Proceedings of the 10th Nordic
Conference of Computational Linguistics
NODALIDA-95
Helsinki 29-30 May 1995

Edited by
Kimmo Koskenniemi

University of Helsinki PUBLICATIONS
Department of General Linguistics NO. 26
PO. Box 4 (Keskuskatu 8) 1995

FIN-00014 University of Helsinki
Finland

Preface

The Department of General Linguistics at the University of Helsinki arranges this
tenth Scandinavian Conference of Computational Linguistics or “10:e Nordiska
Datalingvistikdagarna”, in short NODALIDA-95.

The event is directed to the scholars, students and professionals in various fields
of computational linguists as well as to all other interested parties. Most of the
participants which have preregistered are from the Nordic countries.

Papers were invited from all areas of computational linguistics, including but
not restricted to: morphological, syntactic, semantic and textual analysis and gen-
eration, speech processing, machine translation and processing of monolingual or
multilingual text corpora.

The conference is committed to meet two goals:

e To be a forum for presenting high quality scientific papers. Such papers were
refereed and selected by a program committee and referees.

e To be an occasion for computational linguists in the Nordic Countries meet
and get to know each other, as well as inform each other about their interests,
projects and status of their research. Short papers or posters are intended to
accomplish this task.

A program committee was established consisting of prof. Lauri Carlson, doc.
Gunnel Kallgren, director Bente Magard, prof. Torbjgrn Nordgard, prof. Anna
Sagvall Hein, and Ph.D. Atro Voutilainen, and Kimmo Koskenniemi as the chair-
man. In addition to the members of the program committee, PhD Maria Vilkuna
and PhD Lars Borin acted as additional referees.

Altogether 32 submissions were received by the program committee. About 18
papers were considered as potential long papers, others being explicitly submitted
as posters or short papers. All candidates for long papers were reviewed by at least
to referees independently. Finally, six papers were accepted to be printed in this
volume and presented in the conference as long plenum papers. The long papers
are arranged in the alphabetical order of the authors.

Short papers and abstracts of posters will be copied and distributed separately
to the participants of the conference.

This conference was arranged almost exclusively using electronic mail and the
Internet. No hardcopy “call for papers” or the like were ever mailed. Most of the
refereeing also proceeded electronically, and most of the camera ready papers were
transmitted via the net. We consider the possibility of placing the material in a
suitable FTP site for easy access by the community.

May, 1995 Kimmo Koskenniemi

1 21307

Contents

Tagging the Teleman Corpus
Thorsten Brants and Christer Samuelsson

Indezed Languages and Unification Grammar
Tore Burheim

Swedish Language Processing in the Spoken Language Translator
Bjorn Gamback

Locally Tree-shaped Sentence Automata and Resolulion of Ambiguity
Jussi Piitulainen

Sense Ertension Funclions in Lezical Semantics
Peter Rossen Skadhauge

An Application of Inside-out Functional Uncertainly to Norwegian Anaphors
Kjetil Strand

Tagging the Teleman Corpus

Thorsten Brants and Christer Samuelsson
Universitat des Saarlandes
FR 8.7, Computerlinguistik, Postfach 151150

D-66041 Saarbriicken, Germany
Internet: {thorsten,christer}@coli.uni-sb.de

Abstract

Experiments were carried out comparing the Swedish Teleman and the
English Susanne corpora using an HMM-based and a novel reductionistic
statistical part-of-speech tagger. They indicate that tagging the Teleman
corpus is the more difficult task, and that the performance of the two
different taggers is comparable.

1 Introduction

The experiments reported in the current article continue a line of research in the
field of part-of-speech tagging using self-organizing models that was presented at
the previous (9th) Scandinavian Conference on Computational Linguistics. Then,
the well-established HMM-based Xerox tagger, see [Cutting 1994], was compa-
red with some less known taggers, namely a neural-network tagger described in
[Eineborg & Gamback 1994], and a Bayesian tagger presented in [Samuelsson 1994].
The Xerox tagger performs lexical generalizations by clustering words based on their
distributional patterns, while the latter two utilize the morphological information
present in Swedish by generalizing over word suffixes.

This time, another HMM-based approach 1s compared with a novel reductio-
nistic statistical tagger inspired by the successful Constraint Grammar system,
[Karlsson et al 1995].

The performed experiments do not only serve to evaluate the two taggers, but
also shed some new light on the Teleman corpus as an evaluation domain for part-
of-speech taggers compared to other, English, corpora.

The paper is organized as follows: Section 2 discusses the Teleman corpus and
the tagsets used. Section 3 describes the HMM-based tagger and Section 4 the
reductionistic statistical one. The vital issue of handling sparse data is addressed
in Section 5 and the experimental results are presented in Section 6.

2 The Teleman Corpus

The Teleman corpus [Teleman 1974] is a corpus of contemporary Swedish, represen-
ting a mixture of different text genres like information brochures on military service
and medical care, novels, etc. It comprises 85,408 words (tokens; here, words is a
collective denotation of proper words, numbers, and punctuation). There are 14,191
different words (types); the most frequent one is “.”, which occurs 4,662 times; the
most frequent proper word is “och” (and), which occurs 2,217 times. 8,458 of the

words occur exactly once, which is 60% of the types but only 10% of the tokens.

Table 1: Comparison of Teleman and Susanne corpora

Teleman Susanne
size 85,408 words 156,644 words
word types 14,191 words 14,732 words
most {req. word 4662x “.” 9641 x “the”
one occurrence 8,458 words 6,820 words
unknown words | 10% expected 4% expected

tagset 258 tags 424 tags’
max. tags/word | 15 (for “for”) 14 (for “as”)
reduced tagset 19 tags 62 tags
max. tags/word | 7 (“for”, “4”) 6 (“a”, “no”)

ITags in the Susanne corpus with indices are counted as separate tags.

For the experiments, we used two different tagsets. First, we used the original
tagset, consisting of 258 tags. Each of the 14,191 word types can have between one
and 15 of the 258 tags (the highly ambiguous word “for” (for, stern, lead, too, ...)
has the maximum number of tags). We then used a reduced tagset, consisting of
19 tags, which represent common syntactic categories and punctuation. This tagset
is identical to that used in the publications mentioned above. Each of the word
types then has between one and 7 tags (“for” and “:” have the maximum number
of tags).

2.1 Comparison with an English Corpus

Since 10% of the words in the Teleman corpus occur only once, we expect from the
Good-Turing formula [Good 1953] that 10% of the words in new text be unknown,
which is a very high percentage. Other publications typically report 5%. Since
most of the work in this area is on English corpora, we compared the Teleman
corpus with an English corpus, namely the Susanne corpus [Sampson 1995], which
is a re-annotated part of the Brown Corpus {Francis & Kucera 1982], comprising
different text genres. The relevant facts are summarized and compared in Table 1.
The major difference (apart from corpus size and tagsets used) is the percentage of
words that occur exactly once: 10% for Teleman vs. 4% for Susanne. According to
the Good-Turing formula, this percentage is identical to the expected percentage of
unknown words. Actual counts by dividing the corpora into training and test parts
yield around 14% and 7%, respective. This indicates that unseen Swedish text will
have substantially more unknown words than unseen English, which is most likely
due to the higher degree of morphological variation in Swedish.

A further difficulty with the Swedish corpus is the higher degree of ambiguity. In
the Teleman corpus, each word in the running text has in average 2.38 tags for the
small tagset, and 3.69 for the large tagset. These numbers are 2.07 and 2.61 for the
Susanne corpus, despite the fact that the tagsets for the Susanne corpus are larger
than those for the Teleman corpus. Thus, there is much more work for the tagger to
do in the Teleman corpus. Some more numbers: in the running text, 54.5%/64.2%
of the words in the Teleman corpus are ambiguous, and only 44.3%/48.9% in the
Susanne corpus (small/large tagset, resp.; see Table 2 for further details).

3 The HMM Approach

A Hidden Markov Model (HMM) consists of a set of states, a set of output symbols
and a set of transitions. For each state and each symbol, the probability that this
symbol is emitted by that state is given. Also, a probability is associated with

Table 2: Distribution of number of categories per word in running text for the
Teleman and Susanne corpus, small and large tagsets.

Teleman Susanne

small large | small large
1 45.5% 35.8% | 55.7% 51.1%
2 16.2% 12.2% | 17.4% 19.2%
3 17.7% 14.1% | 4.8% 4.2%
4 6.4% 10.0% | 11.1% 4.5%
5 9.0% 53% | 8.4% 9.2%
6 1.7% 62% | 2.6% 2.2%
7 3.5% 4.3% - 22%
8 - 1.1% - 4.8%
9 - 29% - -
10 - 27% - 2.0%
11 - 1.6% - -
12 - 2.9%% - -
13 - - - -
14 - - - 0.6%
15 - 0.9% - -
>1 | 54.5% 64.2% | 44.3% 48.9%

Table 3: Teleman corpus parts

total words unknown words?
part A 67,402 —
part B 9,262 1,421 (15.3%)
part C 8,774 1,198 (13.7%)
z 85,408

“Unknown words are words that occur only in the test set, but not in the training set.

Table 4: Susanne corpus parts

total words unknown words
part A 127,385 —
part B 9,752 714 (7.4%)
part C 9,684 563 (5.8%)
T 146,8213

SThe remaining 9,823 words of the Susanne corpus were not used in the experiments.

each transition between states (see [Rabiner 1989] for a good introduction). The
transition probability, and thus the probability of the following state, depends only
on the previous state for first order HMMs, or on k previous states for HMMs of kth
order. HMM approaches to part-of-speech tagging make the well-known assumption
that the current category or part-of-speech of a word depends only on the previous
(n — 1) categories (Markov assumption), thus they assume that natural language
is a Markov process of order (n — 1), which of course is not true, but a successful
approximation. n = 3 is chosen in most of the cases, resulting in a trigram model
(i.e., always working with a window of size 3), since it yields the best compromise
between size of corpora needed for training and tagging accuracy. Furthermore, the
current word (symbol) depends only on the current category (state). Thus, instead
of calculating and maximizing P(T} ... Ty | Wi ... Wy), with T; tags and W; words,
which is impossible in all practical cases, one calculates and maximizes

k
[[P@ I Ticnssr .. . Ti)) P(Wi | T0) (1)

i=1

to find the best sequence of tags for a given sequence of words.

The parameters of an HMM can be estimated directly from a pretagged corpus
via maximum-likelihood estimation (MLE). But MLE sets a lot of the transition
probabilities to zero, and if one of the multiplied probabilities in (1) is zero, the
product becomes zero, leaving no means to distinguish between different products
that contain a zero probability. This results in poor estimates for the probabilities
of new sequences of words. This problem is addressed in Section 5.

Another way of estimating the parameters of an HMM 1is to use an untagged
corpus, a lexicon with parts-of-speech lists for the words and the Baum-Welch algo-
rithm [Baum 1972]. This approach has the advantage of avoiding the tedious work
of manually annotating a corpus, but it requires a sophisticated choice of initial
biases, and generally, the performance is worse than that achieved with annotated
corpora.

When using an HMM for tagging, the system gets a string of words and has
to find the most probable sequence of tags that could have produced the string of
words. This is done with a dynamic programming method, the Viterbi algorithm
[Viterbi 1967]. The algorithm finds the most probable sequence of states in time
linear in the length of the input string.

4 The Reductionistic Statistical Approach

Although not yet fully realized, the basic philosophy behind the reductionistic sta-
tistical approach is to give it the same expressive power as the Constraint Grammar
system.

4.1 Constraint Grammar

The Constraint Grammar systemn performs remarkably well; [Voutilainen & Heikkila
1994] report 99.7% recall, or 0.3% error rate, which is ten times smaller than that
of the best statistical taggers. These impressive results are achieved by:

1. Utilizing a number of different information sources, and not only the stereoty-
ped lexical statistics and n-gram tag statistics that have become the de facto
standard in statistical part-of-speech tagging.

2. Not fully resolving all ambiguities when this would jeopardize the recall.

Property 2 means that the system trades precision for recall, which makes it ideal
as a preprocessor for natural language systems performing deeper analysis.

The Constraint Grammar system works as follows: First, the input string is
assigned all possible tags from the lexicon, or rather, from the morphological ana-
lyzer. Then, tags are removed iteratively by repeatedly applying a set of rules,
or constraints, to the tagged string. When no more tags are removed by the last
iteration, the process terminates, and morphological disambiguation is concluded.
Then a set of syntactic tags are assigned to the tagged input string and a similar
process is performed for syntactic disambiguation. This method is often referred to
as reductionistic lagging.

The rules are sort-of formulated as finite state automata [Tapanainen, personal
communication], which allows very fast processing.

Each rule applies to a current word with a set of candidate tags. The structure
of a rule is typically:

“In the following context, discard the following tags.”
or

“In the following context, commit to the following tag.”
We will call discarding or committing to tags the rule action. A typical rule contezt
is:

“There is a word to the left that is unambiguously tagged with the
following tag, and there are no intervening words tagged with such and
such tags.”

4.2 The New Approach

The structure of the Constraint Grammar rules readily allows their contexts to be
viewed as the conditionings of conditional probabilities, and the actions have an
obvious interpretation as the corresponding probabilities.

Each context type can be seen as a separate information source, and we will
combine information sources S, ..., S, by multiplying the scaled probabilities:

P(T|S1,...,5) ﬁp(ﬂs,-)

P(T) U =pr

This formula can be established by Bayesian inversion, then performing the inde-
pendence assumptions, and renewed Bayesian inversion:

P(T|Si,...,50)
P(T)-P(Si,...,5. | T)
- P(Sl,...,S)

PSi|T
~ P(T) H (P(5|))

_ P(T). P(S: |T)
= P H P(T) - P(5)

P(T | S;
- T)H(P(;“)

In standard statistical part-of-speech tagging there are only two information
sources — the lexical probabilities and the tags assigned to neighbouring words.

