 2) each time
it runs, the algorithm requires time O(n 3) overall.
Experiments will show that the time it saves easily
outweighs the time it uses.

4 M u l t i p l e - P a s s P a r s i n g

In this section, we discuss a novel thresholding
technique, multiple-pass parsing. We show that
multiple-pass parsing techniques can yield large
speedups. Multiple-pass parsing is a variation on a
new technique in speech recognition, multiple-pass
speech recognition (Zavaliagkos et al., 1994), which
we introduce first.

14

4.1 Multiple-Pass Speech Recognition

In an idealized multiple-pass speech recognizer, we
first run a simple pass, computing the forward and
backward probabilities. This first pass runs rela-
tively quickly. We can use information from this
simple, fast first pass to eliminate most states, and
then run a more complicated, slower second pass
tha t does not examine states that were deemed un-
likely by the first pass. The extra t ime of running
two passes is more than made up for by the t ime
saved in the second pass.

The mathemat ics of multiple-pass recognition is
fairly simple. In the first simple pass, we record the
forward probabilities, c~(S~), and backward proba-
bilities, fl(S~), of each state i at each time t. NOW ,

~(s~)×~(s~) gives the overall probability of being in ~(s~,.,)
state i at t ime t given the acoustics. Our second pass
will use an HMM whose states are analogous to the
first pass HMM's states. If a first pass state at some
t ime is unlikely, then the analogous second pass state
is probably also unlikely, so we can threshold it out.

There are a few complications to multiple-pass
recognition. First, storing all the forward and back-
ward probabilities can be expensive. Second, the
second pass is more complicated than the first, typ-
ically ineaning tha t it has more states. So the map-
ping between states in the first pass and states in the
second pass may be non-trivial. To solve both these
problems, only states at word transitions are saved.
Tha t is, from pass to pass, only information about
where words are likely to s tar t and end is used for
thresholding.

4.2 M u l t i p l e - P a s s P a r s i n g

We can use an analogous algorithm for multiple-pass
parsing. In particular, we can use two grammars ,
one fast and simple and the other slower, more com-
plicated, and more accurate. Rather than using the
forward and backward probabilities of speech recog-
nition, we use the analogous inside and outside prob-
abilities, x fl(Nj,k) and a(Nfk) respectively. Remem-

ber tha t B(N~i.) is the probability that Nfk is

in the correct parse (given, as always, the model and
the string). Thus, we run our first pass, computing
this expression for each node. We can then eliminate
from consideration in our later passes all nodes for
which the probabili ty of being in the correct parse
was too small in the first pass.

Of course, for our second pass to be more accu-
rate, it will probably be more complicated, typically
containing an increased number of nonterminals and
productions. Thus, we create a mapping function

for length := 2 to n
for start := 1 to n - length + 1

LeftPrev := PrevChart [length][start];
for e a c h LeftNodePrev E LeftPrev

for each production instance Prod from
LeftNodePrev of size length

for e a c h descendant L of ProdLelt
for e a c h descendant R of ProdRight

for each descendant P of Prodpar~n~
such tha t P ~ L R

add P to Chart[length][start];

Figure 4: Second Pass Parsing Algorithm

from each first pass nonterminal to a set of second
pass nonterminals, and threshold out those second
pass nonterminals tha t map from low-scoring first
pass nonterminals. We call this mapping function
the descendants function. 2

There are many possible examples of first and sec-
ond pass combinations. For instance, the first pass
could use regular nonterminals, such as NP and VP
and the second pass could use nonterminals aug-
mented with head-word information. The descen-
dants function then appends the possible head words
to the first pass nonterminals to get the second pass
ones.

Even though the correspondence between for-
ward/backward and inside/outside probabilities is
very close, there are important differences between
speech-recognition HMMs and natural- language
processing PCFGs. In particular, we have found
that it is more important to threshold productions
than nonterminals. Tha t is, ra ther than just notic-
ing that a particular nonterminal VP spanning the
words "killed the rabbit" is ve ry likely, we also note
tha t the production VP --~ V NP (and the relevant
spans) is likely.

Both the first and second pass parsing algorithms
are simple variations on CKY parsing. In the first
pass, we now keep track of each production instance
associated with a node, i.e. N'x~,3 ~ NYi,k gZk+l,j,
computing the inside and outside probabilities of
each. The second pass requires more changes. Let
us denote the descendants of nonterminal X by
X1...Xx. In the second pass, for each production

2In thin paper, we will assume that each second pass
nonterminal can descend from at most one first pass non-
terminal in each cell. Th~ grammars used here have this
property. If this assumption is violated, multiple-pass
parsing is still possible, but some of the algorithms need
to be changed.

l S

of the form N. X. N Y z ~,~ ~ i,k N~+Ij in the first pass that
wasn' t thresholded out by multi-pass thresholding,
beam thresholding, etc., we consider every descen-
dant production instance, tha t is, all those of the

Z . form N~,~ p ~ Ni, ~ N~+, j , for appropriate values of
p, q, r. This algorithm is given in Figure 4, which
uses a current pass matr ix Chart to keep track of
nonterminals in the current pass, and a previous pass
matrix, PrevChart to keep track of nonterminals in
the previous pass. We use one additional optimiza-
tion, keeping track of the descendants of each non-
terminal in each cell in PrevChart which are in the
corresponding cell of Chart.

