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Abstract  

This paper presents a methodology for improving part-of-speech disambiguation using word 
classes. We build on earlier work for tagging French where we showed that statistical estimates 
can be computed without lexical probabilities. We investigate new directions for coming up with 
different kinds of probabilities based on paradigms of tags for given words. We base estimates 
not on the words, but on the set of  tags associated with a word. We compute frequencies of 
unigrams, bigrams, and trigrams of word classes in order to further refine the disambiguation. 
This new approach gives a more efficient representation of the data in order to disambiguate 
word part-of-speech. We show empirical results to support our claim. We demonstrate that, 
besides providing good estimates for disambiguation, word classes solve some of the problems 
caused by sparse training data. We describe a part-of-speech tagger built on these principles 
and we suggest a methodology for developing an adequate training corpus. 

1 Introduct ion  

In the part-of-speech hterature,  whether taggers are based on a rule-based approach (Klein and 
Simmons, 1963), (Brill, 1992), (Voutilainen, 1993), or on a statistical one (Bahl and Mercer, 1976), 
(Leech et al., 1983), (Merialdo, 1994), (DeRose, 1988), (Church, 1989), (Cutt ing et al., 1992), 
there is a debate as to whether more attention should be paid to lexical probabilities rather  than 
contextual ones. (Church, 1992) claims that  part-of-speech taggers depend almost exclusively on 
lexical probabilities, whereas other researchers, such as Voutilainen (Karlsson et al., 1995) argue 
that  word ambiguities vary widely in function of the specific text and genre. Indeed, part  of 
Church's argument is relevant if a system is based on a large corpus such as the Brown corpus 
(Francis and Ku~era, 1982) which represents one million surface forms of morpho-syntacticaJly 
disambiguated words from a range of balanced texts. Consider, for example, a word like "cover" 
as discussed by Voutilainen (Karlsson et al., 1995): in the Brown and the LOB Corpus (Johansson, 
1980), the word "cover" is a noun 40% of the occurrences and a verb 60% of the other, but in 
the context of a car maintenance manual, it is a noun 100~0 of the time. Since, for statistical 
taggers, 90% of texts can be disambiguated solely applying lexical probabilities, it is, in fact, 
tempting to think that  with more data  and more accurate lexical estimates, more text could 



be better disambiguated. If this hypothesis is true for English, we show that  it does not hold for 
languages for which publicly available tagged corpora do not exist. We also argue against Church's 
position, supporting the claim that  more attention needs to be paid to contextual information for 
part-of-speech disambiguation (Tzoukermann et ai., 1995). 

The problem tackled here is to develop an "efficient" training corpus. Unless large effort, 
money, and time are devoted to this project, only small corpora can be disambiguated manually. 
Consequently, the problem of extracting lexical probabilities from a small training corpus is twofold: 
first, the statistical model may not necessarily represent the use of a particular word in a particular 
context. In a morphologically inflected language, this argument is particularly serious since a word 
can be tagged with a large number of parts of speech, i.e. the ambiguity potential is high. Second, 
word ambiguity may vary widely depending on the particular genre of the text, and this could 
differ from the training corpus. When there is no equivalent for the Brown corpus in French, how 
should one build an adequate training corpus which reflects properly lexical probabilities? How 
can the numerous morphological variants that  render this task even harder be handled? 

The next section gives examples from French and describes how morphology affects part-of- 
speech disambiguation and what types of ambiguities are found in the language. Section 3 examines 
different techniques used to obtain lexical probabilities. Given the problems created by estimating 
probabilities on a corpus of restricted size, we present in Section 4 a solution for coping with these 
difficulties. We suggest a new paradigm called g e n o t y p e ,  derived from the concept of ambiguity 
class (Kupiec, 1992), which gives a more efficient representation of the data in order to achieve 
more accuracy in part-of-speech disambiguation. Section 5 shows how our approach differs from 
the approach taken by Cutting and Kupiec. The frequencies of unigram, bigram, and trigram 
genotypes are computed in order to further refine the disambiguation and results are provided to 
support our claims. The final section offers a methodology for developing an adequate training 
corpus. 