We thus have:

P(Tag | Lexicon and n-grams) =
P(Tag | Lexicon) - P(Tag | N-grams)
P(Tag)

The context will in general not be fully disambiguated. Rather than employing
dynamic programming over the lattice of remaining candidate tags, the new ap-
proach uses the weighted average over the remaining candidate tags to estimate the
probabilities:

P(T | V. Gi) =

= Y P(TIC) PG UG

It is assumed that {C; : i = 1,...,n} constitutes a partition of the context C, i.e.,
that C = U™_,C; and that C;NC; = @ for i # j. In particular, trigram probabilities
are combined as follows:

P(T|C) =

= Y PTI|TT) P(TiT:)|C)
(Ty,T.)eC

Here T denotes a candidate tag of the current word, 7; denotes a candidate tag of
the immediate left neighbour, and 7, denotes a candidate tag of the immediate right
neighbour. C is the set of ordered pairs (T, T,) drawn from the set of candidate tags
of the immediate neighbours. P(T | T;, T;) is the symmetric trigram probability.

The tagger is reductionistic since it repeatedly removes low-probability candidate
tags. The probabilities are then recalculated, and the process terminates when the
probabilities have stabilized and no more tags can be removed without jeopardizing
the recall; candidate tags are only removed if their probabilities are below some
threshold value.

5 Sparse Data

Handling sparse data consists of two different tasks:
1. Estimating the probabilities of events that do not occur in the training data.

2. Improving the estimates of conditional probabilities where the number of ob-
servations under this conditioning is small.

Coping with unknown words, i.e., words not encountered in the training set, is
an archetypical example of the former task. Estimating probability distributions
conditional on small contexts is an example of the latter task. We will examine
several approaches to these tasks.

For the HMM, it is necessary to avoid zero probabilities. The most straight-
forward strategy is employing the expected-likelihood estimate (ELE), which simply
adds 0.5 to each frequency count and then constructs a maximum-likelihood esti-
mate (MLE), (see e.g. [Gale & Church 1990]). The MLE of the probability is the
relative frequency r. Another possibility is the Good-Turing method [Good 1953],
where each frequency f is replaced by f* = (f + 1)Ny41/N;, where Ny denotes
the frequency of frequency f. Alternatively, one can use linear interpolation of the
probabilities obtained by MLE, P(c | a,b) = Air(c) + Azr(c | b) + Asr(c | a,b).

[Brown et al 1992] let the A values dependent on the context, which improves the
tagging accuracy. This is related to the idea of successive abstraction presented in
Section 5.1. To achieve improved estimates of lexical probabilities, words can be
clustered together, see [Cutting et al 1992).

There are several ways to handle unknown words. These include:

1. Making every tag a possible tag for that word with equal probability and
finding the most probable tag solely based on context probabilities. The results
can be slightly improved by trying only open-class tags for unknown words.

2. As an extension to case 1, choosing different but again constant probabilities
for each possible tag. This constitutes an a priori distribution for unknown
words, reflecting for example that most of the unknown words are nouns.
The probabilities could be obtained from a separate training part, or from the
distribution of words that occur only once in the training corpus. These words
reflect the distribution of unknown words according to the formula presented
in [Good 1953].

3. Exploiting word-form information as proposed in [Samuelsson 1994). Here,
the probability distributions are determined from the last n characters of the
word, and the remaining number of syllables. This method has been proven
successful for Swedish text.

4. Utilizing orthographical cues such as capitalization.

5.1 Successive Abstraction

Assume that we want to estimate the probability P(E | C) of the event E given
a context C from the number of times Ng it occurs in N = |C]| trials, but that
this data is sparse. Assume further that there is abundant data in a more general
context C’' O C that we want to use to get a better estimate of P(E | C).

If there is an obvious linear order C = C,, C Cj1 C --- C C; = C’ of the
various generalizations C; of C, we can build the estimates of P(E | Ci) on the
relative frequency r(E | Ci) of event E in context Ci and the previous estimates of
P(E | Ce-1). We call this method linear successtve abstraction. A simple example
is estimating the probability P(T | l.,...,ln_;) of a tag T given l,_;,...,l,, the
last j + 1 letters of the word. In this case, the estimate will be based on the relative
frequencies r(T |ln,.. ., 0nj), 7(T | ln,.. ., lnjs1), .. ., 7(T | In), r(T).

Previous experiments [Samuelsson 1994] indicate that the following is a suitable
formula:

VN r(E|C)+ P(E | C) @
VN +1

This formula simply up-weights the relative frequency r by a factor /N, the square
root of the size of context C, which is the active ingredient of the standard deviation
of r.

If there is only a partial order of the various generalizations, the scheme is
still viable. For example, consider generalizing symmetric trigram statistics, i.e.,
statistics of the form P(T | T3, T,). Here, both T; and T, are one-step generalizations
of the context 7;,7;, and both have in turn the common generalization Q. We
modify Equation 2 accordingly:

P(E|C)=

P(T|TT,) =
VITL T r(TITy, T,) + P(TIT) + P(T|T,)
I'TUT"I + 2

and
VIT (T | T.) + P(T)
|73 +1
VITr| 7(T | Tx) + P(T)
VIT +1

P(T|T) =

P(T\T,) =

We call this partial successive absiraction.

6 Experiments

For the experiments, both corpora were divided into three sets, one large set and
two small sets. We used three different divisions into training and testing sets. First,
all three sets were used for both training and testing. In the second and third case,
training and test sets were disjoint, the large set and one of the small sets were used
for training, the remaining small set was used for testing. As a baseline to indicate
what is gained by taking the context into account, we performed an additional set
of experiments that used lexical probabilities only, and ignored the context.

6.1 HMM Approach

The experiments of this section were performed with a trigram tagger as described
in Section 3. Zero frequencies were avoided by using expected-likelihood estimation.
Unknown words were handled by a mixture of methods 2 and 3 listed in Section 5: If
the suffix of 4 characters (3 characters for the Susanne corpus) of the unknown words
was found in the lexicon, the tag distribution for that suffix was used. Otherwise
we used the distribution of tags for words that occurred only once in the training
cOrpus.

As opposed to trigram tagging, lexical tagging ignores context probabilities and
is based solely on lexical probabilities. Each word is assigned its most frequent tag
from the training corpus. Unknown words were assigned the most frequent tag of
words that occurred exactly once in the training corpus. The most frequent tags
for single occurrence words are for the Teleman corpus NNSS (indefinite noun-noun
compound) and noun (large and small tagset, resp.), for the Susanne corpus NN2
(plural common noun) and NN (common noun; again large and small tagset resp.).

Tagging speed was generally between 1000 and 2000 words per second on a
SparcServer 1000; most of this variation was due to variations in the number of
unknown words.

The results for the Teleman corpus are shown in Table 5 and the results for the
Susanne corpus in Table 6.

What immediately attracts attention is the remarkably low performance of the
trigram approach for the Teleman corpus. Already the baseline obtained by lexical
tagging is below 80% for new text, usual results are around 90%. Normal results can
be obtained only for known words or when using the small tagset, the latter being
in fact a very simple task, since the algorithm has to choose from only 19 tags. For
the large tagset, trigram tagging achieves only 83% accuracy. This low figure is due
to the unusually high number of unknown words and the larger degree of ambiguity
compared to English corpora, as is discussed in Section 2. Using a large Swedish
lexicon or morphological analyzer should improve the results significantly.

Another interesting result is that accuracy increases when the size of the tagset
increases for the cases where known text is tagged and context probabilities are
taken into account. This means that the additional information about the context in
the larger tagset is very helpful for disambiguation, but only when disambiguating

Table 5: Results of the HMM experiments with the Teleman corpus

Training Testing | total correct known correct unknown correct

S Lexical Tagging

o A,B,C A,BC| 9513% 95.13% —

1 1 AB C 89.27% 94.18% 58.35%
1 9 A c B 90.42% 94.20% 69.60%
I I Trigram Tagging

€ 8 A,B,C ABC| 96.22% 96.22% —
e ° AB C 92.88% 94.51% 82.55%
t A C B 92.81% 94.62% 82.83%
L Lexical Tagging

a , AB,C A B, C| 9065% 90.65% —
& 5 AB C 78.84% 89.07% 14.44%
T 8 A, C B 78.05% 88.20% 22.03%
a Z Trigram Tagging

& g A,B,C A/BC| 9835% 98.35% —
e 5 A,B C 83.78% 89.99% 44.66%
t A, C B 81.01% 89.40% 34.69%

Table 6: Results of the HMM experiments with the Susanne corpus

Training Testing | total correct known correct unknown correct

S Lexical Tagging

y A,B,C ABC 95.28% 95.28% —

1 6 AB C 91.48% 94.80% 49.72%
I 2 A C B 91.20% 94.44% 38.37%
I I Trigram Tagging

€ &8 A,B,C ABC| 9865% 98.65% —
e ° AB C 95.76% 96.95% 80.81%
t A, C B 95.18% 96.58% 72.29%
L Lexical Tagging

2 4 AB,C ABC| 9398% 93.98% —
€ 2 A,B C 86.98% 93.04% 10.78%
; 1 AC B 88.16% 92.59% 15.81%
a I Trigram Tagging

€ & A,B,C A/BC| 99.80% 99.80% —
e ° AB C 92.61% 95.66% 54.20%
t A C B 93.07% 95.46% 53.83%

known text. This could arise from the fact that a large number (> 50%) of the
trigrams that occur in the training text occur exactly once. And most of the possible
trigrams do not occur at all (generally more than 90%, depending on the size of
the tagset). Now, the trigram approach has a distinct bias to those trigrams that
occurred once over those that never occurred. These happen to be the right ones
for known text but not necessarily for new text, thus the positive effect of a larger
tagset vanishes for fresh text.

The results for the Susanne corpus are similar to those reported in other publi-
cations for (other) English corpora.

6.2 Reductionistic Approach

The reductionistic statistical tagger described in Section 4 was tested on the same
data as the HMM tagger. The information sources employed in the experiments
were lexical statistics and contextual information, which consisted of symmetric
trigram statistics. Unknown words were handled by creating a decision tree of the
four last letters from words with three or less occurrences. Each node in the tree
was associated with a probability distribution (over the tagset) extracted from these
words, and the probabilities were smoothened through linear successive abstraction,
see Section 5.1.

There were two cut-off values for contexts: Firstly, any context with less than 10
observations was discarded. Secondly, any context where the probability distributi-
ons did not differ substantially from the unconditional one was also discarded. Only
the remaining ones were used for disambiguation. Due to the computational model
employed, omitted contexts are equivalent to backing off to whatever the current
probability distribution is. The distributions conditional on contexts are however
susceptible to the problem of sparse data. This was handled using partial successive
abstraction as described in Section 5.1.

The results are shown in Tables 7 and 8. They clearly indicate that:

e The employed treatment of unknown words is quite effective.
e Using contextual information, i.e., trigrams, improves tagging accuracy.

e The performance is on pair with the HMM tagger and comparable to state-
of-the-art statistical part-of-speech taggers.

e Teleman is a considerably tougher nut to crack than Susanne.

The results using the Susanne corpus are similar to those reported for the Lancaster-
Oslo-Bergen (LOB) corpus in [de Marcken 1990], where a statistical n-best-path
approach was employed to trade precision for recall.

The tagging speed was typically a couple of hundred words per second on a
SparcServer 1000, but varied with the size of the tagset and the amount of remaining
ambiguity.

7 Conclusions

The experiments with the HMM approach show that it is much harder to process the
Swedish than the English corpus. Although the two corpora are not fully comparable
because of the differences in size and tagsets used, they reveal a strong tendency.
The difficulty in processing is mostly due to the rather large number of unknown
words in the Swedish corpus and the higher degree of ambiguity despite having
smaller tagsets. These effects mainly arise from the higher morphological variation

Table 7: Results of the reductionistic experiments with the Teleman corpus

Training Testing | Threshold: 0.00 0.05 0.075 0.10 0.15 0.20 0.30 0.50
Small Tagset
Trigram and lexical statistics
Recall (%) 100.00 99.02 98.66 98.35 97.78 97.37 96.65 95.55
Tags/word 2.38 1.15 1.12 110 107 1.05 1.03 1.00
ABC ABC Lexical statistics only
Recall (%) 100.00 98.96 98.53 98.29 97.69 97.28 96.36 95.10
Tags/word 2.38 125 117 1.14 1.09 1.07 103 1.00
Trigram and lexical statistics
Recall (%) 98.98 97.72 97.25 96.81 96.20 95.53 94.67 93.34
Tags/word 254 1.21 1.17 114 110 1.07 1.04 1.00
AB C Lexical statistics only
Recall (%) 98.98 97.61 97.14 96.87 96.15 95.63 94.26 92.55
Tags/word 254 134 125 121 114 1.11 1.04 1.00
Trigram and lexical statistics
Recall (%) 98.99 97.80 97.44 96.94 96.34 95.84 98.81 93.50
Tags/word 251 123 1.18 1.15 1.11 1.08 1.04 1.00
AC B Lexical statistics only
Recall (%) 98.99 97.67 97.33 97.07 96.45 95.84 94.34 92.52
Tags/word 251 134 126 1.21 114 110 1.04 1.00
Large Tagset
Trigram and lexical statistics
Recall (%) 100.00 98.36 97.92 97.54 97.03 96.41 95.31 93.75
Tags/word 3.69 1.23 1.18 1.15 1.11 1.08 1.04 1.00
AB,C AB/C Lexical statistics only
Recall (%) 100.00 98.30 97.63 97.20 96.67 95.57 93.65 90.59
Tags/word 3.69 143 131 126 122 1.16 1.08 1.00
Trigram and lexical statistics
Recall (%) 97.46 94.93 93.94 93.35 92.35 91.15 88.53 85.56
Tags/word 4.16 147 137 131 124 1.18 1.08 1.00
A B C Lexical statistics only
Recall (%) 97.46 95.23 94.24 93.69 92.93 91.51 87.92 83.62
Tags/word 4.16 169 153 144 134 126 1.11 1.00
Trigram and lexical statistics
Recall (%) 96.64 94.04 93.00 92.09 90.92 89.46 86.94 83.58
Tags/word 4.18 148 138 132 124 1.18 1.08 1.00
AC B Lexical statistics only
Recall (%) 96.64 94.51 93.27 92.50 91.02 89.68 85.86 81.69
Tags/word 4.18 1.71 154 144 134 1.24 1.10 1.00