We tried multiple-pass thresholding in two differ-
ent ways. In the first technique we tried, production-
instance thresholding, we remove from consideration
in the second pass the descendants of all production
instances whose combined inside-outside probabil-
ity falls below a threshold. In the second technique,
node thresholding, we remove from consideration the
descendants of all nodes whose inside-outside prob-
ability falls below a threshold. In our pilot exper-
iments, we found tha t in some cases one technique
works slightly better, and in some cases the other
does. We therefore ran our experiments using both
thresholds together.

One nice feature of multiple-pass parsing is that
under special circumstances, it is an admissible
search technique, meaning tha t we are guaranteed
to find the best solution with it. In particular, if
we parse using no thresholding, and our grammars
have the proper ty tha t for every non-zero probabil-
ity parse in the second pass, there is an analogous
non-zero probabil i ty parse in the first pass, then
multiple-pass search is admissible. Under these cir-
cumstances, no non-zero probabili ty parse will be
thresholded out, but many zero probabili ty parses
may be removed from consideration. While we will
almost always wish to parse using thresholds, it is
nice to know tha t multiple-pass parsing can be seen
as an approximation to an admissible technique,
where the degree of approximation is controlled by
the thresholding parameter .

5 M u l t i p l e P a r a m e t e r O p t i m i z a t i o n

The use of any one of these techniques does not
exclude the use of the others. There is no rea-
son tha t we cannot use beam thresholding, global
thresholding, and multiple-pass parsing all at the
same time. In general, it wouldn' t make sense to use
a technique such as multiple-pass parsing without
other thresholding techniques; our first pass would
be overwhelmingly slow without some sort of thresh-

wh i l e n o t Thresholds E ThresholdsSet
add Thresholds to ThresholdsSet;
(BaseET , Base Time) := ParseAll(Thresholds);
for e a c h Threshold E Thresholds

if BaseET > TargetET
tighten Threshold;
(NewET , New Time) :-- ParseAll(Thresholds);
Ratio := (BaseTime - NewTime) /

(BaseET - NewET);
else

loosen Threshold;
(NewET , New Tim e) := ParseAll (Thresholds);
Ratio := (BaseET - NewET) /

(BaseTime - NewTime);
change Threshold with best Ratio;

Figure 5: Gradient Descent Multiple Threshold
Search

• r e s h 2

. Goal

Time

Optimizing for
L o w e r E n t r o p y :
Steeper is Better

. Goal

Throb 2 ~ e s h 1

Time

Optimizing for
Faster S p e e d :

Flatter is Bet ter

Figure 6: Optimizing for Lower Entropy versus Op-
timizing for Faster Speed

olding.
There are, however, some practical considerations.

To optimize a single threshold, we could simply
sweep our parameters over a one dimensional range,
and pick the best speed versus performance trade-
off. In combining multiple techniques, we need to
find optimal combinations of thresholding parame-
ters. Rather than having to examine 10 values in
a single dimensional space, we might have to exam-
ine 100 combinations in a two dimensional space.
Later, we show experiments with up to six thresh-
olds. Since we don ' t have t ime to parse with one
million parameter combinations, we need a bet ter
search algorithm.

Ideally, we would like to be able to pick a perfor-
mance level (in terms of either entropy or precision
and recall) and find the best set of thresholds for

16

achieving that performance level as quickly as pos-
sible. If this is our goal, then a normal gradient de-
scent technique won't work, since we can't use such
a technique to optimize one function of a set of vari-
ables (time as a function of thresholds) while holding
another one constant (performance). 3

We wanted a metric of performance which would
be sensitive to changes in threshold values. In par-
ticular, our ideal metric would be strictly increasing
as our thresholds loosened, so that every loosening
of threshold values would produce a measurable in-
crease in performance. The closer we get to this
ideal, the fewer sentences we need to test during pa-
rameter optimization.

We tried an experiment in which we ran beam
thresholding with a tight threshold, and then a loose
threshold, on all sentences of section 0 of length
< 40. For this experiment only, we discarded those
sentences which could not be parsed with the spec-
ified setting of the threshold, rather than retrying
with looser thresholds. We then computed for each
of six metrics how often the metric decreased, stayed
the same, or increased for each sentence between the
two runs. Ideally, as we loosened the "threshold, ev-
ery sentence should improve on every metric, but in
practice, ,that wasn't the case. As can be seen, the
inside score was by far the most nearly strictly in-
creasing metric. Therefore, we should use the inside
probability as our metric of performance; however
inside probabilities can become very close to zero, so
instead we measure entropy, the negative logarithm
of the inside probability.