2 French words and morphological  variants 

To illustrate our position, we consider the case of French, a typical Romance language. French has 
a rich morphological system for verbs - which can have as many as 48 inflected forms - and a less 
rich inflectional system for nouns and adjectives, the latter varying in gender and number having 
up to four different forms. For example, the word "marine" shown in Table 1, can have as many 
as eight morphological analyses. 

word base form morphological analysis 
"marine" 
"marine" 
"marine" 
"marine" 
"marine" 
"marine" 
"marine" 
"marine" 

< m a r l n >  

<marine> 
< m a r i n e >  

< m a r i n e r >  

< m a r i n e r >  

<mariner> 
< m a r i n e r >  

< m a r i n e r >  

tags 
adjective, feminine singular jfs 
noun, feminine singular nfs 
noun, masculine singular nms 
verb, 1st person, singular, present, indicative vlspi 
verb, 1st person, singular, present, subjunctive vlsps 
verb, 2nd person, singular, present, imperative v2spm 
verb, 3rd person, singular, present, indicative v3spi 
verb, 3rd person, singular, present, subjunctive v3sps 

Table 1: Morphological analyses of the word "marine". 

The same word "marine", inflected in all forms of the three syntactic categories (adjective, 
noun, and verb) would have 56 morphologically distinct forms, i.e. 4 for the adjective, 2 for 
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each of the nouns, and 48 for the verb. At the same time, if we collapse the homographs, these 56 
morphologically distinct forms get reduced to 37 homographically distinct forms and the ambiguity 
lies in the 19 forms which overlap across internal verb categories, but also across nouns and 
adjectives. Table 1 shows 5 verb ambiguities, 2 noun ambiguities, a total of 8 homographs including 
the adjective form. 

P a r t - o f - s p e e c h  A m b i g u i t y  o f  F r e n c h  words .  Once morphological analysis is completed, 
ambiguity of words is computed in order to locate the difficulties. Figure 1 shows two corpora of 
different sizes and the number of words each tag contains. The figure clearly exhibits that even 
though Corpus 2 is twice as large as Corpus 1, the distribution of words per tags is very similar, 
i.e. more than 50% of the words have only one tag and are thus unambiguous, 25% of the words 
have two tags, 11% of the words have three tags, and about 5% of the words have from four to 
eight tags. 

i o 

Z 

co rpus  2 (200,182 words) 

\ 

\ 

\\ 

corpus I (94,882 w o  ) ~\  

I I I I I I I 

1 2 3 4 S 6 7 

Number of Tags 

Figure 1: Number of words per ambiguity level in two different corpora 

3 Problems with lexical probabilities 

There are several ways lexical probabilities could be estimated for a given language, each of them 
presenting problems: 

1. F r o m  r a w  t e x t :  a human tagger could manually disambiguate texts. There are some 
problems though due to the fact that there are always words that  are overseen (therefore 
improperly tagged) or there is disagreement between humans (on at least 5% of the words), 
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and cross-checking by another human is required. In our system, we manually tagged about 
76,000 words 1 in this way. 

. Boots trapping  f r o m  a l r e a d y  t a g g e d  tex t :  this technique generally consists of using a 
small tagged corpus to train a system and having the system tag another subset of the corpus 
that  gets disambiguated later. (Derouault and Merialdo, 1986) have used these techniques 
but the necessary human effort is still considerable. 

3. F r o m  t h e  b a s e f o r m  o f  the word: one could estimate the frequency of the analyzed stem 
in the process of morphological analysis. 

. F r o m  t h e  inf lec t ional  m o r p h e m e :  similarly, one could estimate the probabifity of the 
inflectional morpheme given its stem. This approach is often used for smoothing probabilities, 
but, considering the high ambiguity of some French suffixes, such as "e", "es", etc, it is 
doubtful that  basing the estimates on the suffixes alone would give good results. 

. F r o m  u n s e e n  pa i r s  o f  [words , tags] :  for a given word, such as "marine" that  can have 8 
possible tags, if only the instances [marine, adj-fem-sing], [marine, noun-fem-sing] are found 
in the training corpus, one could assume that  the remaining unseen instances have a much 
lower probabifity. This could create problems in making incorrect assumptions on words. 

Out of all the possibifities outfined above, none seems feasible and robust enough. Therefore, 
we decided to pay more attention to a different paradigm which captures more information about 
the word at a morphological and syntactic level. 