2 21307

Table 8: Results of the reductionistic experiments with the Susanne corpus

Training Testing | Threshold: 0.00 0.05 0.075 0.10 0.15 0.20 0.30 0.50
Small Tagset
Trigram and lexical statistics
Recall (%) 100.00 99.46 99.35 99.23 99.03 98.82 98.43 97.75
Tags/word 2.07 1.08 1.07 1.06 1.04 1.03 1.02 1.00
AB,C ABC Lexical statistics only
Recall (%) 100.00 99.33 99.20 98.94 98.67 98.10 97.43 95.28
Tags/word 2.07 1.18 1.16 1.14 111 1.08 1.05 1.00
Trigram and lexical statistics
Recall (%) 99.22 98.43 98.28 98.11 97.78 97.43 96.91 95.99
Tags/word 2.23 1.14 1.11 1.09 1.07 1.05 1.02 1.00
AB C Lexical statistics only
Recall (%) 99.22 98.27 98.03 97.78 97.45 96.80 96.15 93.42
Tags/word 2.23 125 1.23 119 115 1.11 1.08 1.00
Trigram and lexical statistics
Recall (%) 99.22 98.46 98.22 97.99 97.58 97.15 96.49 95.54
Tags/word 2.17 1.13 1.10 109 1.06 1.05 1.02 1.00
AC B Lexical statistics only
Recall (%) 99.22 98.21 97.88 97.61 97.35 96.47 95.46 92.87
Tags/word 2.17 1.24 121 1.17 115 110 1.06 1.00
Large Tagset
Trigram and lexical statistics
Recall (%) 100.00 99.25 99.12 98.96 98.74 98.44 98.04 96.87
Tags/word 2.61 1.10 1.08 107 1.06 104 1.03 1.00
A,B,C ABC Lexical statistics only
Recall (%) 100.00 99.05 98.88 98.59 98.20 97.58 96.72 93.98
Tags/word 2.61 1.23 1.20 1.17 1.14 1.10 1.07 1.00
Trigram and lexical statistics
Recall (%) 98.31 96.94 96.52 96.19 95.68 95.02 94.21 92.70
Tags/word 3.01 1.22 1.18 115 111 1.08 1.04 1.00
AB C Lexical statistics only
Recall (%) 98.31 96.91 96.49 95.94 95.50 94.40 93.42 90.26
Tags/word 3.01 141 135 128 120 114 1.08 1.00
Trigram and lexical statistics
Recall (%) 98.49 97.03 96.72 96.41 95.88 95.16 94.29 92.71
Tags/word 2.83 121 1.18 1.15 1.11 1.08 1.04 1.00
A,C B Lexical statistics only
Recall (%) 98.49 96.95 96.55 96.05 95.57 94.44 93.26 90.31
Tags/word 283 136 131 125 1.19 1.13 1.08 1.00

of Swedish which calls for additional strategies to be applied. These could be the
use of a large corpus-independent lexicon and a separate morphological analysis.

It is reassuring to see that the reductionistic tagger performs as well as the
HMM tagger, indicating that the new framework 1s as powerful as the conventio-
nal one when using strictly conventional information sources. The new framework
also enables using the same sort of information as the highly successful Constraint
Grammar approach, and the hope is that the addition of further information sources
can advance state-of-the-art performance of statistical taggers.

Viewed as an extension of the Constraint Grammar approach, the new scheme
allows making decisions on the basis of not fully disambiguated portions of the
input string. The absolute value of the probability of each tag can be used as a
quantitative measure of when to remove a particular candidate tag and when to
leave in the ambiguity. This provides a tool to control the tradeoff between recall
(accuracy) and precision (remaining ambiguity).

Acknowledgements

We wish to thank Bjorn Gamback for providing information on previous work with
the Teleman corpus.

References

[Baum 1972]
L. E. Baum. “An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes”, Inequalities III, pp.

1-8, 1972.

[Brown et al 1992)
P. F. Brown, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer and
P. S. Roossin. “Class-based n-gram models of natural language”, Computational
Linguistics 18(4) pp. 467-479, 1992.

[Cutting 1994]
Douglass Cutting. “A Practical Part-of-Speech Tagger”, in Procs. 9th Scandina-
vian Conference on Computational Linguistics, pp. 65-70, Stockholm University,
1994.

[Cutting et al 1992] Douglass R. Cutting, Julian Kupiec, Jan Pedersen and Pene-
lope Sibun. “A Practical Part-of-Speech Tagger”. in Procs. 3rd Conference on
Applied Natural Language Processing, pp. 133-140, ACL, 1992.

[Eineborg & Gamback 1994]
Martin Eineborg and Bjorn Gamback. “Tagging Experiments Using Neural Net-

works”, in Procs. 9th Scandinavian Conference on Computational Linguistics, pp.
71-82, Stockholm University, 1994.

[Francis & Kucera 1982]
N. W. Francis and H. Kucera. Frequency Analysis of English Usage, Houghton
Mifflin, Boston, 1982.

[Gale & Church 1990]
W. A. Gale and K. W. Church. “Poor Estimates of Context are Worse than
None”, in Proc. of the Speech and Natural Language Workshop, pp. 283-287,
Morgan Kaufmann, 1990.

[Good 1953]
I. J. Good. “The population frequencies of species and the estimation of popula-
tion parameters”, Biometrika 40, pp. 237-264, 1953.

[Karlsson et al 1995]
Fred Karlsson, Atro Voutilainen, Juha Heikkila and Arto Anttila (eds). Cons-
traint Grammar. A Language-Independent System for Parsing Unresiricted Text,
Mouton de Gruyter, Berlin / New York, 1995.

[de Marcken 1990]
Carl G. de Marcken. “Parsing the LOB Corpus”, in Procs. 28th Annual Meeting
of the Association for Computational Linguistics, pp. 243-251, ACL 1990.

[Rabiner 1989]
L. R. Rabiner. “A tutorial on hidden Markov models and selected applications in
speech recognition”, in Proceedings of the IEEE 77(2), pp. 257-285, 1989.

[Sampson 1995]
Geoffrey Sampson. English for the Computer, Oxford University Press, Oxford,
1995.

[Samuelsson 1994]
Christer Samuelsson. “Morphological Tagging Based Entirely on Bayesian Infe-
rence” | in Procs. 9th Scandinavian Conference on Computational Linguistics, pp.

225-238, Stockholm University, 1994.

[Teleman 1974]
UIf Teleman. Manual for grammatisk beskrivning av talad och skriven svenska,
(in Swedish), Studentlitteratur, Lund, Sweden 1974.

[Viterbi 1967]
A. Viterbi. “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm”, in IEEE Transactions on Information Theory, pp. 260-269,
1967.

[Voutilainen & Heikkila 1994)
Atro Voutilainen and Juha Heikkila. “An English constraint grammar (ENGCG):
a surface-syntactic parser of English” | in Procs. 14th International Conference on
English Language Research on Computerized Corpora, pp. 189-199, Ziirich, 1994.

21

Indexed Languages and Unification
Grammars®

Tore Burheim!

Abstract

Indexed languages are interesting in computational linguistics because they
are the least class of languages in the Chomsky hierarchy that has not been
shown not to be adequate to describe the string set of natural language sent-
ences. We here define a class of unification grammars that exactly describe
the class of indexed languages.

1 Introduction

The occurrence of purely syntactical cross-serial dependencies in Swiss-German
shows that context-free grammars can not describe the string sets of natural lan-
guage [Shi85]. The least class in the Chomsky hierarchy that can describe unlimited
cross-serial dependencies is indexed grammars [Aho68]. Gazdar discuss in [Gaz88]
the applicability of indexed grammars to natural languages, and show how they can
be used to describe different syntactic structures. We are here going to study how we
can describe the class of indexed languages with a unification grammar formalism.
After defining indexed grammars and a simple unification grammar framework we
show how we can define an equivalent unification grammar for any given indexed
grammar. Two grammars are equivalent if they generate the same language. With
this background we define a class of unification grammars and show that this class
describes the class of indexed languages.

2 Indexed grammars

Indexed grammars is a grammar formalism with generative capacity between con-
text-free grammars and context-sensitive grammars. Context-free grammars can
not describe cross-serial dependencies due to the pumping lemma, while indexed
grammars can. However, the class of languages generated by indexed grammars,
—the indexed languages, is a proper subset of context-sensitive languages [Aho68].

Indexed grammars can be seen as a context-free grammar where we add a string
—or stack, of indices to the nonterminal nodes in the phrase structure trees, or
derivation trees as we will call them. Some production rules add an index to the
beginning of the string, while the use of other production rules is dependent on
the first index in the string. When such a production rule is applied the index
of which it is dependent, is removed, and the rest of the index-string is kept by
the daughter(s). In this way we may distribute information from one part of the
derivation tree to another. The original definition of indexed grammars was given

*This work has been supported by grant 100437/410 from Norwegian Research Council.

tUniversity of Bergen, Department of Informatics, N-5020 Bergen, Norway end University of
the Saarland, Computational Linguistic, Postfach 1150, D-66041 Saarbricken, Germany. Email:
Tore.Burheim@ii.uib.no

by Aho [Aho68]. We are here using the definition used by Hopcroft and Ullman
[HU79] with some minor notational variations:

Definition 1 An INDEXED GRAMMAR G is a 5-tuple; G = (N, T, 1, P,S) where
N is a finite set of symbols, called nonterminals,
T 1s a finite sel of symbols, called terminals,
I is a finile set of symbols, called indices,

P is a finite sel of ordered pairs, each on one of the forms (A, Bf), (Af,«) or
(A, @) where A and B are nonterminal symbols in N, « is a finite siring in
(NUT)*, and f is an indez in I. An element in P is called a production rule
and is wrillen A —» Bf, Af - a or A — a.

S 1is a symbol in N, and is called the start symbol.

and such that N, T and I are pairwise disjoint.
An indezed grammar G = (N, T, I, P, S) ts on REDUCED FORM if each production
in P is on one of the forms

a) A— Bf
b) Af - B
¢) A— BC
d) At

where A,B,C are in N, f isin I, and t is in (T U {€}).

Aho showed in his original paper [Aho68] that for every indexed grammar there
exists an indexed grammar on reduced form which generates the same language.

To define constituent structures and derivation trees we are going to use tree
domains: Let A} be the set of all integers greater than zero. A tree domain D is
aset D C N} of number strings so that if 2 € D then all prefixes of z are also in
D, and for alli € Ny and z € N}, if zi € Dthen zj € Dforall j,1<j < i
The out degree d(z) of an element z in a tree domain D is the cardinality of the set
{i| zi € D,i € Ny}. The set of terminals of D is term(D) = {z | z € D, d(z) = 0}.
The elements of a tree domain are totally ordered lexicographically as follows: z < y
if z is a prefix of y, or there exist strings z,2’,z"” € N} and i,j € Ny with i < j,
such that z = ziz’ and y = zj2z”. We also define that z < yif z < y and z # y.!

A tree domain D can be viewed as a tree graph in the following way: The
elements of D are the nodes in the tree, ¢ is the root, and for every z € D the
element zi € D is z’s child number ¢. A tree domain may be infinite, but we shall
restrict attention to finite tree domains. A finite tree domain can also describe the
topology of a derivation tree. This representation provides a name for every node
in the derivation tree directly from the definition of a tree domain. Our definition
of derivation trees for indexed grammars with the use of tree domains is based on
Hayashi [Hay73]:

Definition 2 A DERIVATION TREE based on an indezed grammarG = (N, T, I, P, S)
is a pair (D, C1) of a finite tree domain D and a function Cz : D — (NI*UTU{¢e})

where

1) Cz(e) =S

1See Gallier [Gal86] for more about tree domains.

i) Cz(z) € NI* for every node x in D with d(z) > 0. Moreover if Cz(z) = Ay
for A€ N and v € I* and Cz(zi) = B;6; with B; € (NUT U {¢}) and 6; € I"
for everyi: 1 <i < d(z) then either

a) A — Bif is a production rule in P such that d(z) = 1, f € I, and
01 = f7; or

b) Af — Bj...By) is a production rule in P such that f € I where
y=fv,and 0; =% if B € N and 6; = ¢ if B; € (T U {e}), or

¢) A— By...Byz) ts a production rule in P such that §; = v +f B; € N
and §; = ¢ if B; € (T U {¢}).

iti) Cz(z) € (T'U {e}) for every node in D with d(z) = 0,

The SYMBOL FUNCTION; C3™ : D — (N UT), and the INDEX STRING FUNC-
TION,; C}d’ : D — I", are total functions on D such that if Cz(z) = Ay where
A€ (NUTU{e}) and y € I* then C;*™(z) = A and Ci¥*(z) = v for allz € D.

The TERMINAL STRING of a dertvation tree (D, Ct) is the string Cz(z1)...Cz(zn)
where {z,,...,zn} = term(D) and z; < 24y foralli,1 <i<n-—1.

We also define the LICENSE FUNCTION; license : (D — term(D)) — P, such that
if A — a is a production rule according to it) a), b) or c) for a node z in D, then
license(z) = A — a.

Informally this is a traditional derivation tree. If we have a node with label Ay
where A is a nonterminal symbol and ¥ is a string of indices, and we use a production
rule A — Bf, then the node’s only child gets the label Bfy. If we instead use a
production rule A — BC on the same node it gets two children labeled By and
Cy respectively, or if we use a production rule A — t where ¢ is a terminal symbol,
then we remove all the indices and the node’s only child gets the label t. If we have
a node labeled with Afy, where f is a index and we use a production rule Af — B
then the node’s only child gets the label By. We also see that the terminal string
is a string in T* since Cy(z) € (T U {¢}) for all z € term(D).

Definition 3 A siring w ts GRAMMATICAL with respect to an indezed grammar G
if and only if there ezists a derivation tree based on G with w as the terminal string.

The language generated by G, L(G) is the set of all grammatical strings with respect
to G.