Metric
Inside

Viterbi
Cross Bracket

Zero Cross Bracket
Precision

Recall

decrease same increase
7 64 1623
6 1300 388
134 1321 230
18 1606 61
134 1270 281
128 1321 236

We implemented a variation on a steepest descent
search technique. We denote the entropy of the sen-
tence after thresholding by ET. Our search engine
is given a target performance level ET to search for,

3We could use gradient descent to minimize a
weighted sum of time and performance, but we wouldn't
know at the beginning what performance we would have
at the end. If our goal is to have the best performance we
can while running in real time, or to achieve a minimum
acceptable performance level with as little time as nec-
essary, then a simple gradient descent function wouldn't
work as well as our algorithm.

Also, for this algorithm (although not for most experi-
ments), our measurement of time was the total number of
productions searched, rather than cpu time; we wanted
the greater accuracy of measuring productions.

and then tries to find the best combination of pa-
rameters that works at approximately this level of
performance. At each point, it finds the threshold
to change that gives the most "bang for the buck."
It then changes this parameter in the correct direc-
tion to move towards ET (and possibly overshoot
it). A simplified version of the algorithm is given in
Figure 5.

Figure 6 shows graphically how the algorithm
works. There are two cases. In the first case, if
we are currently above the goal entropy, then we
loosen our thresholds, leading to slower speed and
lower entropy. We then wish to get as much entropy
reduction as possible per time increase; that is, we
want the steepest slope possible. On the other hand,
if we are trying to increase our entropy, we want as
much time decrease as possible per entropy increase;
that is, we want the flattest slope possible. Because
of this difference, we need to compute different ratios
depending on which side of the goal we axe on.

There are several subtleties when thresholds are
set very tightly. When we fail to parse a sentence
because the thresholds are too tight, we retry the
parse with lower thresholds. This can lead to condi-
tions that are the opposite of what we expect; for in-
stance, loosening thresholds may lead to faster pars-
ing, because we don' t need to parse the sentence, fail,
and then retry with looser thresholds. The full al-
gorithm contains additional checks that our thresh-
olding change had the effect we expected (either in-
creased time for decreased entropy or vice versa). If
we get either a change in the wrong direction, or a
change that makes everything worse, then we retry
with the inverse change, hoping that that will have
the intended effect. If we get a change that makes
both time and entropy better, then we make that
change regardless of the ratio.

Also, we need to do checks that the denominator
when computing Ratio isn't too small. If it is very
small, then our estimate may be unreliable, and we
don' t consider changing this parameter. Finally, the
actual algorithm we used also contained a simple
"annealing schedule", in which we slowly decreased
the factor by which we changed thresholds. That
is, we actually run the algorithm multiple times to
termination, first changing thresholds by a factor of
16. After a loop is reached at this factor, we lower
the factor to 4, then 2, then 1.414, then 1.15.

Note that this algorithm is fairly domain inde-
• pendent. It can be used for almost any statistical

parsing formalism that uses thresholds, or even for
speech recognition.

17

6 Comparison to Previous Work

Beam thresholding is a common approach. While
we don' t know of other systems that have used
exactly our techniques, our techniques are cer-
tainly similar to those of others. For instance,
Collins (1996) uses a form of beam thresholding that
differs from ours only in that it doesn't use the
prior probability of nonterminals as a factor, and
Caraballo and Charniak (1996) use a version with
the prior, but with other factors as well.

Much of the previous related work on threshold-
ing is in the similar area of priority functions for
agenda-based parsers. These parsers t ry to do "best
first" parsing, with some function akin to a thresh-
olding function determining what is best. The best
comparison of these functions is due to Caraballo
and Charniak (1996; 1997), who tried various pri-
oritization methods. Several of their techniques are
similar to our beam thresholding technique, and one
of their techniques, not yet published (Caraballo and
Charniak, 1997), would probably work better.

The only technique that Caraballo and Charniak
(1996) give that took into account the scores of other
nodes in the priority function, the "prefix model,"
required O(n 5) time to compute, compared to our
O(n 3) system. On the other hand, all nodes in the
agenda parser were compared to all other nodes, so
in some sense all the priority functions were global.

Note that agenda-based PCFG parsers in gen-
eral require more than O(n 3) run time, because,
when bet ter derivations are discovered, they may
be forced to propagate improvements to productions
that they have previously considered. For instance,
if an agenda-based system first computes the prob-
ability for a production S ~ NP VP, and then
later computes some better probability for the NP,
it must update the probability for the S as well. This
could propagate through much of the chart. To rem-
edy this, Caraballo et al. only propagated probabil-
ities that caused a large enough change (Caraballo
and Charniak, 1997). Also, the question of when an
agenda-based system should stop is a little discussed
issue, and difficult since there is no obvious stopping
criterion. Because of these issues, we chose not to
implement an agenda-based system for comparison.