4 The genotype solution 

In an a t tempt  to capture the multiple word ambiguities on the one hand and the recurrence of 
these observations on the other, we came up with a new concept, called g e n o t y p e .  In biology, the 
genotype refers to the content of genes or the pattern of genes in the cell. As used in our context, 
the genotype is the set of part of speech tags associated with a word. Each word has a genotype (or 
series of tags based on morphological features) assigned during morphological analysis, and words, 
according to their patterns, share the same genotype. The genotype depends on the tagset, but not 
on any particular tagging method. For example, the word "marine" with the eight morphological 
analyses fisted in Table 1, has the genotype [JFS NFS NMS vlsPI  V1SPS V2SPM V3SPI V3SPS] 2, 
each tag corresponding to an analysis, i.e. the list of potential tags for "marine" as shown in 
Table 1. For each genotype, we compute the frequency with which each of the tags occurs and we 
select this decision. This paradigm has the advantage of capturing the morphological variation of 
words combined with the frequency with which they occur. A g e n o t y p e  dec i s ion  is the most 
frequent tag associated with a genotype in the training corpus. As explained in Section 4.2, out 
of a trMning corpus of 76,000 tokens, we extracted a total of 429 unigram genotypes, 6650 bigram 
genotypes, and 23,802 trigram genotypes with their respective decisions. 

1We wish to thank  Anne  Abeil]~ and Thierry Poibeau for helping the manual  tagging. 
2JFS = adjective, feminine, singular; NFS = noun,  feminine, singular; NMS = noun,  masculine, singular; VISPI 

= verb, 1st person, singular, present, indicative; v lsPS = verb, 1st person, singular, present, subjunct ive;  V2SPM 
= verb, 2nd person, singular, present, imperative; v3sPI = verb, 3rd person, singular, present, indicative; v3sPs = 
verb, 3rd person, singular, present, subjunctive.  
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4.1 P o w e r  o f  g e n o t y p e s  

The genotype concept allows generalizations to be made across words according to tag patterns, 
thereby gathering estimates not on words but on tag occurrences. We discovered that  in a training 
corpus of 76,000 tokens, lexical frequencies are not as reliable as genotype frequencies. In order to 
illustrate this, Table 2 and Table 3 show convincing results using this approach. Table 2 presents 
the set of words corresponding to the genotype [NFP V2S], and their resolution with respect to 
lexicM frequencies and genotype frequencies. The table shows 12 words from the test corpus which, 
from a morphological point of view, can be either verb-2nd-person-singular (v2s) or noun-feminine- 
plural (NFP); the first column contains always the same tag NFP, because of the genotype decision; 
we learned from the training corpus that  at each time a word could be tagged NFP or V2S, it is 
100% of the times NFP, 0% V2S, therefore the noun form is always picked over the verb form. Out 
of the 12 words listed in the Table 2, 4 words (marked u n s e e n  in the table) could not be estimated 
using lexical frequencies alone since they do not appear in the training corpus. However, since all 
of them belong to the same genotype, the 4 unseen occurrences are properly tagged. 

oeuvres 
d~penses 
d@enses 
toiles 
affaires 
avances 
finances 
feuilles 
forces 
oeuvres 
t~.ches 
rdformes 

genotype  lexical correct 
decision decision decision 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 

u n s e e n  

nfp 
nfp 
u n s e e n  

nfp 
u n s e e n  

nfp 
nfp 
nfp 
u n s e e T t  

nfp 
nfp 

Table 2: [NFP V2S] genotype frequencies vs 

nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 
nfp 

lexical frequencies 

In Table 3, we demonstrate that the genotype decision for the [NMS v l s  v2s v3s] genotype 
always favors the noun-masculine-singular form (NMS) over the verb forms (v l s  for verb-lst-person- 
singular, v2s for verb-2nd-person-singular, v3s for verb-3rd-person-singular). Out of the 12 words 
listed in Table 3, 5 do not occur in the training corpus and 4 of them can be properly tagged 
using the genotype estimates. The word "suicide", however, which should be tagged as a verb, 
was improperly tagged as a noun. Note that  we are only considering unigrams of genotypes, which 
tend to overgeneralize. However, as shown in Section 4.3, the additional estimates of bigrams and 
trigrams will use the context to select a more appropriate tag. 