Example 1 Let G = (N,T, I, P,S) be an indexed grammar where T' = {a, b, c} is
the set of terminal symbols, N = {S,S’, A, B, C} is the set of nonterminal symbols,
I = {f,g} is the set of indices and P is the least set containing the following
production rules:

S—-Sf Ag — aA Af = a
S — S'g Bg — bB Bf —>b
S’ — ABC Cg—cC Cf—c

Figure 1 shows the derivation tree for the string “eabbcc” based on this grammar.
The language L(G) generated by this grammar is {a"b"c" | n > 1}.

We close this presentation of indexed grammars by showing a simple technical
observation that we will use in later proofs.

Definition 4 An indezed grammar G = (N,T,1, P,S) has a MARKED INDEX-END
if and only if it has one and only one production rule where the start symbol occurs
and this rule is on the form S — AS$ where A € N and the indez $ does not occur
in any other production rule.

>£—\M .

A B

X

Cef
]

A
\

Q
o« —3
>
- —g
3]
°—Q

Figure 1: Derivation tree for the siring “aabbcc” based on the grammar in Ezample
1

If an indexed grammar has a marked index-end then in any derivation tree every
nonterminal node except the root gets a $ at the end of the index list. Since no
rule requires that there is an empty index list, and neither $ nor the start symbol
occurs in any other production rule, it is straight forward to construct an equivalent
grammar with a marked index-end for any indexed grammar.

Lemma 1 For every indered grammar G there ezists an indezed grammar with a
marked indez-end Gg such that L(G) = L(Gj).

Proof: Let G = (N,T, I, P,S) be an indexed grammar, and assume that Sp and $
do not occur in G. Gg is defined from G by adding the production rule So — S$
such that Sy becomes the new start symbol and is added to the set of nonterminal
symbols, and $ is added to the set of indices. Formally, if G = (N,T,I, P,S) and
S0, 3¢ (NUTUI), then Gg = (N U {So},T, U {$}, Pu {(So,Ss)},So). Then Gg
has a marked index-end, and we have to show that for any string w, w € L(G) if
and only if w € L(Gjy).

(=) Let (D, Cz) be any derivation tree based on G and assume that w is its
terminal string. From this we construct a derivation tree (D', C%) based on Gy
as follows: First let D' = {lz | = € D} U {¢}. Then let C7(e) = So and let
C%(1z) = Cz(x)8 for all z € (D — term(D)). Let also C7(lz) = Cz(z) for all
z € term(D). The derivation tree (D’,C%) has then the same terminal string as
(D, Cz). Since no rule requires that there is an empty index list, and $§ does not
occur in any production rule in G, a production rule that is licensing a node z in
(D, Cz), will license the node 1z in (D’,C%). The rule S; — S$ licenses the root.
Then (D', C%) is a valid derivation tree according to Definition 2.

(=) Let (D', C7) be any derivation tree based on GG and assume that w is its
terminal string. Since S; — S$ must license the root and $ does not occur in any
other production rule the index symbol § occurs at the end of the index list at every
nonterminal node except the root in (D', C%). From this derivation tree we construct
a derivation tree (D,C7) based on G as follows: First let D = {z | 1z € D'}.
Then for all z € (D — term(D)) let Cz(z) = f where C7(1z) = 8. Let also
Cz(z) = Cy(lz) for all £ € term(D). The derivation tree (D,Cz) has then the
same terminal string as (D', C7). Since every production rule in Gg except Sop — S$
also is a production rule in G, the rule Sy — S$ only can license the root, and $
does not occur in any other production rule, a production rule that licenses a node
1z in (D', C%) will license the node z in (D, Cz). Then (D, Cs) is a valid derivation
tree according to Definition 2. 0

Notice in the proof that if G is on reduced form then Gj is also on reduced
form. Then for any indexed grammar on reduced form there also exists an indexed
grammar on reduced form with a marked index-end.

3 Unification grammars

We are here going to give a description of a very simple unification grammar for-
malism. The formalism itself is not particularly interesting, and it is only meant as
a framework for the rest of this paper. The formalism is just a notational variant of
the basic formalism used by Colban in his work on restrictions on unification gram-
mars [Col91]. It should be easy to reformulate this in most of the known formalisms
available. We give an informal description of feature structures in the way they are
used here before we define the grammar formalism.

A feature structure over a set of attribute symbols A and value symbols V is
a four-tuple (@, 48, a,mp) where @ is a finite set of nodes, § : Q x A — Q is a
partial function, called the transition function, o : @ — V is a partial function
called the atomic value function, and mp : D — @ is a function, called the name
mapping. We will mostly omit the name-domain from the notation, so m will alone
denote the name mapping. We extend the transition function to be a function from
pairs of nodes and strings of attribute symbols: For every ¢ € Q let 6(q,¢) = q.
If 6(q1,¥) = ¢2 and 6(g2,a) = g3 then let 6(q1,v¥a) = q3 for every ¢1,92,93 € Q,
Y € A* and a € A.

A feature structure is describable if there for every node is a path from a named
node to the node. This means that for every ¢ € Q there isan z € D and a ¢ € A*
such that §(m(z),¥) = ¢. A feature structure is atomic if every node with an atomic
value has no out-edges. This means that for every node ¢ € Q, é(q, a) is not defined
for any a € A if a(q) is defined. A feature structure is acyclic if it does not contain
attribute cycles. This means that for every node g € Q, §(¢g,%) = ¢q if and only if
¥ = €. A feature structure is well defined if it is describable, atomic and acyclic.
When nothing else is said we require that feature structures are well defined in the
rest of this paper.

We are going to use equations to describe feature structures, in a way where
feature structure satisfies equations. A feature structure satisfies the equation

191 = T292 (1)
if and only if §(m(z,), ¥1) = 6(m(z2), ¥2), and the equation
.’81¢1 =v (2)

if and only if a(é(m(z1),¥1)) = v, where z,,22 € D, 91,92 € A and v € V.
We only allow equations on those two forms. This means that there is no typing,
quantification, implication, negation, or explicit disjunction as we may find in other
unification grammars and feature logics.

If E is a set of equations of the above form and M is a well defined feature
structure such that M satisfies every equation in E then we say that M satisfies F
and we write

MEE (3)

A set of equations E is consistent if there exists a well defined feature structure
that satisfies E.

The notation of the grammar formalism is borrowed from Lexical Functional
Grammar [KB82].

Definition 5 A SIMPLE UNIFICATION GRAMMAR G over a set of atirtbute symbols
A and value symbols V is a 5-tuple (N, T, P,L,S) where

N 1s a finite set of symbols, called nonterminals,

T is a finite set of symbols, called terminals,

P is a finite sel of production rules

AO —_ Al vee .An (4)
E, E,

where n > 1, Ag,...,An € N, and for alli, 1 < i < n, E; is a finite sel with
equations on the forms
My = 1¢ (5)
Hy" = v (6)
where ¥,y € A*, v’ € At andve V.2

L 1s a finite sel of lexicon rules

A — (7)
F

where A€ N, t € (TU{e}), and E 1s a finite set of equations on the form
Hy" = v (8)
where P’ € At andv e V.
S 1s a symbol in N, called start symbol.
As an example (9) is a production rule.

A = B C C (9)
T={ [l=lasay

Te=v, Tazaz=|la; Taz=v;

Definition 6 A CONSTITUENT STRUCTURE (c-structure) based on a simple unifi-
calion grammar G = (N, T, P,L,S) is a triple (D, Cy, Ey) where

D 15 a finite tree domain,
Cu:D— (NUTU{e}) is a function,

Ey : (D — {€}) — T is a function where T is the set of all equation sets in P
and L,

such that Cy(z) € (T U {e}) for all z € term(D), Cu(e) = S, and for all z €
(D — term(D)), if d(z) = n then

Cu(:!:) 4 Cu(.‘l:l) Cu(:l:n) (10)
Eu(zl) Eu(zn)

is a production or lezicon rule in G.
The TERMINAL STRING of a constituent structure ts the string Cy(z,)...Cu(zn)
where {z1,...,zp} = term(D) and z; < z;4, foralli, 1 <i< n.

To get equations that can be satisfied by a feature structure we must instantiate
the up and down arrows in the equations from the rule set. We substitute them
with nodes from the c-structure such that the nodes become the domain of the name
mapping. For this purpose we define the ‘-function such that E},(zi) = Ey(zi)[z/ 1
,zi/ |]. We see that the value of the function Ej, is a set of equations that feature
structures may satisfy.

21|| denotes here a T or a |

Definition 7 The c-structure (D, K, EF) GENERATES the feature structure M if and
only if
ME | By (11)

zeD

A c-structure may generate different feature structures. The tree domain will
form a name set for feature structures that this union generates. A string is gram-
matical if this union is consistent.

Definition 8 A string w is GRAMMATICAL with respect to a simple unification
grammar G if and only if there ezists a c-structure based on G with w as the terminal
string and which generates a well defined feature structure. The language generated
by G, L(G) is the set of all grammatical strings with respect to G.

4 From Indexed Grammars to Unification Gram-
mars

We are here going to define a simple unification grammar that is equivalent to
a given indexed grammar. The main idea is that we use feature structures to
represent the index string more or less like a (nested) stack. The use of feature
structures to represent stacks for indexed grammars is also used by Gazdar and
Mellish [GM89] although they do not go into much details. Here we define a function
that transforms any indexed grammar on reduced form with a marked index-end
to a simple unification grammar, such that the new grammar generates the same
language.

Definition 9 Let Gg§ = (N,T,1,P,S) be an indezed grammar on reduced form
with ¢ marked indez-end. We then define the simple unification grammar U(Gy) as
(N,T,P', L' S) where P' and L' are the least sets where

a) For each rule on the form A — Bf in P, P’ has a production rule on the
form

A — B (12)
| next =1
lidz=f

b) For each rule on the form Af — B in P, P’ has a production rule on the
form

A — B (13)
T nezxt =|
Tiudz=f

¢) For each rule on the form A — BC in P, P’ has a production rule on the
form

A - B C (14)
t=l 1=l

d) For each rule on the form A — a in P, L' has a lezicon rule on the form

A — (15)

a
)

If p ts a production rule in Gg then U(p) is the production or lezicon rule in
U(G3) defined by a), b) c) or d).

Notice that there is a one-to-one relation between the production rules in Gg,
and production/lexicon-rules in U(Gg). We will later define a class of unification
grammars which can be defined by production and lexicon rules on the forms used
here. But first we will show that Gg and U(Gs) are equivalent.

Lemma 2 For every indezed grammar Gg on reduced form with a marked indez

end, L(Gg) = L(U(Gy)).

Proof: We have to show that for any string w, w € L(Gg) if and only if w €
L@U(Gs).

(=) For every w € L(Ggy) there exists a derivation tree (D, Cz) for w based
on Gg. We have to show that based on U(Gs) there exist c-structure with w as
the terminal string which generates a well defined feature structure. We define the
c-structure (D, Cy, Ey) on the same tree domain D.

For every nonterminal node z in D we have a unique production rule license(z)
in the indexed grammar, and for each production rule in the indexed grammar
we have a unique corresponding production or lexicon rule U(license(z)) in U(G}s)
according to Definition 9. If

U(license(z)) = Ag — A1 ... An (16)
El En

then let Cy(zi) = A; and Ey(zi) = E; for all 1 < ¢ < n, and let Cy(z) = Ao.
Then we have a valid c-structure and since Cy(z) = C;¥™(z) for all z € D, it also
has w as terminal string. Now we only have to show that all the equations in the
c-structure are satisfied by a well defined feature structure.

For any finite string y over an alphabet I we may define a feature structure where
the node set is the union of all suffixes of 4 and all symbols occurring in y. Here we
make a distinction between the singleton string of a symbol, and the symbol itself,
such that they are regarded as two distinct nodes. For all non-empty string nodes,
let the i1dz attribute point to the first symbol of the string and let the nezt attribute
point to the rest of the string when we remove the first symbol, ie. §(fv',1dz) = f
and 8(f7', nezt) = v’ for every non-empty suffix fy’ of ¥ where f € I. Let also the
atomic value of each symbol-node be the symbol itself, ie. a(f) = f. Else, let no
more attributes or atomic values be defined, and in particular let §(¢, nezt), 6(e, 1dz)
and a(e) be undefined. We extend the definition directly to any finite set of strings
over an alphabet. With any name-mapping to the string nodes defined from this
finite set, this is a well defined feature structure since each nonempty string has a
unique first symbol, and a unique suffix with length one less than the string itself.

Let M be the feature structure defined as described on the set of all index strings
that occur in the derivation tree (D, Cz), with the mapping of each nonterminal
node in the tree domain to the index-string of that node: m(z) = Ci%*(z). This is
a well defined feature structure. We now have to show that all the equations in the
c-structure are satisfied by the feature structure M. We have three different cases
to consider:

Assume for a node z that Cz(z) = Ay where v i1s an index-string and that
license(z) = A — Bf. Then Cz(zl) = Bfy, m(z) = v and m(zl) = fy. From
U(license(z)) we have that E[,(z1) = {z]l next = z, zl idz = f}, which is satisfied
by the feature structure M since §(fy, nezt) = v, and a(é(fy, idz)) = f.

Assume for a node z that Cz(z) = Afy where fv is an nonempty index-
string and that license(z) = Af — B. Then Cz(z1) = By, m(z) = fy and
m(z1) = 7. From U(license(z)) we have that Ej,(z1) = {z nezxt = z1, zidz = f},
which is satisfied by the index-string feature structure M since é(fv, nezt) = v, and
a(6(f7, idz)) = .

Assume for a node z that Cz(z) = Ay where 7 is an index-string and that
license(z) = A — BC. Then Cz(z1) = By, Cz(z2) = Cy and m(z) = m(zl) =
m(z2) = . From U(license(z)) we have that Ej,(z1) = {z = z1} and E},(22) =
{z = z2}, which is satisfied by the index-string feature structure M.

We do not have to consider the nodes which license production rules with ter-
minal symbols since all the terminal nodes have empty equation sets. Then all
the equations in the c-structure are satisfied by the feature structure M and then
w € LU(Gs)).