As mentioned earlier, Rayner and Carter (1996)
describe a system that is the inspiration for global
thresholding. Because of the limitation of their sys-
tem to non-recursive grammars, and the other dif-
ferences discussed in Section 3, global thresholding
represents a significant improvement.

Collins (1996) uses two thresholding techniques.
The first of these is essentially beam thresholding

for e a c h rule P ~ L R
i f nonterminal L in left cell

i f nonterminal R in right cell
add P to parent cell;

Algorithm One

for e a c h nonterminal L in left cell
for each 'nonterminal R in right cell

for e a c h rule P ~ L R
add P to parent cell;

Algorithm Two

Figure 7: Two Possible CKY inner loops

without a prior. In the second technique, there is
a constant probability threshold. Any nodes with
a probability below this threshold are pruned. If
the parse fails, parsing is restarted with the con-
stant lowered. We at tempted to duplicate this tech-
nique, but achieved only negligible performance im-
provements. Collins (personal communication) re-
ports a 38% speedup when this technique is com-
bined with loose beam thresholding, compared to
loose beam thresholding alone. Perhaps our lack of
success is due to differences between our grammars,
which are fairly different formalisms. When Collins
began using a formalism somewhat closer to ours,
he needed to change his beam thresholding to take
into account the prior, so this is not unlikely. Hwa
(personal communication) using a model similar to
PCFGs, Stochastic Lexicalized Tree Insertion Gram-
mars, also was not able to obtain a speedup using
this technique.

There is previous work in the speech recognition
community on automatically optimizing some pa-
rameters (Schwartz et al., 1992). However, this pre-
vious work differed significantly from ours both in
the techniques used, and in the parameters opti-
mized. In particular, previous work focused on opti-
mizing weights for various components, such as the
language model component. In contrast, we opti-
mize thresholding parameters. Previous techniques
could not be used or easily adapted to thresholding
parameters.

7 Exper iments

7.1 T h e P a r s e r a n d D a t a

The inner loop of the CKY algorithm, which deter-
mines for every pair of cells what nodes must be

18

Original
S

X Y

A B ... G H Z

A B

Binary Branching
S

X y

A X~,C,D,E,F Z

A B B XC,D,E,F, G

I
C XD,E,F,G, H

D X ~ E,F,G,H

E X~,a, H

F X~, H

G H

Figure 8: Converting to Binary Branching

added to the parent, can be written in several dif-
ferent ways. Which way this is done interacts with
thresholding techniques. There are two possibilities,
as shown in Figure 7. We used the second technique,
since the first technique gets no speedup from most
thresholding systems.

All experiments were trained on sections 2-18 of
the Penn Treebank, version II. A few were tested,
where noted, on the first 200 sentences of section 00
of length at most 40 words. In one experiment, we
used the first 15 ()f length at most 40, and in the re-
mainder of our experiments, we used those sentences
in the first 1001 of length at most 40. Our param-
eter optimization algorithm always used the first 31
sentences of length at most 40 words from section
19. We ran some experiments on more sentences,
but there were three sentences in this larger test set
that could not be parsed with beam thresholding,
even with loose settings of the threshold; we there-
fore chose to report the smaller test set, since it is
difficult to compare techniques which did not parse

exactly the same sentences.

7.2 T h e G r a m m a r

We needed several grammars for our experiments
so that we could test the multiple-pass parsing al-
gorithm. The grammar rules, and their associated
probabilities, were determined by reading them off
of the training section of the treebank, in a man-
ner very similar to that used by Charniak (1996).
The main grammar we chose was essentially of the
following form:

!
X =v A XB,C,D,E, F

!
X~,B,C,D~ ~ A XB,c,D,E,F

A
X ~ A B

That is, our grammar was binary branching ex-
cept that we also allowed unary branching produc-
tions. There were never more than five subscripted
symbols for any nonterminal, although there could
be fewer than five if there were fewer than five sym-
bols remaining on the right hand sine. Thus, our
grammar was a kind of 6-gram model on symbols
in the g r a m m a r : Figure 8 shows an example of
how we converted trees to binary branching with our
grammar. We refer to this grammar as the 6-gram
grammar. The terminals of the grammar were the
part-of-speech symbols in the treebank. Any exper-
iments that don' t mention which grammar we used
were run with the 6-gram grammar.

For a simple grammar, we wanted something that
would be very fast. The fastest grammar we can
think of we call the terminal grammar, because it has
one nonterminal for each terminal symbol in the al-
phabet. The nonterminal symbol indicates the first
terminal in its span. The parses are binary branch-
ing in the same way that the 6-gram grammar parses
are. Figure 9 shows how to convert a parse tree to
the terminal grammar. Since there is only one non-
terminal possible for each Cell of the chart, parsing
is quick for this grammar. For technical and prac-
tical reasons, we actually wanted a marginally more
complicated grammar, which included the "prime"
symbol of the 6-gram grammar, indicating that a
cell is part of the same constituent as its parent.
Therefore, we doubled the size of the grammar so
that there would be both primed and non-primed

aWe have skipped over details regarding our handling
of unary branching nodes. Unary branching nodes are
in general difficult to deal with (Stolcke, 1993). The ac-
tual gatammars we used contained additional symbols in
such a way that there could not be more than one unary
branch in a row. This greatly simplified computations,
especially of the inside and outside probabilities. We also
doubled the number of cells in our parser, having both
unary and binary cells for each length/start pair.