4 .2  D i s t r i b u t i o n  o f  g e n o t y p e s  

Among all parts of speech, there is a clear division between closed-class parts of speech, which 
include prepositions and conjunctions, and open-class ones, which includes verbs, nouns, and 
adjectives. Similarly, we suggest that  genotypes be classified in categories: 

• Closed-c lass  g e n o t y p e s  contain at least one closed-class part-of-speech, e.g., "des", which 
belongs to the [P R] (preposition, article) genotype. 
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Table 3: [NMS 

suicide 
chiffre 
escompte 
escompte 
cercle 
doute 
nombre 
avantage 
pilote 
peigne 
doute 
groupe 

geno type  lexical correct 
decision d e c i s i o n  decision 
r i m s  

r i m s  

n m s  

n m s  

n m s  

r i m s  

r i m s  

r i m s  

n m s  

r i m s  

n m s  

r i m s  

u n s e e n  

r i m s  

u n s e e n  

u n s e e n  

v3s 
rims 
nms 
nms 

unseen nms 
nms nms 
nms nms 
nms nms 
nms nms 
unseen nms 
nms i nms 
nms nms 

v l s  v2s v3s] genotype frequencies vs lexical frequencies 

• S e m i  c losed-c lass  g e n o t y p e s  contain only open-class parts-of-speech, but behave very 
similarly to the closed-class genotype, with respect to the small number of words - often 
homograph - in that  genotype. For instance, the word "ills" (son [singular and plural], 
threads) with the low frequent genotype [NM NMP] or the word "avions" (planes, (we) had) 
which belong to the genotype [NFP V1P]. 

• O p e n - c l a s s  g e n o t y p e s  contain all other genotypes, such as [NFS v l s  v2s v3s]. This class, 
unlike the other two, is productive. 

There are several facts which demonstrate  the power of genotypes for disambiguation. First, the 
number of genotypes on which the estimates are made is much smaller than the number of words 
on which to compute estimates. Our results show that  in the training corpus of 76,000 tokens, 
there are 10,696 words, and 429 genotypes. Estimating probabilities on 429 genotypes rather  than 
10,696 words is an enormous gain. Since the distributions in both cases have a very long tail, 
there are many more words than genotypes for which we cannot obtain reliable statistics. As an 
example, we extracted the most frequent open-class genotypes from the training corpus (each of 
them occurring more than 100 times) shown in Table 4. It is striking to notice that  these 22 
genotypes represent almost 10~ of the corpus. The table shows the genotype in the first column, 
the number of occurrences in the second one, the part-of-speech distribution in the third one, 
the best genotype decision and the percent of this selection in the last column. We can see that  
words belonging to the same genotype are likely to be tagged with the same tag; for example, 
the genotype [NFS Vis V2S V3S] is tagged as NFS. That  allows us to make predictions for words 
missing from the training corpus. 

4 .3  C o n t e x t u a l  p r o b a b i l i t i e s  v i a  b i g r a m  a n d  t r i g r a m  g e n o t y p e s  

Using genotypes at the unigram level tends to result in overgeneralization, due to the fact that  the 
genotype sets are too coarse. In order to increase the accuracy of part-of-speech disambiguation, 
we need to give priority to trigrams over bigrams, and to bigrams over unigrams. 

In a way similar to decision trees, Table 5 shows how the use of context allows for bet ter  
disambiguation of genotype. We have considered a typical ambiguous genotype [.IMP NMP] which 
occurs 607 times in the training corpus, almost evenly distributed between the two alternative 
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genotype 
nfs vls v2s v3s 
jms nms 
jmp nmp 
rims v3s 
nfp v2s 
jfs nfs 
nms vls v2s v3s 
nms qsms 
jfp nfp 
vls v2s v3s 
nmp v2s 
DinS v 
jms qsms 
jms nms qsms 
jfs nfs qsfs 
nfs nms 
nfs nms vls v2s v3s 
jfp nfp qsfp 
jms nms qsms v3s 
jfs nfs vls v2s v3s 
jmp qsmp 
jmp nmp qsmp 