(<) We will here use the function idz-Ist : Q — V* defined on any well
defined acyclic feature structure as follows: idz-Ist(q) = a(q) if a(q) is defined.
If 6(q,1dz) and é(q, nezt) are both defined then idz-lsi(q) is the concatenation of
idz-1st(6(q, idz)) followed by idz-Ist(6(q, nezt)). Else idz-Ist(q) = €. We restrict our
attention to its prefix with $ as last symbol: Let idz-lstg : @ — V* be the function
such that: idz-Istg(q) is the smallest prefix of idz-Ist(q) with § as the last symbol.
If idz-Ist(q) does not contain any $ then 1dz-Istg(q) = .

For every w € L(U(Gs)) there exists a c-structure (D, Cy, Ey) for w based on
U(Gs) which generates a well defined feature structure. We define the derivation
tree (D, Cz) for w based on Gs on the same tree domain D. Let C3¥™(z) = Cy(z)
for all nodes in D and C}%*(z) = idz-Istg(m(z)) for all nonterminal nodes in D
except for the root ¢ for which we define Ci%(¢) to be the empty string. This
derivation tree has w as terminal string, and we just have to show that this is a
valid derivation tree according to Definition 2.

Since Gg has a marked index-end, the only production rule where the start
symbol occurs is S — A$, for an A € N. This gives the following corresponding
production rule in U(Gs):

S - A (17)
| next =1
lidz=$

which is the only production rule in /(Gs) where the start symbol occurs. Then

Cz(€) = S which is the start symbol of Gg. Here we also have that idz-Istg(m(1)) =
$ and Cu(1) = A so that Cz(1) = A% and S — A$ licenses the root node. For all
the other nonterminal nodes in the tree domain we have four cases to consider:

Assume for a nonterminal node = except for the root node that Cy(z) = A and
idz-Istg(m(z)) = v. Then Cz(z) = Ay. Assume also that there exists a production
rule in U4(Gs) from Definition 9 a), such that Cy(z1) = B, Ej(z1) = {zl nezt =
z,zlidz = f} and z1 has no sister nodes. Since $ only occurs in the one production
rule with the start symbol, f # $. Then idz-Ists(m(z1)) = fy and Cz(z1) = Bfy.
From the reverse of Definition 9 a), there exists a production rule A — Bf in G,
which licenses z.

Assume for a nonterminal node z except for the root node that Cy(z) = A
and idz-Istg(m(z)) = fy. Then Cz(z) = Afy. Assume also that there exists a
production rule in U(Gs) from Definition 9 b), such that Cy(z1) = B, Ej,(z1) =
{z nezt = z1, zidz = f} and zl has no sister nodes. Since § only occur in the

one production rule with the start symbol, f # $. Then idz-lstg(m(z1)) = v and
Cz(zl) = B7y. By the reverse of Definition 9 b), there exist a production rule
Af — B in Gg, which licenses z.

Assume for a nonterminal node z except for the root node that Cy(z) = A
and idz-Istg(m(z)) = 4. Then Cz(z) = Av. Assume also that there exist a pro-
duction rule in U(Gg) from Definition 9 ¢), such that d(z) = 2, Cy(zl) = B,
Cu(z2) = C, Ej(z1) = {z = z1} and E},(z2) = {z = z2}. Then idz-lstg(m(z1)) =
idz-Istg(m(z2)) = v, Cz(z1) = By and Cz(z2) = Cv By the reverse of Definition 9
c), there exist a production rule A — BC in Gg, which licenses z.

Assume for a nonterminal node z except for the root node that Cy(z) = A and
1dz-Istg(m(z)) = 7. Then Cz(z) = Ay. Assume also that there exists a lexicon rule
in U(Gs) from Definition 9 d), such that d(z) = 1, Cy(zl) = t and Ej,(z1) = 0.
Then Cz(zl) = t. By the reverse of Definition 9 d), there exist a production rule
A — t in Gg¢ which licenses z.

We then have a valid derivation tree with the same terminal string as the c-
structure and then w € L(Gs). m]

Example 2 Let G = (N,T,1, P,S) be an indexed grammar where T = {d} is the
set of terminal symbols, N = {S, A, B,C,C’, D} is the set of nonterminal symbols,
I = {8, f,g} is the set of indices and P is the least set containing the following
production rules:

S — AS B - CC
A— Bf Cg—C' C'—-CC

This grammar is on reduced form with a marked index-end. The simple unification
grammar U(G) as given in Definition 9 is then the 5-tuple (N, T, P’, L', S) where
P’ is the least set containing the following production rules:

S — A B - C C
| nezt =7 1=l 1=]
lidz=$§

A — B C - C’ c - cC C
| next =1 T nezxt =| 1=l 1=l
lide=f lTidz=g
| next =1 T nezt =|
lidz=g Tidz=f

and L’ contains one single lexicon rule:

D — d
]

Figure 2 shows the derivation tree for the string “dddd” based on the indexed
grammar G together with the c-structure and the feature structure for the same
string string based on the simple unification grammar U (G). This shows that the
string “dddd” is both in L(G) and in L(U(G)). The language generated by G and
U(G) is {d*" | n > 1}.

3[5 |
Bgf$ B .1
oy
/\ ldx=f
i i |
cp cp i%_a
c;ls Cj|$ Cfls c,l‘s T T~
¢ c
Ds Ds D$ Ds |='¢ TT*
| I | |
c c
d d d d ?"“ -l L
idx= dx= g
a) Parsing tree /\ N
TT'CL TT'Cl 151 &
nei | next | next pgx) 1,,3; =l pe?; sl Tnensl
oo f e AR
d d d d
8 f $ o > o 2
¢) Feature structure b) C-structure

Figure 2: derivation lree (a) for the string “dddd” based on the grammar G in
Ezample 2, together with the c-structure (b) and feature structure (c) for the same
sitring based on the grammar U(G).

5 A Unification Grammar Formalism for Indexed
Languages

We are here going to define a version of the simple unification grammar that des-
cribes the class of indexed languages. Just to be precise, a class of languages, Cr
over a countable set T' of symbols is a set of languages, such that each language
L € Cr is a subset of £* where X is a finite subset of I'. The class Cr(GF) of
languages that a grammar formalism GF describes is the set of all languages L'
over I' such that there exists a grammar G in GF where L(G) = L’. The class of
indexed languages is then the set of languages such that there for each language
exist a indexed grammar that generates the language. We assume that I" is the set
of all terminal symbols that we use and drop T as subscript.

Definition 10 A UNIFICATION GRAMMAR FOR INDEXED LANGUAGES, UGZT 1is a
simple untfication grammar where

a) each equation set in the production rules is on one of the three forms
o F = {T:l},
o E={| next=1,| idz = f},
o E={1 nezt=|,1 1dz = f}

where f is any value symbol, and nezt and idz are the same two atiribute
symbols for all equations in all production rules in UGT,

b) each lezicon rule has en emply equation set.
Lemma 3 The class of languages C(UGT) contains the class of indezed languages.

Proof: Aho [Aho68] showed that for every indexed language there exists an indexed
grammar on reduced form which generates the language. From Lemma 1 and its
proof we have that for every indexed grammar G on reduced form there exists an
indexed grammar on reduced form with a marked index-end Gj, such that L(G) =
L(Gg). The simple unification grammar U/(Gg) defined from the indexed grammar
on reduced form with a marked index-end in Definition 9 is an #GZ grammar. From
Lemma 2 we have that L(Gs) = L(U(Gs)). Then every indexed language can be
generated by an YGZ grammar. 0

We shall now show that every UGZ grammar generates an indexed language,
but to do this we need some technical results. First it is easy to see that every UGZT
grammar can be formulated with rules only on the forms used in Definition 9 a)-d).
We define the reduced form for this.

Definition 11 A UGT grammar is on REDUCED FORM if and only if every produc-
tion rule is on one of the three following forms:

A — B A = B A — B C
| next =1 T next =| 1=l 1= (18)
lide=f Tide=f

Lemma 4 For every UGT grammar there is an equivalent grammar on reduced
Jorm.

Proof: Using the techniques from the standard proof for normal form for context-
free grammars, it 1s straight forward to replace each production rule in the original
grammar not on reduced form with a set of new lexicon rules and production rules
on reduced form. This can be done such that one instance of an original rule
corresponds to the net effect of combining one ore more of the new rules. This is
possible since we allow the empty string in lexicon rules. m]

To make this formalism more directly comparable to indexed grammars with a
marked index-end we use what we will call a sink-mapped root:

Definition 12 A UGT grammar (N,T, P,L,S) has a SINK-MAPPED ROOT if and
only if it has one and only one production rule where the start symbol occurs and
this rule 1s on the form

S — A (19)
| nezt =1
lidz=§

where A € N and the value symbol § does not occur in any other production rule.

The value symbol § will form some kind of a blockade in the feature structure
since 1t does not occur in any other production rule, hence no other node in the
c-structure will be mapped to the same node in the feature structure as the root of
the c-structure.

What we are doing here is to put a mark at the bottom of the stack of indices,
in the way the nested stack is represented as a feature structure. We also want
to map the root of the c-structure to the “sink” of the feature structure when we
follow the nezt attribute.

Lemma 5 For every UG grammar G there ezists a UGT grammar with a sink-

mapped root G’ such that L(G) = L(G').

Proof: First we show how we from any 4GZ grammar G may define a {GZ grammar
with a sink-mapped root G’. After this we show that for any string w, w € L(G) if
and only if w € L(G").

Let any UGZ grammar G = (N, T, P, L, S) be given, and assume that Sp, S’ and
S, are neither terminal nor nonterminal symbols in G, and that $ is a value symbol
not used in G. The grammar G’ is defined by adding the following production and
lexicon rules to the rules we have in G:

1) Let the following be two production rules:

So — s (20)
| next =1
lidz=$

S - S Se (21)
1=l 1=l

it) For each f € V used in any production rule in G, let the following be a
production rule:

s - g (22)
| next =1
lidz=f

ii1) Let the following be a lexicon rule:

Se — ¢ (23)
0

Complete G’ by adding Sp, S’ and S, to the nonterminal symbols, and let Sy be
the start symbol of G’. We see that G’ is a UGZ grammar with a SINK-MAPPED
ROOT. Notice also that if G is on reduced form so is the new grammar.3

Now we have to show that for any string w, w € L(G) if and only if w € L(G’).

(=) We show this direction in two steps: First we define something that we
call a canonical feature structure for c-structures based on #GZ grammars. This is
done such that if the c-structure generates a well defined feature structure at all,
then it is also generating the canonical feature structure. After this definition we
show how we from a c-structure based on G, together with its canonical feature
structure can construct a c-structure together with a feature structure based on the
grammar G’. This is done such that the two c-structures have the same terminal
string and if the terminal string is in L(G) so is it in L(G') also.

Let (D, K, E) be any c-structure based on a UGZ grammar G such that it ge-
nerates a feature structure. The canonical feature structure (Q,$6, o, m) for the
c-structure is defined as follows: Let first Q4 be the set of all sequences of nodes
from the c-structure with at most 2n + 1 nodes in each sequence, where n is the
height of the c-structure. Then let the name mapping function m be defined on
Q@4+ by top-down induction on the nodes in the c-structure: First let the mapping
of the root node, m(e) be the sequence of n + 1 €’s, <¢,¢,...,£€>, where again n is

3The use of S, in rule (21) together with rule (23) where it will label the mother of a node with
the empty string is only done because we want to stay in the domain of grammars on reduced
form when G is on reduced form. This definition could be simplified if we did not want this.

3 21307

the height of the c-structure. Now assume that m(z) is defined for a node z in the
c-structure. Then for each daughter z: of z, let

m(zi) = m(z) if 1=|€ E'(zi)
m(zi) = pop(m(z)) if T nezt=|€ E'(zi) (24)
m(zi) = add(zi,m(z)) if | nezt =1€ E'(zi)

where pop of any nonempty sequence is the sequence we get by removing the
first element, pop(<z,, z2, ..., 2x>) =<Z3, ..., Tx>, and add of a single element and a
sequence is the sequence we get by adding the single element to the beginning of the
sequence, add(z, <z, ...,zx>) =<Z,Z1,...,Zx>. Since the root node is mapped to
the sequence of n+1 ¢’s, pop and add may not go out of their domain and therefore
i1s m well defined.

Extend now the set Q4 such that all the value symbol used in the c-structure also
are elements in @Q;. Then let the partial function §; : @4 x {nezt, idz} — Q4 be
defined such that é4(q, nezt) = pop(q) for all nonempty sequences ¢ € @4, and let
8+(q, nezt) be undefined when ¢ is the empty sequence. Moreover let 6, (q, idz) = f
for the value symbol f if and only if there exists a node z in the c-structure such
that either | idz = f € E(z), or 1 idz = f € E(zi) for a daughter i of z. This is the
only place where inconsistency may occur and we will later see that it will not occur
if the c-structure generates any feature structure at all. We extend the definition
of the 6} to pairs of nodes and strings of the attribute symbols as described in the
definition of feature structures in the beginning of section 3.

Now, let us shrink the definitions of @4 and 64 such that we get a well defined
feature structure. First let @ C @4 be the set of all nodes that is reachable from
a named node, formally Q@ = {¢ | 3z € D,y € {nezt,idz}* : §;(m(z),¥) = g¢}.
Then, we restrict § to the new domain: § = 64 N (Q x {nezt, idz} x Q). Finally,
let a(f) = f for all value symbol used in the c-structure. We now have a feature
structure and it is describable and acyclic directly from the definition of @ and 6.
It is also atomic since § is not defined on any feature symbol node, and a is only
defined on feature symbol nodes. Moreover, it satisfies all the equations from the
c-structure after we have instantiated the up and down arrows. We will now show
that if the c-structure generates any well defined feature structure so will it generate
the well defined canonical one also.

Let M’ = (Q',&,a’,m') be any well defined feature structure which the c-
structure generates, and assume that we have the canonical feature structure as
described. From the fact that the c-structure generates a feature structure, and from
the definition of the canonical feature structure we have that if m(z) = m(y) for
any two nodes z and y in the c-structure then m’(z) = m/(y). Now we may define a
function h : @ — Q' from the nodes in the canonical feature structure to the nodes in
M', such that m’(z) = h(m(z)) for all nodes z in the c-structure. Assume then that
we don’t have a well defined canonical feature structure because of inconsistency
in it definition. This means that there exist two instantiated equations, z idz = f
and y idz = f' from the c-structure where m(z) = m(y) but f # f'. However,
then m’(z) = m/(y), and inconsistency must also occur with respect to M’ and the
c-structure can not generate any well defined feature structure. Then the canonical
feature structure must be consistent defined, and since it is also describable, acyclic
and atomic it is well defined. Since it also satisfies all the equations in the c-structure
it is generated by the c-structure.