19

Original
S

NP VP

verb
det adj noun

Terminal
D E T

D E T VERB

det A D J verb

adj noun

Terminal-Prime
D E T

D E T VERB

det A D J ~ verb

adj noun

Figure 9: Converting to Terminal and Terminal-
Pr ime Grammars

versions of each terminal; we call this the terminal-
prime grammar , and also show how to convert to it
in Figure 9. This is the g rammar we actually used
as the first pass in our multiple-pass parsing exper-
iments.

7.3 W h a t we m e a s u r e d

The goal of a good thresholding algorithm is to trade
off correctness for increased speed. We must thus
measure both correctness and speed, and there are
some subtleties to measuring each.

First, the tradit ional way of measuring correctness
is with metrics such as precision and recall. Unfortu-
nately, there are two problems with these measures.
First, they are two numbers, neither useful with-
out the other. Second, they are subject to consid-
erable noise. In pilot experiments, we found that as
we changed our thresholding values monotonically,
precision and recall changed non-monotonically (see
Figure 11). We at t r ibute this to the fact tha t we
must choose a single parse from our parse forest,
and, as we tighten a thresholding parameter , we may

threshold out either good or bad parses. Further-
more, rather than just changing precision or recall
by a small amount, a single thresholded i tem may
completely change the shape of the resulting tree.
Thus, precision and recall are only smooth with very
large sets of test data. However, because of the large
number of experiments we wished to run, using a
large set of test da ta was not feasible. Thus, we
looked for a surrogate measure, and decided to use
the total inside probabili ty of all parses, which, with
no thresholding, is just the probabil i ty of the sen-
tence given the model. If we denote the total inside
probabili ty with no thresholding by I and the to-
tal inside probabili ty with thresholding by IT, then
/~= is the probabili ty tha t we did not threshold out
the correct parse, given the model. Thus, maximiz-
ing IT should maximize correctness. Since proba-
bilities can become very small, we instead minimize
entropies, the negative logari thm of the probabili-
ties. Figure 11 shows tha t with a large da ta set, en-
tropy correlates well with precision and recall, and
tha t with smaller sets, it is much smoother. Entropy
is smoother because it is a function of many more
variables: in one experiment, there were about 16000
constituents which contributed to precision and re-
call measurements, versus 151 million productions
potentially contributing to entropy. Thus, we choose
entropy as our measure of correctness for most ex-
periments. When we did measure precision and re-
call, we used the metric as defined by Collins (1996).

Note that the fact that entropy changes smoothly
and monotonically is critical for the performance of
the multiple parameter optimization algorithm. Fur-
thermore, we may have to run quite a few iterations
of tha t algorithm to get convergence, so the fact tha t
entropy is smooth for relatively small numbers of
sentences is a large help. Thus, the discovery tha t
entropy is a good surrogate for precision and recall is
non-trivial. The same kinds of observations could be
extended to speech recognition to optimize multiple
thresholds there (the typical modern speech system
has quite a few thresholds), a topic for future re-
search.

Note tha t for some sentences, with too tight
thresholding, the parser will fail to find any parse
at all. We dealt with these cases by restart ing the
parser with all thresholds lowered by a factor of 5,
i terating this loosening until a parse could be found.
This is why for some tight thresholds, the parser may
be slower than with looser thresholds: the sentence
has to be parsed twice, once with tight thresholds,
and once with loose ones.

Next, we needed to choose a measure of time.
There are two obvious measures: amount of work

2 0

le+07

0
0 ,0'0o 20'00 30'00 40'00 s0'00 80'0o 70'0o 80 0 9g00,0o0o

Time

6e+07

5e+07

4e+07

~ ~+07
2 a.

2e+07

Figure 10: Productions versus Time

done by the parser, and elapsed time. If we mea-
sure amount of work done by the parser in terms
of the number of productions with non-zero prob-
ability examined by the parser, we 'have a fairly
implementation-independent, machine-independent
measure of speed. On the other hand, because we
used many different thresholding algorithms, some
with a fair amount of overhead, this measure seems
inappropriate. Multiple-pass parsing requires use
of the outside algorithm; global thresholding uses
its own dynamic programming algorithm; and even
beam thresholding has some per-node overhead.
Thus, we will give most measurements in terms of
elapsed time, not including loading the g rammar and
other O(1) overhead. We did want to verify that
elapsed t ime was a reasonable measure, so we did
a beam thresholding experiment to make sure that
elapsed time and number of productions examined
were well correlated, using 200 sentences and an ex-
ponential sweep of the thresholding parameter. The
results, shown in Figure 10, clearly indicate that
t ime is a good proxy for productions examined.