# of occ. 
899 
734 
607 
612 
441 
401 
405 

distribution 
nfs(797) vls(0) v2s(0) v3s(100) 
jms(498) nms(230) 
nmp(291) jmp(316) 
nms(28) v3s(584) 
nfp(437) v2s(1) 
jfs(333) nfs(67) 
nms(351) vls(0) v2s(0) v3s(51) 

decision 
.fs(SS.7%) 
jms(67.8%) 
jmp(52.6%) 
v3s(95.4%) 
nfp(99.1%) 
jfs(83.0%) 
rims(86.7%) 

325 
292 
263 
259 
249 
222 
213 
169 
131 

nms(52) qsms(271) 
jfp(192) nfp(99) 
vls(3) v2s(0) v3s(259) 
nmp(254) v2s(1) 
DinS(21) v(22s) 
jms(24) qsms(197) 
jms(19) nms(33) qsms(161) 
jfs(8) nfs(llO) qsfs(51) 
nfs(67) nms(64) 

qsms(83.4%) 
jfp(65.8%) 
v3s(98.5%) 
nmp(98.1%) 
v(91.6%) 
qsms(88.7%) 
qsms(75.6%) 
nfs(65.1%) 
nfs(51.1%) 

115 
126 
114 
110 
112 
100 

nfs(39) nms(49) vls(O v2s(0) v3s(27) 
jfp(1)2 nfp(55) qsfp(58) 
jms(2) nms(18) qsms(52) v3s(42) 
jfs(39) nfs(27) vls(1) v2s(0) v3s(42) 
jmp(S) qsmp(103) 
jmp(8) nmp(47) qsmp(45) 

nms(42.6%) 
qsfp(46.0%) 
qsms(45.6%) 
jfs(38.2%) 
qsmp(91.2%) 
nmp(47.0%) 

Table 4: The most frequent open-class genotypes 

tags, JMP and NMP. As a result, if only unigram training data is used, the best candidate for 
that genotype would be JMP, occurring 316 out of 607 times. However, choosing JMP only gives 
us 52.06% accuracy. Table 5 clearly demonstrates that the contextual information around the 
genotype will bring this percentage up significantly. As an example, let us consider the 5th fine of 
Table 5, where the number 17 is marked with a square. In this case, we know that the [JMP NMP] 
genotype has a right context consisting of the genotype [p r] (4th column, 5th fine). In this case, 
it is no longer true that JMP is the best candidate. Instead, NMP Occurs 71 out of 91 times and 
becomes the best candidate. Overall, for all possible left and right contexts of [JMP NMP], the guess 
based on both the genotype and the single left or right contexts will be correct 433 times out of 536 
(or 80.78%). In a similar fashion, the three possible trigram layouts (Left, Middle, and Right) are 
shown in fines 18-27. They show that the performance based on trigrams is 95.90%. This particular 
example provides strong evidence of the usefulness of contextual disambiguation with genotypes. 
The fact that this genotype, very ambiguous as a unigram (52.06%), can be disambiguated as a 
noun or adjective according to context at the trigram stage with 95.90% accuracy demonstrates 
the strength of our approach. 

4.4 S m o o t h i n g  p r o b a b i l i t i e s  w i t h  g e n o t y p e s  

In the context of a small training corpus, the problem of sparse data is more serious than with a 
larger tagged corpus. Genotypes play an important role for smoothing probabilities. By paying 
attention to tags only and thus ignoring the words themselves, this approach handles new words 
that have not been seen in the training corpus. Table 6 shows how the training corpus provides 
coverage for n-gram genotypes that appear in the test corpus. It is interesting to notice that only 
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n - g r a m  

Unigram 

p o s .  t o t a l  g e n o t y p e  

607 [ jmp n m p ]  

Bigram Left 230 

Right  306 

Trigram Left 

Middle 

d e c i s i o n  d i s t r ,  c o r .  t o t a l  c o r .  t o t a l  a c c u r a c y  II 

Right 

[jmp nmPl[x ] 

[jmp nmpl[p r] 

Limp nmpl[nmp ] 

[ jmp nmp][a] 
[p r][ jmp nmp]  

[b r][ jmp nmp]  

[nmp][jmp nmp]  
32 [ jmp nmp][p  r][nms] 

[ jmp nmp][ jmp nmp][x] 

44 [p r][ jmp nmp][p  r] 
[b r][jmp nmp][p r] 

46 [p rl[nmp][jmp nmp]  