Now we have a well defined canonical feature structure for each c-structure based
on any UGZ grammar if the c-structure generates a feature structure. Notice that
6(< € >, 1dz) is not defined for the canonical feature structure. This due to the
mapping of the root in the c-structure to the sequence of n 4+ 1 €’s, where n is the
height of the c-structure. With this height it is only possible to pop of n — 1 ¢’s

according to definition of the name mapping (24), and since é(q, ¢dz) is only defined
for g if there exist a node z such that m(z) = ¢, §(<e>, 1dz) can not be defined.

Assume now that w € L(G) for a grammar G. Then we have a c-structure
for w based on G which generates a well defined feature structure. Then it is
also generating a canonical feature structure M = (Q, é, a, m) as described above.
For this feature structure we extend the definition of § and «a as follows: First let
6(<e>,idz) = § and let a($) = $. For all sequences g of ¢’s such that §(g, idz)
is not defined, let 8(q,idz) = f for any value symbol f which occurs in the c-
structure. When we construct the new c-structure based on G’ the old nodes keep
their mapping values.

We construct a new c-structure for w based on G’ by the following steps: First
add a new node on the top of the c-structure by applying the production rule
(21). This give us also a new sister node for the old root node. Map the two new
nodes to the same node in the extended canonical feature structure as the old root
node. This secures that the equations in the production rule (21) is satisfied by
the extended feature structure. The new sister node labeled with S, may only be
a mother of a terminal node labeled with the empty string such that the terminal
string is still w. Now add n nodes above the present root node by applying the
generic production rule (22) n — 1 times and production rule (20) on the topmost
node. This top node will be the root node in the new c-structure and it is now
labeled with the start symbol in G'. When applying the generic production rule
(22), let f = a(é(m(zl),idz)) for each new node z where it is applied. The new
nodes are each mapped to the sequence of k ¢’s, where k is the node’s distance from
the new root node. In this way the new root node is mapped to the empty sequence,
the daughter of the root node is mapped to <¢>, and so on. Since §(<e>,idz) = §
the equations in production rule (20) is satisfied by the feature structure. Moreover
since f = a(8(m(z1), idz)) for each node z where the production rule (22) is applied
and 6(q, nezt) = pop(q), all the equations is satisfied by the feature structure. We
then have a c-structure based on G’ with w as terminal string, and this c-structure
generates a well defined feature structure. Then w € L(G’).

(<=) Assume that w € L(G’) for a grammar G. Then there is a c-structure with
category Sp in the root, and a sequence of derivations down to a node with category
S, where each intermediate node has category S’. This has been constructed by
first using production rule (20) and then a sequence of zero or more applications
of production rule (22) before production rule (21) gives the node with category S.
Every node above the first node with category S has only one child, except the first
which has an additional daughter, labeled with S,. This daughter is the mother
of a single terminal node labeled with the empty string. Then we can remove
all nodes above the node labeled S and still have the same terminal string w in
the c-structure. The new c-structure will have a root-node with category S, and
only production rules from the grammar G are used. Since the original c-structure
generates a feature structure, so does the new one. Then w € L(G). 0

Now we have the necessary technical results to show that every language in
C(UGT) is an indexed language. We do this in two steps.

Lemma 6 For any UGT grammar G on reduced form with a sink-mapped root,
there ezists an indered grammar Gz such that U(Gz) = G.

Proof: Assume that G = (N,T,P,L,S) is a UGT grammar on reduced form with
a sink-mapped root. Then let Gz = (N,T,I’, P!/, S) be an indexed grammar where
I’ is all the value symbols occurring in G, and P’ is constructed from P and L by
reversing Definition 9 a)-d). This can bee done since G is on reduced form and there
exist a one to one relation between the production rules in the indexed grammar and
the production and lexicon rules in the unification grammar defined there. Since G

has a sink-mapped root the start symbol will occur in one and only one production
rule together with a unique value symbol. Then Gz has a marked index-end and
U(Gz) =G. a

Lemma 7 Every language in C(UGT) is an indezed language.

Proof: From Lemma 4 and Lemma 5 we have for any language in C(UGT) that there

exist a YGZ grammar G on reduced form with a sink-mapped root that generates the

language. From Lemma 6 we have an indexed grammar Gz such that #(Gz) = G.

By Lemma 2 we have that L(Gz) = L(G). Then we have an indexed grammar for

all languages in C(UGT). o
From Lemma 3 and Lemma 7 we then have the following result:

Theorem 1 : The class C(UGT) is the class of indezed languages.

Acknowledgments

I would like to thank Tore Langholm for his advice during the work that this paper
is based on, and for extended comments on earlier versions of this paper.

References

[Aho68] Alfred V. Aho. Indexed grammars —an extension of context-free gram-
mars. Journal of the Association of Computing Machinery, 15(4):647-671,
October 1968.

[Col91]) Erik A. Colban. Three Studies in Computational Semantics. Dr.scient
thesis, University of Oslo, 1991.

[Gal86]) Jean H. Gallier. Logic for Computer Science. Harper & Row, Publishers,
New York, 1986.

[Gaz88] Gerald Gazdar. Applicability of indexed grammars to natural languages. In
Uwe Reye and Christian Rohrer, editors, Natural Language Parsing and
Linguistic Theories, pages 69-94. D. Reidel Publishing Company, Dor-
drecht, Holland, 1988.

[GM89] Gerald Gazdar and Chris Mellish. Natural Language Processing in LISP.
Addison-Wesley Publishing Company, 1989. Also in Prolog version.

[Hay73]) Takeshi Hayashi. On derivation trees of indexed grammars —an extension
of the uvwxy-teorem—. Publications of the Research Institute for Mathe-
matical Sciences, Kyoto University, 9(1):61-92, 1973.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[KB82] Ronald M. Kaplan and Joan Bresnan. Lexical functional grammar: A
formal system of grammatical representation. In Joan Bresnan, editor,
The Mental Representation of Gramatical Relations. MIT-Press, 1982.

[Shi85] Stuart M. Shieber. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy, 8:333-343, 1985.

37

Swedish Language Processing in the
Spoken Language Translator

Bjorn Gamback
Natural Language Processing Group
Swedish Institute of Computer Science
Box 1263, S - 164 28 KISTA
Stockholm, Sweden

gamback@sics.se

Abstract

The paper describes the Swedish language components used in the Spo-
ken Language Translator (SLT) system. SLT is a multi-component sys-
tem for translation of spoken English into spoken Swedish. The language
processing parts of the systemn are the English Core Language Engine
(CLE) and its Swedish counterpart, the S-CLE. The S-CLE is a general
purpose natural language processing systems for Swedish which in the
SLT project was tuned towards the register of the air travel informa-
tion (ATIS) domain. The peculiarities and the coverage of the resulting
Swedish grammar are the main topics of the paper, even though the
overall SLT system also is briefly described.

1 Introduction

The Swedish Core Language Engine (or S-CLE for short) (Gamback and Rayner,
1992) is a general purpose natural language processing system for Swedish developed
by the Swedish Institute of Computer Science from its English counterpart, the SRI
Core Language Engine (CLE) (Alshawi, 1992). The key idea behind the system is
indicated by the word “core”: the S-CLE was intended to be used as a building
block in a broad range of applications and has already been tested as part of a
database query systern (Gamback and Ljung, 1993) and as a text-to-speech front-
end (Gamback and Eineborg, 1995). The two copies of the CLE have also been
used together to form a machine translation system for a car-hire domain (Alshawi
et al., 1991).

In the Spoken Language Translator, described in the next section, the English
CLE performed as a back-end to a speech recognition system, the S-CLE as a front-
end to a speech synthesis system, and the two CLEs together formed a (text) trans-
lation system in the air travel information domain. In the course of the project, the
previous Swedish system was completely redesigned and the general-purpose gram-
mar expanded, but also tuned to cover the peculiarities of the register (sublanguage)
of a particular domain.

The present paper starts out by describing the overall SLT system architecture in
Section 2 and briefly introduces the different components of the system. Section 3 is
the main focus of the paper, describing the different modules of the present Swedish
language processing component in detail by giving examples of the rules used for
the treatment of some specific phenomena.

Section 4 details the coverage issues and how the Swedish coverage was improved
during the first year of the project. The final section of the paper looks into the
future, describes the ongoing work on making the system completely bidirectional,
and sums up the previous discussion.

2 The SLT system

The Spoken Language Translator (SLT) is a system prototype which can translate
queries from spoken English to spoken Swedish in the domain of air travel plan-
ning (ATIS). The system was developed as a joint effort by the Swedish Institute
of Computer Science, SRI International (Menlo Park, US and Cambridge, UK),
and Telia Research AB (Haninge, Sweden). Most of the first-year prototype was
constructed from previously existing pieces of software, which were adapted for use
in the speech translation task with as few changes as possible. The overall archi-
tecture of the current version of SLT system is described shortly in this section, for
a complete description see (Rayner et al., 1993) or (Agnas et al., 1994).

English speech Swedish speech

S];(;e[(]:h re;oglfiéign Speech synthesis
SRIUS (Dl CIPHER) Telia (Prophon)
Speech hypotheses Swedish sentence(s)
Analysis Generation
SRI UK (CLE) SICS (§-CLE)
English QLF (s) —— Transfer > Swedish QLE(s)

Figure 1: Top-level architecture of the Spoken Language Translator

The main components of the SLT system are connected together in a pipelined
sequence as shown in Figure 1. The input signal is processed by SRI Menlo Park’s
DECIPHER(TM) (Murveit et al., 1991), a speaker-independent continuous speech
recognition system based on Hidden Markov Model technology. It produces a set
of speech hypotheses which is passed to the English-language processor, the SRI
Cambridge Core Language Engine (Alshawi, 1992).

The CLE grammar associates each speech hypothesis with a set of possible
quasi-logical forms, QLFs (Alshawi and van Eijck, 1989), typically producing 5
to 50 QLFs per hypothesis. In order to allow fast processing of a large number
of hypotheses, a scaled-down version of the grammar induced with the machine-
learning technique “Explanation-Based Learning” (Samuelsson and Rayner, 1991)
is first invoked and parsed with an LR-parser (Samuelsson, 1994). Only if this
restricted-coverage grammar fails is the general-purpose grammar tried on the (by
the speech recognizer) most preferred hypothesis.

A preference component is then used to give each QLF a numerical score re-
flecting its hinguistic plausibility (Alshawi and Carter, 1994). When the preference
component has made its choice, the highest-scoring logical form is passed to the
transfer component, which uses a set of simple non-deterministic recursive pattern-
matching rules to rewrite it into a set of possible corresponding Swedish represen-
tations (Alshawi et al.; 1991; Gamback and Bretan, 1994).

The preference component is now invoked again, to select the most plausible
transferred logical form. The result is fed to a second copy of the CLE, which uses
a Swedish-language grammar and lexicon developed at SICS (Gamback and Rayner,
1992) to convert the form into a Swedish string and an associated syntax tree. Fi-
nally, the string and tree are passed to the Telia Prophon speech synthesizer, which
utilizes polyphone synthesis to produce the spoken Swedish utterance (Backstrém
et al., 1989).

The SLT system’s current performance figures measured on previously unseen
data (the 1001-utterance December 1993 ATIS corpus) are: 78.8% of all utterances
are such that the top-scoring speech hypothesis is an acceptable one. If the speech
hypothesis is correct, then an acceptable translation is produced in 68.3% of the
cases and the overall performance of the system is 53.8%. Limiting the test corpus
to sentences of 10 words or less (688 utterances), these figures move up to 83.9%
for speech recognition and 74.2% for language processing, with a 62.2% overall
performance.

For about 10% of the correctly recognized utterances, an unacceptable transla-
tion is produced. Nearly all of these are incorrect due to their containing errors in
grammar or naturalness of expression, with errors due to divergence in meaning be-
tween the source and target sentences accounting for less than 1% of all translations.
SLT performance is discussed at length in (Rayner et al., 1994).

3 Swedish Language Processing

As noted above, the S-CLE is a general purpose natural language processing system
for Swedish. The main object of the system is to map certain natural language
expressions into appropriate predicates in quasi-logical form. The system is based
completely on unification and has a fairly large bidirectional phrase-structure type
grammar (i.e., the grammar can be used both for analysis and generation) covering
most of the common Swedish constructions. There is a good treatment of inflectional
morphology, covering all main inflectional classes of nouns, verbs and adjectives.

The S-CLE has been developed from the original English CLE by replacing
English-specific modules (grammar, morphology, lexicon and lexicon acquisition)
with corresponding Swedish-language versions, exploiting the large overlap between
the structures of the two languages. Most of the Swedish grammar is thus completely
equivalent to the English one; this section will concentrate on the parts that differ

for interesting reasons. (So, even though the grammars indeed differ in several ways
not described here, most of the differences are for rather uninteresting reasons more
reflecting different tastes on the side of the grammarians than real grammatical
differences and will thus be left out from the discussion here.)

A previous version of the Swedish grammar and how it was developed was de-
scribed in (Gambick and Rayner, 1992). There we also went into some detail on the
(at least for a translation task) most vital differences between English and Swedish,
both at the morphology and syntax levels. The present paper will thus refrain from
recapitulating that discussion and only give an overview of the most important
phenomena and their present treatment in the system.

First, however, we should note that the simple methodology outlined for devel-
oping a system for a new language has also been shown to be successful for other
languages. A full-scale version of the CLE for French has recently been developed
by ISSCO, Geneva. It has a coverage at roughly the same level as the Swedish
one (Rayner and Bouillon, 1995) and is also used as a part of a spoken language
translation system (English-to-French), which was demonstrated at the CeBIT fair
in Hannover, March 1995.