7.4 Experiments in Beam Thresholding

Our first goal was to show that entropy is a good
surrogate for precision and recall. We thus tried two
experiments: one with a relatively large test set of
200 sentences, and one with a relatively small test set
of 15 sentences. Presumably, the 200 sentence test
set should be much less noisy, and fairly indicative of
performance. We graphed both precision and recall,
and entropy, versus time, as we swept the threshold-
ing parameter over a sequence of values. The results
are in Figure 11. As can be seen, entropy is signif-
icantly smoother than precision and recall for both
size test corpora.

Our second goal was to check thai the prior prob-
ability is indeed helpful. We ran two experiments,

one with the prior and one without. Since the exper-
iments without the prior were much worse than those
with it, all other beam thresholding experiments in-
cluded the prior. The results, shown in Figure 12,
indicate that the prior is a critical component. This
experiment was run on 200 sentences of test data.

Notice that as the t ime increases, the da ta tends
to approach an asymptote, as shown in the left hand
graph of Figure 12. In order to make these small
asymptot ic changes more clear,-we wished to ex-
pand the scale towards the asymptote . The right
hand graph was plotted with this expanded scale,
based on log(entropy - a sympto te) , a slight varia-
tion on a normal log scale. We use this scale in all
the remaining entropy graphs. A normal logarith-
mic scale is used for the t ime axis. The fact tha t
the time axis is logarithmic is especially useful for
determining how much more efficient one algorithm
is than another at a given performance level. If one
picks a performance level on the vertical axis, then
the distance between the two curves at tha t level
represents the ratio between their speeds. There is
roughly a factor of 8 to 10 difference between using
the prior and not using it at all graphed performance
levels, with a slow trend towards smaller differences
as the thresholds are loosened.

7.5 Experiments in Global Thresholding

We tried experiments comparing global thresholding
to beam thresholding. Figure 13 shows the results of
this experiment, and later experiments. In the best
case, global thresholding works twice as well as beam
thresholding, in the sense that to achieve the same
level of performance requires only half as much time,
although smaller improvements were more typical.

We have found that, in general, global threshold-
ing works bet ter on simpler grammars . In some
complicated grammars we explored in other work,
there were systematic, strong correlations between
nodes, which violated the independence approxima-
tion used in global thresholding. This prevented us
from using global thresholding with these grammars .
In the future, we may modify global thresholding to
model some of these correlations.

7.6 Experiments combining Global
Thresholding and Beam Thresholding

V(hile global thresholding works bet ter than beam
thresholding in general, each has its own strengths.
Global thresholding can threshold across cells, but
because of the approximations used, the thresholds
must generally be looser. Beam thresholding can
only threshold within a cell, but can do so fairly
tightly. Combining the two offers the potential to

21

70

65

60

55

50
100

80

78

76

74

72

70

68

66

64

62

Precision/Recall
15 Sentences

recall
precision -+--*

/
/

1 0 0 0
Time

Precision/Recall
200 Sentences

i i * .-e

recall
precision -~---

/

. . . . i ,

1 000 10050
Time

1750

Total Entropy
15 Sentences

1700

1650

1600

~. 1550
2

1500

1450

1400

1350

1300

1250
100

17500

17000

165OO

o

16000

I
\

15500

15000

14500

, , , , , , i

1000
Time

Total Entropy
200 Sentences

, , , , i , , , , , , , i

1000 10000
Time

Figure 11: Smoothness for Precision and Recall versus Total Inside for Different Test Da ta Sizes

2

17500 •

17000 1
\

16500

16000

15500

15000

14500 '
1000 10000

Time

X axis: log(time)
Y axis: entropy

Prior
No Prior -+- -

\
i
i

16786

15786

15286

2
14986

14886

14836

14806

\ Prior - - ~
",~ No Prior -~---
!

" x

",\÷

10000
Time

X axis: log(time)
Y axis: log(entropy - asymptote)

1 0 0 0

Figure 12: Beam Thresholding with and without the Prior Probability, Two Different Scales

22

o

ILl

0
I - -

7 4 4 2 0

7 1 4 2 0

7 0 4 2 0

69920

6 9 6 2 0

6 9 5 2 0

\ B e a m o

% ~ Global - +

,,., . Beam and Global --a
"El. "'-,.~..

""El ""~.

• . . . ~

, I , , , , , • ~ , " ~ •

000 10000
Time

Figure 13: Combining Beam and Global Search

get the advantages of both. We ran a series of experi-
ments using the thresholding optimization algorithm
of Section 5. Figure 13 gives the results. The com-
bination of beam and global thresholding together is
clearly bet ter than either alone, in some cases run-
ning 40% faster than global thresholding alone, while
achieving the same performance level. The combi-
nation generally runs twice as fast as beam thresh-
olding alone, although up to a factor of three.