[n z][p r l [ jmp nmp]  

j m p  316 316 607 316 
n m p  291 
j m p ,  x 71 771 102 433 
n m p ,  x 31 

j m p ,  p t 17 I 71 91 
j m p ,  r 3 
n m p ,  p 71 
j m p ,  nmp 23 23 24 
n m p ,  n m p  1 
j m p ,  a 13 13 13 
p, j m p  27 112 141 
p, n m p  104 
r, j m p  2 
r, n m p  8 
r, i m p  22 72 94 
r, n m p  72 
nmp, i m p  71 71 71 
n m p ,  p, rims 21 21 21 117 
i m p ,  jmp, x 3 8 11 
n m p ,  jmp, x 8 
p, n m p ,  p 23  23 23 
r, n m p ,  p 19 19 21 
r, j m p ,  p 2 
p, nmp, j m p  27 29 29 
r, nmp, j m p  2 
z, p, n m p  16 17 17 
z, r, n m p  1 

607 52.06% 

536 80.78% 

122 95.90% 

Table 5: Influence of context for n-gram genotype disambiguation. 

12 out of 1564 unigram genotypes (0.8%) are not covered. The training corpus covers 71.4% of 
the bigram genotypes that  appear in the test corpus and 22.2% of the trigrams. 

Coverage  of  G e n o t y p e s  
test  corpus training corpus 
o f  genotypes  ~ o f  genotypes  % 

1-grams 1564 1552 (99.2 %) 
2-grams 1563 1116 ] (71.4 %) 
3-grams 1562 346 [ (22.2 %) 

Table 6: Coverage in the training corpus of n-gram genotypes that  appear in the test corpus. 

5 Comparison with other approaches 

In some sense, this approach is similar to the notion of "ambiguity classes" explained in (Kupiec, 
1992) and (Cutting et al., 1992) where words that  belong to the same part-of-speech figure together. 
In this approach, they use the notion of word equivalence or ambiguity classes to describe words 
belonging to the same part-of-speech categories. In our work, the entire algorithm bases estimations 
on genotype only, filtering down the ambiguities and resolving them with statistics. Moreover, the 
estimation is achieved on a sequence of n-gram genotypes. Also, the refinement that  is contMned in 
our system reflects the real morphological ambiguities, due to the rich nature of the morphological 
output  and the choice of tags. There are three main differences between their work and ours. First, 
in their work, the most common words are estimated individually and the less common ones are 
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put together in their respective ambiguity classes; in our work, every word is equally treated by 
its respective genotype. Second, in their work, ambiguity classes can be marked with a preferred 
tag in order to help disambiguation whereas in our work, there is no special annotation since 
words get disambiguated through the sequential application of the modules. Third, and perhaps 
the most important ,  in our system, the linguistic and statistical estimations are entirely done on 
the genotypes only, regardless of the words. Words are not estimated individually given their 
class categories; rather, genotypes are estimated separately from the words or in the context of 
other genotypes (bi- and tri-gram probabilities). (Brill, 1995) presents a rule-based part-of-speech 
tagger for unsupervised training corpus. Some of the rules of his system and the fact that  he 
uses a minimal training corpus suggests some similarities with our system, but the main aim of 
the work is to investigate methods to combine supervised and unsupervised training in order to 
come up with a highly performing tagger. (Chanod and Tapanainen, 1995) compare two tagging 
frameworks for tagging French, one that is statistical, built upon the Xerox tagger (Cutting et 
al., 1992), and another based on linguistic constraints only. The contraints can be 100% accurate 
or describe the tendency of a particular tagging choice. The contraint-based tagger is proven to 
have better performance than the statistical one, since rule writing is more handlable or more 
controllable than adjusting the parameters of the statistical tagger. It is difficult to compare any 
kind of performance since their tagset is very small, i.e. 37 tags, including a number of word- 
specific tags (which reduces further the number of "real" tags), and does not account for several 
morphological features, such as gender, number for pronouns, etc. Moreover, categories that  can 
be very ambiguous, such as coordinating conjunctions, subordinating conjunctions, relative and 
interrogative pronouns which tend to be collapsed; consequently, the disambiguation is simplified 
and results cannot be compared. 