Small-scale versions of the CLE are also under development by the University
of Cambridge: for German (Parkinson, 1992), mainly for testing the grammar for-
malism on a language with a different word order; for Polish (Stys, 1995), testing
the morphology component on the intricacies having to do with case, gender and
number variation on nouns, as well as the noun phrase part of the grammar on some
of the problems associated with a “free” word order; and for Korean.

The rest of this section will in turn go through the different processing steps
used when forming a QLF in the S-CLE and describe the rule sets used in each of
them: first the morphological processing where the rulebase is divided into mor-
phophonological “spelling” rules and morphosyntactic “production” rules. Then
the grammatical processing which in turn is divided into two steps, syntactic pars-
ing and semantic analysis. The rules of the grammar proper are thus divided into
two different rule sets, one with the syntax and another with the (compositional)
semantics. The main processing chain is as shown in Figure 2.

NL sentence

morphological analysis

1

syntactic parsing 4—(syntax rules)

1

semantic analysis |« semantic rules)

!

QLF

< spelling rules)
«(production rules)

Figure 2: The analysis steps of the S-CLE

3.1 Morphology

Given that Swedish is an inflectional language, the treatment of the inflectional
morphology by simple affix-stripping used in the original English CLE was far from
sufficient. A “lazy” version of the two-level morphology (Koskenniemi, 1983) was
thus implemented (Carter, 1995). This version is “lazy” in that it does not account
for general changes of the stems of words.

A typical spelling rule is the following which shows that when the affix er is
added to a stermn ending with an o or an e followed by an 1 or an r, the stem
vowel may be dropped unless it is stressed (i.e., formler = formel + er, mandvrer
= manover + er, etc.):

spell(plur_LRer_eLR,
nl Iu’ =>’ “|2|1+9r",
[2/"06" , l/ulrn] R
[stresslast=n]).

In all the rule formalisms of the CLE, the first argument (here, plur_LRer_eLR)
is simply a rule name mainly used for debugging. The main parts of the rule
appear on the different sides of the arrow (=>): these are the surface and lexical
forms, respectively. The vertical bars (1) indicate which letters may be changed
in the rule. If the arrow is bidirectional (<=>), the rule must apply; here it may
optionally apply. The final two lists put restrictions on the “variables” 1 and 2 in
the rule, and on possible feature settings on the stem.

In the current version of the Swedish morphology (which is still under devel-
opment), 58 such spelling rules appear and are complemented by another set of 4
interword rules used in the derivational morphology, which in Swedish is also quite
complex; however, since the current version of the system cannot handle derivational
morphology in general, we will not go into too much detail here, but concentrate
on the — for the task at hand — most important part of it, namely the production
of noun compounds, which are extremely common in the ATIS domain.

While noun compounds in English are formed simply as groups of words, the
Swedish compounds are formed by actually compounding the words together. In
general, this can be done in a wide variety of fashions, but in present-day Swedish
mainly in two ways only: either by just “gluing” the words together, or by inserting
an -s- between the words in the compound, as described in for example (Kiefer,
1970). Compounds can in general be of almost all word-classes, but the most
common ones are noun compounds, in which the last word of the compound is a
noun; the other words in the compound can be of other classes (e.g., adjectives or
adverbs), but are normally nouns, as well.

As a rule-of-thumb, noun compounds are formed first without inserting an infix
s, but if the compound consists of more than two words, an s will be inserted for
every second word added to the compound, so for example the following sequence
would give the words for “father”, “grand-father” (father’s father), “great grand-
father”, etc.:

far, farfar, farfarsfar, farfarsfarfar, ...

Whether a particular noun will form compounds by inserting an s or not depends
on the word in question and is thus lexicalized.

To implement the noun compound formation, a feature nn_infix on an N (nouns
are lexicalized as Ns) indicates whether or not it can be post-modified with a com-
plex N compound. The feature can currently take the values s (for an infix *-s-")
or n (for no infix, in practice *--’, i.e., just a hyphen) and is lexicalized on the
N, thus indicating the fact that some lexicon Ns take an s-infix when forming a
compound, and some do not.

The following morphological production rule for noun-noun compounds (there
are similar rules for other types of noun compounds) show together with the two
rules for infixes (’-s-’ or '--’) how the nn_infix feature propagates as 00+01=01,
01+10=00, i.e., an N that takes no infix has nn_infix(0,0) as its lexicon value and
meets the ’-~’-infix which has nn_infix(0,1) to produce an N withnn_infix(0,1),
which in turn can produce an N that takes the null-infix if it meets the *~s-’-infix
(nn_infix(1,0)), etc.

nbar: [nn_infix=(I,0), simple=n, ...]
—-—>

nbar:[nn_infix=(I,N), ...]
+

'INFIX’: [nn_infix=(N,0)]
+

nbar: [simple=y, ...]

lex(’-s-’,[?INFIX’:[nn_infix=(1,0)]]).
lex(’—-’,[?INFIX’: [nn_infix=(0,1)]]).

The setting of the feature simple force complex compounds to form in a left-
branching fashion; the right-most daughter may not itself be a compound (must
have simple=y).

Production rules like the one above currently number 27 in the system, only
4 of which are used for forming compounds. These production rules are actually
used by the syntactic morphological processing and are more or less paralleled by
33 semantic morphological derivation rules.

3.2 Syntax

On the syntactic side, the English and Swedish grammars differ on many accounts.
Firstly, several extra rules appear in the Swedish system, mainly to capture different
kinds of movements, in particular the fact that Swedish allows for topicalization of
just about any type of constituent. Space considerations prevent a full account of
these rules from being included in this paper; they will be reported on elsewhere
(Gamback, 1995). Here, we will thus only concentrate on some prototypical cases.

Secondly, a number of new features had to be added or the value ranges or rele-
vant rules for old features had to be extended. Most notably since the more complex
agreement structure of Swedish means that the features indicating agreement and
definiteness must be propagated to many more constituents.

An example is the three-valued definiteness feature, which ranges over values
for “indefinite”, “definite” and “possessive”, the last one being used on genitive
NPs. These are treated as forming complex determiners, so that ‘en mans fru’
(a man’s wife), ‘mannens fru’ (the man’s wife), and ‘Kalles fru’ (Kalle’s wife) are
all interpreted as having the structure [NP [DET N]] as examplified in Figure 3.

NP (def=poss,gen=n]

DET [def=poss] N [def=poss,gen=n]

NP [def=n,gen=y] fru
DET [def=n) N [def=n,gen=y]
eEn mans

Figure 3: The tree structure for the noun phrase ‘en mans fru’

This is obtained by using the following two rules (here quite simplified with most
features removed):

syn(det_np_Genitive,
[det: [def=poss],

np: [def=_, gen=y]
1.

syn(np_det_nbar,
[np: [def=D, gen=G],
det: (def=D],
nbar: [def=D, gen=G],
1).

The first rule specifically forms determiners from genitive NPs (with the feature
setting gen=y) regardless of the NP’s definiteness (def=_), giving the newly formed
determiner a possessive definiteness. The second rule forms NPs from determiners
and nouns as long as the definiteness values on the daughters unify. This rule may
be used on a wide range of determiner and noun types, including genitives.

3.3 Semantics

Most of the differences between English and Swedish syntax is only mirrored at the
(QLF, i.e., compositional) semantic level without any interesting additions. The
most notable exception is the verb-phrases. Already at the syntax-level, most word-
order differences stem from the strongly verb-second nature of Swedish: formation of
both YN- and WH-questions is by simple inversion of the subject and verb, without
the introduction of an auxihary. This is illustrated in the following examples:

Han sig Maria. He saw Mary.
Sag han Maria? Did he see Mary?
Vem sag han? Who did he see?

This difference of verb syntax can actually be factored away. However, we will
not dwell in too much detail on the rather special unification-based treatment of
verb-phrases used in the system — for that, the reader is referred to (Gamback,
1993a; Gamback, 1993b) — but will note that the main trick used is lezicalization:
information regarding for example verb subcategorization schemes (i.e., the number
and type of verbal complements, such as objects, particles, etc.) is removed from the
grammar and put in the lexicon instead. Syntactically, this enables us to treat both
English and Swedish verb-phrases of different kinds with a rule like the following:

syn(vp_v_comp_Normal,
(vp: [tense_aspect=TA],
v: [aux=_, tense_aspect=TA,
subcat=Complements]
| Complements

D.

where the value of the subcat feature of the verb has to unify with the rest of the
verb-phrase. The value of subcat is specified for a particular verb in its lexical entry
and can of course be empty (for intransitives, etc.). Our current Swedish grammar
treats 48 different main verb complement patterns plus copulas and auxiliaries.
Without claiming this to be the absolute number of Swedish verb types in any sense,
it is easily understandable that without the strategy outlined above, we would have
been forced to state specific instances of the verb-phrase formation rule for a vast
number of cases.

In the CLE, each syntactic rule is paralleled by (at least) one semantic rule.
For all English verbs and for Swedish main verbs, the verb-phrase rule above has
a simple counterpart, but even for Swedish auxiliaries the treatment causes no
problems, even though an extra case of the semantic rule had to be added in order
to pass tense and aspect information properly, given that for main verbs, the tense
information of the verb-phrase is the same as the one of the daughter verb and
is simply unified up together with the other semantic information, while in the
auxiliary case, the semantic interpretation of the mother verb-phrase still is the one
of the daughter verb-phrase, but the tense is to be taken from the auxiliary.

Thus we get the following two (indeed very simplified!) semantic rules:

sem(vp_v_comp_Normal, mainv,
[(V,vp:[tense_and_aspect=TA],
(v,v:[aux=n, tense_aspect=TA,
subcat=Complements])
| Complements

1.

sem(vp_v_comp_Normal, aux,
[(V,vp:[tense_and_aspect=TA],
(Aux,v:[aux=y, tense_aspect=TA,
subcat=(V,vp:[1)1),
(v,vp:[1)
1.

Note that each constituent in the semantic rules is a pair with the first part hold-
ing the semantic logical-form fragment and the second part holding the (basically)
syntactic information.

3.4 Negation

A specific case where the English and Swedish grammar differs significantly is in
the treatment of negation. Negation in Swedish is expressed with the particle ‘inte’
(not), which is placed after the main verb in a main clause, but before it in a
subordinate clause, thus:

Han snarkade inte. He did not snore.
...all han inle snarkade. ...that he did not snore.

Similar considerations also apply to a number of other common adverbials (so-
called “mobile adverbs”), including ‘ofta’ (often), ‘alltid’ (always) and ‘troligen’
(probably).

Even though negation tends to be used to a very small degree in the ATIS
domain, a serious natural-language processing system must of course treat it, how-
ever, it does cause some problems both for English-Swedish transfer and for the
QLF-formalism as such. The design choice in the English CLE was to treat nega-
tion semantically as an operator on the sentence structure which at the syntactic
level pre-modifies a verb-phrase forming a new verb-phrase, the rule thus being
schematically:

VP -> not VP

In Swedish such a treatment does not suffice; negation is still viewed as an
operator at the semantic level, but instead of modifying verb-phrases, it is taken as
modifying the verb itself in the syntax. Since whether the modification is pre- or
post- depends on the type of clause, this has been treated by adding a subordinate
feature to S, VP and V.

Three rules for verbs are needed, the first treating main clause negation, the
second treating subordinate clause negation and the third treating a special case of
main clause negation with a pronoun as object:

1. mannen [gillade inte] Maria/mig the man did not like Mary/me
v:[subordinate=n, ...]
-->
v:[...]
+
neg: []

2. att mannen [inte gillade] Maria/mig that the man did not like Mary/me

v: [subordinate=y, ...]
-—>

neg: []
+

v:[vtorm=(\(att)), ...]

3. mannen [gillade mig inte] the man did not like me

v:[subordinate=n, subcat=Rest, ...]
-—->

v:[subcat=[Pro|Rest], ...]
+

Pro
+

neg: []

At the semantic level, treating negation as an operator causes some problems.
Mainly since all mobile adverbs ought to be treated in the same way, but introducing
QLF-operators for all of them would hardly be feasible. Thus negation is actually
the only mobile adverb treated by the present version of the Swedish grammar.
This problem and the fact that while modification of English verb phrases occurs
external to the VP, Swedish modifiers are internal can be taken as an argument
against having a VP node at all in Swedish, or as basis for introducing a V node.
The above treatment goes a bit along the way of the second alternative.

4 Swedish grammar coverage

Without going into more details of the Swedish grammar, we should note that its
coverage on the ATIS task was increased substantially during the project.

%A

100 ¢+
L " (96)

90 4 * (89) * (91)

80 1 (84)° (84). 1)

70 +
60 + * (63)

50 1

40 T ¢ (41)
30 +
20 4

101 g

A Y re e i i " .
>

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Month

Figure 4: Transfer and generation coverage increase

Tests on a representative 281 sentence corpus showed an increase in coverage
of the transfer and generation components combined from a mere 9.6% in mid-
December 1992 to 96% in mid-September 1993, as can be seen in Figure 4.

As could be expected the main coverage increases were obtained early on in the
project. After awhile, the coverage stabilized around 80%; to further increase the
coverage, some major changes had to be undertaken, changes which at first actually
lead to a slight coverage drop (as shown by the figure for mid-June).

Note that the figures in the graph refer to sentences that obtained a translation,
any translation. For a discussion of the translation quality, see (Agnas et al., 1994).

5 Future Work and Conclusions

In the paper, the Swedish language processing component of the SLT English-to-
Swedish spoken language translation system has been described. The main emphasis
has been on the grammar and its coverage, but the other modules of the language
processing part have also been described. The overall SLT system prototype and its
coverage after the first year of the project has only been briefly discussed, while the
paper has focused on the different modules of the Swedish processing component.
These have been described mainly on a pro-example type level, showing the various
rule formalisms at work.

At the date of writing, work has just begun on a second phase of the SLT project.
We intend to reverse the system, so that translation of spoken Swedish into spoken
English will be possible. Even though the main part of the work needed for that
will be on producing a Swedish speech recognition system, the language processing
components will be extended quite a lot at the same time. Partly because the
Swedish part of the system has not been extensively tried for language processing
as opposed to just generation for awhile, partly because the new version of SLT also
will include extended processing in a new spoken language database query task,
as well as allowing for some translations in a computer mediated person-to-person
dialogue setup.