7.7 Experiments in Multiple-Pass Parsing

Multiple-pass parsing improves even further on our
experiments combining beam and global threshold-
ing. Note tha t we used both beam and global thresh-
olding for both the first and second pass in these ex-
periments. The first pass g rammar was the very sim-
ple terminal-prime grammar , and the second pass
g rammar was the usual 6-gram grammar.

We evaluated multiple-pass parsing slightly dif-
ferently from the other thresholding techniques. In
the experiments conducted here, our first and sec-
ond pass grammars were very different from each
other. For a given parse to be returned, it must
be in the intersection of both grammars, and rea-
sonably likely according to both. Since the first and

second pass grammars capture different information,
parses which are likely according to both are espe-
cially good. The entropy of a sentence measures
its likelihood according to the second pass, but ig-
nores the fact tha t the returned parse must also be
likely according to the first pass. Thus, entropy, our
measure in the previous experiments, which mea-
sures only likelihood according to the final pass, is
not necessarily the right measure to use. We there-
fore give precision and recall results in this section.
We still optimized our thresholding parameters us-
ing the same 31 sentence held out corpus, and min-
imizing entropy versus number of productions, as
before.

We should note that when we used a first pass
g rammar that captured a strict subset of the infor-
mation in the second pass grammar , we have found
that entropy is a very good measure of performance.
As in our earlier experiments, it tends to be well cor-
related with precision and recall but less subject to
noise. I t is only because of the g rammar mismatch
that we have changed the evaluation.

Figure 14 shows precision and recall curves for sin-
gle pass versus multiple pass experiments. As in the
entropy curves, we can determine the performance

2 3

8 0

"U
(1)

o
O
~e

7 9

7 8

7 7

7 6

7 5

[- : , * * "

i o ' "
.B°°

: . , - °

, ']
• ' / /

7 4 I ~ " i pl tS

7 3

7 2

. :..-X- . "X-
. x ' " ' " '] ~ - . . B - - - - " : - " : ' - " - - : ' - " : - " : ' - " - " : ' : ' : ' : ' : ' : ' : ' : ' ~ - . x

... .~ (........... , , * ""EJ" ° "

x ..'"'" "'~'" B e a m R e c a l l o
~.--" G l o b a l Reca l l - +

./" B e a m a n d G l o b a l Reca l l --E~
. /" M u l t i - P a s s R e c a l l ~ "

/ / B e a m Prec is ion -~
, / / G l o b a l Prec is ion -~

f B e a m a n d G l o b a l Prec is ion --~
M u l t i - P a s s Prec is ion --+

..-4..-
. + . +v;g,.,~,

. . . . + - - . ~ . . ~ - - ' ~ ~ : : ~ . : . ~ _ ~ : . ~ : = = ~ ~,---2,.+
.-"" 2;:" ~ --- :~"

/ .r ,r

,/ . i
./ p.~

1 0 0 0 0
T i m e

Figure 14: Multiple Pass Parsing vs. Beam and Global vs. Beam

ratio by looking across horizontally. For instance,
the multi-pass recognizer achieves a 74% recall level
using 2500 seconds, while the best single pass al-
gorithm requires about 4500 seconds to reach that
level. Due to the noise resulting from precision and
recall measurements, it is hard to exactly quantify
the advantage from multiple pass parsing, but it is
generally about 50%.

8 Appl icat ions and Conclusions

8.1 Appl icat ion to Other Formalisms

In this paper, we only considered applying multiple-
pass and global thresholding techniques to pars-
ing probabilistic context-free grammars. However,
just about any probabilistic grammar formalism
for which inside and outside probabilities can be
computed can benefit from these techniques. For
instance, Probabilistic Link Grammars (Lafferty,
Sleator, and Temperley, 1992) could benefit from
our algorithms. We have however had trouble us-
ing global thresholding with grammars that strongly
violated the independence assumptions of global
thresholding.

One especially interesting possibility is to apply
multiple-pass techniques to formalisms that require

>> O(n 3) parsing time, such as Stochastic Brack-
eting Transduction Grammar (SBTG) (Wu, 1996)
and Stochastic Tree Adjoining Grammars (STAG)
(Resnik, 1992; Schabes, 1992). SBTG is a context-
free-like formalism designed for translation from one
language to another; it uses a four dimensional chart
to index spans in both the source and target lan-
guage simultaneously. It would be interesting to try
speeding up an SBTG parser by running an O(n 3)
first pass on the source language alone, and using
this to prune parsing of the full SBTG.

The STAG formalism is a mildly context-sensitive
formalism, requiring O(n 6) time to parse. Most
STAG productions in practical grammars are actu-
ally context-free. The traditional way to speed up
STAG parsing is to use the context-free subset of an
STAG to form a Stochastic Tree Insertion Grammar
(STIG) (Schabes and Waters, 1994), an O(n 3) for-
malism, but this method has problems, because the
STIG undergenerates since it is missing some ele-
mentary trees. A different approach would be to use
multiple-pass parsing. We could first find a context-
free covering grammar for the STAG, and use this
as a first pass, and then use the full STAG for the
second pass.