6 Implementation and performance of the part-of-speech tagger 

We have developed a part-of-speech tagger using only a finite-state machine framework. The input 
string is represented as a finite-state generator, and the tagging is obtained through composition 
with a pipeline of finite-state transducers (FST's). Besides the modules for pre-processing and 
tokenization, the tagger includes a morphological FST and a statistical FST, which incorporates 
linguistic and statistical knowledge. We have used a toolkit developed at AT&T Bell Laboratories 
(Pereira et al., 1994) which manipulates weighted and unweighted finite-state machines (acceptors 
or transducers). Using these tools, we have created a set of programs which generate finite- 
state transducers from descriptions of linguistic rules (in the form of negative constraints) and for 
encoding distribution information obtained through statistical learning. Statistical decisions on 
genotypes are represented by weights - the lower cost, the higher the chance of a particular tag to 
be picked. With this representation, we are able to prefer one n-gram decision over another based 
on the cost. 

The morphological FST is generated automatically from a large dictionary of French of about 
90,000 entries and on-line corpora, such as Le Monde Newspapers (ECI, 1989 and 1990). It takes 
the text as input and produces an FST that  encodes each possible tagging of the input text as one 
distinct path from the start state to the final state. The statistical FST is created from 1-gram, 
2-gram, and 3-gram genotype data obtained empirically from the training corpus. It encodes all 1, 
2, 3-grams of genotypes extracted from the training corpus with a cost determined as a function 
of the frequency of the genotype decision in the training corpus. Table 7 shows how costs are 
computed for a specific bigram and how these costs are used to make a tagging decision. The 
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bigram in the example, [p r] [jmp nmp], occurs 306 times in the training corpus. All possible 
taggings, i.e. [p] limp], [p] [nmp], [r] [jmp], and [r] [nmp] appear in the training corpus. The 
sub-FST that corresponds to this bigram of genotypes will have [p r] [jmp nmp] on its input and 
all 4 possible taggings on its output. Each tagging sequence has a different costs. Let f be the 
total count of the genotype bigram. Let ft be the number of cases that the tagging is t, for all 
possible taggings t (in this example there are 4 possible taggings). The cost of the transition for 
tagging t is the negative logarithm of ft divided by f: - l o g ( f t / f ) .  The selected transition is 
the one with the lowest cost; the example in Table 7 illustrates the computation of costs with [p] 
[nmp], the selected tagging in bold. 

g e n o t y p e  b i g r a m  tagging  f r e q u e n c y  
[p r] [imp nmp] p, jmp 

p, n m p  
r, jmp 
r, nmp 

cost 
27/306 2.43 

104/306 1.08 
2/306 5.03 
8/306 3.64 

Table 7: An example of cost computation for the bigram FST [p r] [jmp nmp]. 

In a similar way, the statistical FST contains paths for unigrams and trigrams. In order to 
prefer trigrams over bigrams, and bigrams over unigrams, we have added a biased cost to some 
transitions. The empirically determined values of the biased cost are as follows: 

trigram biased cost < bigram biased cost < unigram biased cost. 
If a certain bigram or trigram does not appear in the training corpus, the FST will still have a 
corresponding path, but at a higher cost. Since negative constraints (such as "article" followed by 
"verb") reflect n-grams that are impossible linguistically and therefore have an expected frequency 
of appearance equal to 0, we assign them a very high cost (note that in order to keep the graph 
connected, we cannot assign a cost of ~x~). To make the use of biased cost clear, Table 8 shows the 
unigrams [p r] and [jmp nmp] that compose the bigram described in Table 7 and the corresponding 
transition costs. 

genotype u n i g r a m  tagging  frequency 
[p r] p 6645/6883 

r 238/6883 
[jmp nmp] j m p  316/607 

nmp 291/607 

cost b iased  cost  
0.04 1.04 
3.36 4.36 

0.65 1.65 
0.73 1.73 

Table 8: An example of biased cost for the unigram sub-FST's [p r] and [jmp nmp]. 

Figure 2 presents the FST that corresponds to Table 7 and Table 8. The top part shows how 
the genotype bigram [p r] [jmp nmp] can be tagged as a sequence of two unigrams; the bottom 
part uses one bigram to tag it. The notation on all arcs in the FST is the following: 

inpu t  s t r ing  : o u t p u t  s t r ing  / cost 
e.g., 

[p hi." p / 1.04 
The input is a genotype n-gram, the output represents a possible tag n-gram with the corresponding 
cost. The FST shown in Figure 2 is part of a much larger FST containing 2.8 million ares. 