24

8 .2 C o n c l u s i o n s

The grammars described here are fairly simple, pre-
sented for purposes of explication. In other work
in preparation, in which we have used a signifi-
cantly more complicated grammar, which we call the
Probabilistic Feature Grammar (PFG), the improve-
ments from multiple-pass parsing are even more dra-
matic: single pass experiments are simply too slow
to run at all.

We have also found the automatic thresholding
parameter optimization algorithm to be very use-
ful. Before writing the parameter optimization al-
gorithm, we developed the PFG grammar and the
multiple-pass parsing technique and ran a series of
experiments using hand optimized parameters. We
recently ran the optimization algorithm and reran
the experiments, achieving a factor of two speedup
with no performance loss. While we had not spent
a great deal of time hand optimizing these param-
eters, we are very encouraged by the optimization
algorithm's practical utility.

This paper introduces four new techniques:
beam thresholding with priors, global threshold-
ing, multiple-pass parsing, and automatic search for
thresholding parameters. Beam thresholding with

• priors can lead to almost an order of magnitude im-
provement over beam thresholding without priors.
Global thresholding can be up to three times as ef-
ficient as the new beam thresholding technique, al-
though the typical improvement is closer to 50%.
When global thresholding and beam thresholding
are combined, they are usually two to three times
as fast as beam thresholding alone. Multiple-pass
parsing can lead to up to an additional 50% improve-
ment with the grammars in this paper. We expect
the parameter optimization algorithm to be broadly
useful.

R e f e r e n c e s

Carabailo, Sharon and Eugene Charniak. 1996. Fig-
ures of merit for best-first probabilistic chart pars-
ing. In Proceedings of the Conference on Era-.
pirical Methods in Natural Language Processing,
pages 127-132, Philadelphia, May.

Caraballo, Sharon and Eugene Charniak. 1997.
New figures of merit for best first probabilis-
tic chart parsing. In submission. Available from
http ://www. cs. brown, edu/people/sc/
NewFiguresofMerit. ps. Z .

Charniak, Eugene. 1996. Tree-bank grammars.
Technical Report CS-96-02, Department of Com-
puter Science, Brown University. Available from

f t p : / / f t p . cs. brown, edu/pub/ t echreport s /
9 6 / c s 9 6 - O 2 . p s . Z .

Collins, Michael. 1996. A new statistical parser
based on bigram lexical dependencies. In Proceed-
ings of the 3~th Annual Meeting of the ACL, pages
184-191, Santa Cruz, CA, June.

Lafferty, John, Daniel Sleator, and Davy Temper-
ley. 1992. Grammatical trigrams: A probabilis-
tic model of link grammar. In Proceedings of the
1992 AAAI Fall Symposium on Probabilistic Ap-
proaches to Natural Language, October.

Rayner, Manny and David Carter. 1996. Fast pars-
ing using pruning and grammar specialization. In
Proceedings of the 3~th Annual Meeting of the
ACL, pages 223--230, Santa Cruz, CA, June.

Resnik, P. 1992. Probabilistic tree-adjoining gram-
mar as a framework for statistical natural lan-
guage processing. In Proceedings of the l~th Inter-
national Conference on Computational Linguis-
tics, Nantes, France, August.

Schabes, Y. and R. Waters. 1994. Tree insertion
grammar: A cubic-time parsable formalism that
lexicalizes context-free grammar without changing
the tree produced. Technical Report TR-94-13,
Mitsubishi Electric Research Laboratories.

Schabes, Yves. 1992. Stochastic lexicalized tree-
adjoining grammars. In Proceedings of the l~th
International Conference on Computational Lin-
guistics, pages 426--432, Nantes, France, August.

Schwartz, Richard, Steve Austin, Francis Kubala,
John Makhoul, Long Nguyen, Paul Placeway,
and George Zavaliagkos. 1992. New uses for
the n-best sentence hypothesis within the byb-
los speech recognition system. In Proceedings of
the IEEE International Conference on Acoustics,
Speech and Signal Processing, volume I, pages 1-4,
San Francisco, California.

Stolcke, Andreas. 1993. An efficient probabilistic
context-free parsing algorithm that computes pre-
fix probabilities. Technical Report TR-93-065, In-
ternational Computer Science Institute, Berkeley,
CA.

Wu, Dekai. 1996. A polynomial-time algorithm for
statistical machine translation. In Proceedings of
the 3~th Annual Meeting of the ACL, pages 152-
158, Santa Cruz, CA, June.

Zavaliagkos, G., T. Anastasakos, G. Chou, C. Lapre,
F. Kubala, J. Makhoul, L. Nguyen, R. Schwartz,
and Y. Zhao. 1994. Improved search, acoustic
and language, modeling in the BBN Byblos large
vocabulary CSR system. In Proceedings of the
ARPA Workshop on Spoken Language Technol-
ogy, pages 81-88, Phdnsboro, New Jersey.

2 5