The cheapest path for tagging the sequence of two genotypes [p r] [jmp nmp] can go either 
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Figure 2: Example of an FST that tags the genotype bigram [p r] [jmp nmp] 

through one bigram transition shown in bold face in Table 7, or through two adjacent unigram 
transitions shown in bold face in Table 8. The corresponding paths through the FST are shown in 
Figure 2. In the first case (bigrams), the tagging of [p], [nmp] is at a cost of 1.08, whereas in the 
other case (unigrams), the cheapest path or the lowest cost includes the two transitions [p] and 
limp] for a total cost of 1.04 + 1.65 = 2.69. In this case, not only do bigrams have precedence over 
unigrams, but the choice of the tagging sequence [p], [nmp] is also better than the sequence [p] 
[jmp], as it takes into account the context information. Similarly, if a trigram contained a bigram 
as a sub-FST, typically the cost of going through the trigram would be smaller than the cost of 
going through a bigram and a unigram. In the case where two consecutive genotype unigrams do 
not compose a bigram seen in the training corpus, there is no context information that can be 
applied and only the information of the tagging of the individual unigrams is used. 

The tagger is based on a tagset of 72 parts of speech. As said earlier, the training corpus was 
manually tagged and contained 76,000 words. The test corpus, also manually tagged, contained 
1,500 words. Taking into account the large number of parts of speech, the tagger disambiguates 
correctly about 95% of unrestricted text. We are in the process of improving the tagger performance 
in refining rules and biased costs. 

'7 Steps for building an optimal training corpus 

This section explains the motivations of our claims for developing taggers for a language. The 
following steps are based on our experience and, we believe, will extend to a wide range of language 
types. 

1. S t u d y  morpho-syntactic ambiguity and w o r d  f requenc ies :  Part-of-speech ambiguities 
must be observed as a function of the word frequencies as shown in Section 2. 

2. A n a l y z e  morphology and morphological features in order to evaluate the ambiguity 
of the language. As shown in Section 2, some suffixes may disambiguate a certain number of 
words, whereas others may be truly ambiguous and overlap over several categories of words. 

3. D e t e r m i n e  concise tagset based on trade-off between tagset size and computational com- 
plexity. This requires system tuning and is often dependent on the application. The more 
tags, the harder the estimation of probabilities, and the sparser the data. Having a concise 
set of tags is therefore a priority. 

11 



4. O b t a i n  m a x i m u m  g e n o t y p e  coverage :  genotypes must first be separated into closed, 
semi-closed, and open class. Then, the first two classes must be exhaustively covered since 
their number is relatively small. Last, open-class genotypes should be examined by order of 
frequency; since their number is finite, they can also be exhaustively covered. 

5. C a p t u r e  c o n t e x t u a l  p robab i l i t i e s :  genotypes must be considered in context. As de- 
scribed in Section 4.3, bigram and trigram genotypes give accurate estimates of the morpho- 
syntactic variations of the language. 

We believe that  concentrating efforts on these issues will allow part-of-speech tagger developers 
to optimize time and effort in order to develop adequate basic training material. 

8 Conclus ion 

We explored the morpho-syntactic ambiguities of a language, basing our experiments on French. 
Several ways to estimate lexical probabilities were discussed and a new paradigm, the genotype, 
was presented. This paradigm has the advantage to capture the morphological variation of words 
along with the frequency at which they occur. A methodology is presented in order to optimize the 
construction of a restricted training corpus for developing taggers. In order to disambiguate word 
part-of-speech with a small training corpus, genotypes turn out to be much easier to model than 
the words themselves. They offer a successful solution to the small training corpus problem as 
well as to the problem of data sparsness. Compared to lexical probabilities, they give much more 
reliable accounts, since only 429 genotypes need to be estimated instead of 10,696 words for lexical 
probabilities. Results are even more convincing when genotypes are used in context and bigrams 
and trigrams are applied to disambiguate. Additionally, they are used for smoothing which is a 
particularly important  issue in the context of small training corpus. 
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