In parallel, work will be undertaken on systematically testing how the grammar
coverage of the Swedish system can be tuned towards a new domain (Berglund and
Gamback, 1995) and whether the system is robust enough to be used as the basis
for building a tree-bank of Swedish analyses (Santamarta et el., 1995). Both these
tests will use the representative Swedish “Stockholm-Umea corpus” (SUC) (Ejerhed
et al., 1992).

6 Acknowledgements

The work reported here was funded by the Swedish Institute of Computer Science
and Telia Networks.

I would like to thank Ivan Bretan, Jussi Karlgren and Christer Samuelsson who
all were involved in the SLT project at SICS, my other colleagues in the SICS
NLP-group, everybody else working on SLT related issues at the various sites, in
particular Manny Rayner and Malgorzata Stys for some useful suggestions. Char-
lotta Berglund, Nikolaj Lindberg and Lena Santamarta are worthy of many thanks
for (unwillingly) having had to help out in debugging the grammar while doing their
BA and MA Thesis work.

References

Agnas, M.-S., Alshawi, H., Bretan, I., Carter, D., Ceder, K., Collins, M., Crouch, R.,
Digalakis, V., Ekholm, B., Gamback, B., Kaja, J., Karlgren, J., Lyberg,
B., Price, P., Pulman, S., Rayner, M., Samuelsson, C., and Svensson, T.
1994. Spoken Language Translator: First-Year Report. Joint Research
Report R94:03 and CRC-043, SICS and SRI International, Stockholm,
Sweden and Cambridge, England.

Alshawi, H., editor. 1992. The Core Language Engine. The MIT Press, Cambridge,
Massachusetts.

Alshawi, H. and Carter, D. 1994. Training and Scaling Preference Functions for
Disambiguation. Computational Linguistics, 20:635-648.

Alshawi, H. and van Eijck, J. 1989. Logical Forms in the Core Language En-
gine. In Proceedings of the 27th Annual Meeting of the Association for
Compulational Linguistics, pages 25-32, Vancouver, British Columbia.

Alshawi, H., Carter, D. M., Gamback, B., and Rayner, M. 1991. Translation by
Quasi Logical Form Transfer. In Proceedings of the 29th Annual Meetling of
the Association for Computational Linguistics, pages 161-168, University
of California, Berkeley, California.

Backstrom, M., Ceder, K., and Lyberg, B. 1989. Prophon — An Interactive En-
vironment for Text-to-Speech Conversion. In Proceedings of the Euro-

pean Conference on Speech Communication and Technology, pages 144-
147, Paris, France.

Berglund, C. and Gamback, B. 1995. On Testing Domain Adaptability. In Proceed-
ings of the 10th Scandinavian Conference on Computational Linguistics,
Helsinki University, Helsinki, Finland. (presentation).

Carter, D. 1995. Rapid Development of Morphological Descriptions for Full Lan-
guage Processing Systems. In Proceedings of the 7th Conference of the
European Chapter of the Association for Computational Linguistics, pages
202-209, University College of Dublin, Dublin, Ireland.

Ejerhed, E., Killgren, G., Wennstedt, O., and Astrom, M. 1992. The Linguistic
Annotation System of the Stockholm—Umea Corpus Project. Report 33,
Department of General Linguistics, University of Umea, Umea, Sweden.

Gamback, B. 1993a. On Implementing Swedish Tense and Aspect. In Proceedings
of the 9th Scandinavian Conference on Computational Linguistics, pages
97-109, Stockholm University, Stockholm, Sweden.

Gamback, B. 1993b. Towards a Uniform Treatment of Swedish Verb Syntax and
Semantics. In Proceedings of the 14th Scandinavian Conference of Lin-
gutstics and the 8th Conference of Nordic and General Linguistics, pages
123-134, University of Gothenburg, Gothenburg, Sweden.

Gamback, B. 1995. Processing Swedish Sentences: A Unification-Based Swedish
Grammar and some Applications for It. Doctor of Engineering Thesis,
Stockholm University /Royal Institute of Technology, Stockholm, Sweden.

Gamback, B. and Bretan, I. 1994. Complex Verb Transfer Phenomena in the
SLT System. In Proceedings of the 1st Conference of the Associalion for
Machine Translation in the Americas, pages 89-96, Columbia, Maryland.

Gamback, B. and Eineborg, M. 1995. A Grammar-Based Rule Formalism for a
Text-to-Speech Interface System. In Proceedings of the 5th Scandinavian
Conference on Artificial Intelligence, Trondheim, Norway. (to appear).

Gamback, B. and Ljung, S. 1993. Question Answering in the Swedish Core Lan-
guage Engine. In Proceedings of the 4th Scandinavian Conference on Ar-
tificial Intelligence, pages 212-225, Stockholm, Sweden. Also available as
SICS Research Report, R92014, Stockholm, Sweden.

Gambaick, B. and Rayner, M. 1992. The Swedish Core Language Engine. In
Papers from the 3rd Nordic Conference on Text Comprehension in Man
and Machine, pages 71-85, Linkoping University, Linkoping, Sweden. Also
available as SICS Research Report, R92013, Stockholm, Sweden.

Kiefer, F. 1970. Swedish Morphology. Skriptor, Stockholm, Sweden.

Koskenniemi, K. 1983. Two-Level Morphology: A General Computational Model
for Word-Form Recognition and Production. Doctor of Philosophy Thesis,
University of Helsinki, Helsinki, Finland.

Murveit, H., Butzberger, J., and Weintraub, M. 1991. Speech Recognition in SRI’s
Resource Management and ATIS Systems. In Proceedings of the 4th Speech
and Natural Language Workshop. DARPA, Morgan Kaufmann.

Parkinson, S. 1992. A Computational Grammar for Use in Machine Translation.
Master of Philosophy Thesis, Cambridge University, Cambridge, England.

Rayner, M. and Bouillon, P. 1995. Hybrid Transfer in an English—-French Spoken
Language Translator. (In manuscript.).

Rayner, M., Alshawi, H., Bretan, 1., Carter, D. M., Digalakis, V., Gamback, B.,
Kaja, J., Karlgren, J., Lyberg, B., Pulman, S. G., Price, P., and Samuels-
son, C. 1993. A Speech to Speech Translation System Built from Standard
Components. In Proceedings of the Workshop on Human Language Tech-
nology, Princeton, New Jersey. ARPA, Morgan Kaufmann.

Rayner, M., Carter, D. M., Price, P., and Lyberg, B. 1994. Estimating Performance
of Pipelined Spoken Language Translation Systems. In Proceedings of the
IEEE Inlernational Conference on Acoustics, Speech and Signal Process-
ing, Kyoto, Japan.

Samuelsson, C. 1994. Notes on LR Parser Design. In Proceedings of the 15th
International Conference on Computational Linguistics, volume 1, pages
386-390, Kyoto, Japan.

Samuelsson, C. and Rayner, M. 1991. Quantitative Evaluation of Explanation-
Based Learning as an Optimization Tool for a Large-Scale Natural Lan-
guage System. In Proceedings of the 12th International Joint Conference
on Artificial Intelligence, pages 609-615, Sydney, Australia.

Santamarta, L., Lindberg, N., and Gamback, B. 1995. Towards Building a Swedish
Treebank. In Proceedings of the 10th Scandinavian Conference on Compu-
tational Linguistics, Helsinki University, Helsinki, Finland. (presentation).

Stys, M. 1995. Incorporating Discourse Aspects in English-Polish MT: Towards
Robust Implementation. (In manuscript.).

4 21307

50

Locally Tree-shaped Sentence Automata
and Resolution of Ambiguity

Jussi Piitulainen
Research Unit for Multilingual Language Technology
Department of General Linguistics
University of Helsinki

jpiitula@ling. helsinki.fi

Abstract

The framework of finite state intersection grammars is directed towards
practical representation and parsing of running text. A problem in pars-
ing has been that intersection with successive rule automata can produce
prohibitively large intermediate sentence automata. See (Koskenniemi,
Tapanainen and Voutilainen 1992) and (Koskenniemi 1990) and (Vouti-
lainen and Tapanainen 1993).

This paper sketches a data structure and parsing method that may
help to compute the intersection of a sentence automaton with all rule
automata while keeping the size of intermediate sentence automata under

control.

1 Representation of sentence readings

Sentence readings are finite sequences of word forms, morphosyntactic labels and
boundary labels (Voutilainen 1994, Voutilainen and Tapanainen 1993). The struc-
ture of a sentence reading is such that each word form reading contains the word
form, a base form, a few morphological labels and one or two syntactic labels, and
word form readings are separated by boundary labels. For example, the correct
reading of the sentence ‘And time began seriously to pass.’ in figure 1 identifies
‘time’ as a subject @SUBJ, and ‘began’ as a main verb in a main clause @4V MAINCQ,
and so on. Other readings might misidentify ‘time’ as a verb or ‘to’ as a preposition,
or correctly identify ‘time’ as a noun but misidentify it syntactically as an object
or an apposition. An incorrect choice for a word boundary label would indicate the
presence of more than one finite verb form.

There are five alternative word boundary labels: @@ begins and ends a sentence,
embedded finite clauses are enclosed between @< and @>, a boundary where a finite
clause ends and a new one starts is labeled with €/, and @ is used for others.

A finite set of readings is represented as an acyclic finite state automaton
called a sentence automaton. Word forms in the sentence have all lexically possible
morphosyntactic readings as alternatives, and each word boundary is made four
or sometimes five ways ambiguous. The initial number of readings in a sentence
automaton is the product of the lexical and word boundary ambiguities in the

sentence.

<and> and CC eccC L]
<time> time N NOM SG QSUBJ e
<began> begin V PAST VFIN @MV MAINCQ @
<seriously> serious ADV QADVL ¢
<to> to INFMARK Qaux Q
<pass> pass V INF emv OBJQ @
<.> @fullstop]

Figure 1 A sentence reading

The grammar is represented as a number of finite state automata called rule
automata. Each rule automaton is constructed to accept all readings that are to be
grammatical and to reject some readings that are to be ungrammatical. In other

words, the grammar is taken to be the intersection of individual rules.

Sentence automata will be drawn with the the start state on the left, the
direction of edges from left to right, and the final state as a double circle on the

right.

2 The problem

The task is to compute the intersection SNRgN---NR,_; of a sentence automaton S
with all rule automata Ry, ..., By_1. The main practical problem is that sometimes
intersection with successive rule automata produces prohibitively big intermediate
sentence automata. Any method that computes the same final result can be used
instead of the straightforward intersection; this paper proposes one such method.
The number of readings represented by the sentence automaton decreases
monotonically during the parsing process. The number of states in the sentence
automaton tends to increase at first; the initial automaton can be very compact
precisely because it contains all alternatives, and a smaller set may be represented

by a bigger automaton.
The removal of the dashed edges in figure 2 leaves two minimal automata of
which the bigger represents the smaller set of readings. This shows how removal of

readings can require addition of states and edges.

The two automata in figure 2 represent a set of four readings. The upper
automaton is minimal and the lower automaton is (almost) maximal. Consider
now a rule that rejects the sequence (z,a,y, a, z) and accepts the other three. No
edge can be removed from the minimal automaton since every edge belongs to one
of (z,a,y,b,2) and (z,b,y,qa,z) and (z,b,y,b,2). In the maximal automaton, the
dashed edges and the state between them belong only to the rejected sequence and
can be removed.

The final sentence automaton SN ReN---N Ry,_; represents the set of correct

readings for the sentence. If the grammar is accurate, this automaton is again quite

small because it represents a very small set of readings.

Figure 2 A minimal automaton and a maximal automaton

3 New representation of sentence automata

This section introduces a new representation for sentence automata. The new data
structure is designed to facilitate separation of two operations that intersection
would combine, namely removal of readings and expansion of the sentence automa-
ton. This separation should help keep the size of intermediate automata under
control.

Edges and states can be removed if they are not parts of any reading that
should remain. In a tree-shaped automaton, all removable readings can be removed
by removing such edges and states. Since it is strictly impractical to make the whole
sentence automaton tree-shaped, the automaton is made tree-shaped only locally.
Initially, the local trees span readings of word forms, but they can be expanded to
span longer intervals. .

There must be states with more than one immediate predecessor. These are
immediate successors of the leaves of local trees. Since the trees initially span word
forms, the word boundaries correspond to collections of the states that may have
several immediate predecessors. These collections will be called slices.

Each slice of a sentence automaton contains exactly one state of every path
between the start state and the final state. The first slice contains the state that
immediately follows the start state, and the last slice contains the final state. Ini-
tially slices contain only one state.

The two automata in figure 3 represent a set of a few readings of the sentence
‘Time passed’. Punctuation and some labels, notably MAINC@, are omitted to save
space. The upper automaton is locally tree-shaped; the lower automaton is an
ordinary minimal automaton.

The rectangles in the upper automaton represent the three slices corresponding
to the three word boundaries in the sentence.

Each state in a slice is a root of a local tree. The leaves of the tree are immediate
predecessors of some roots in the next slice. Note that a state that is properly
between slices has only one immediate predecessor, so that the trees do not share
structure.

The data structure representing a sentence automaton should give easy access
to the information needed in the algorithms to be described, in addition to the
underlying automaton structure. First, the containing slice, if any, should be avail-
able given a state. Second, the previous state or states should be available given a

Ktime>time
O Q

Figure 3 Locally tree-shaped vs. minimal

state. Third, the states in slices and immediate predecessors of states in slices will
be assigned sets of rule states that should be available given such a state. It should

be easy to iterate over all edges that leave a state.

4 Operations on the new data structure

The new data structure is designed so that removal and addition of states and edges
are separate operations. This is in contrast to intersection that not only removes
readings but also expands the sentence automaton in a way that is difficult to
control.

In contrast to sentence automata, next to nothing is assumed about the rep-
resentation of rule automata. All that is required is that it is possible to compute
the state where a given state takes a given symbol, and to decide whether there is
any way to reach a final state from a given state.

A state is called a sink if there is no way to reach a final state from it. A rule

can fail by going into a sink long before reaching the end of an input sequence.

4.1 Initialization and propagation

In the new representation, sentence automata contain two special kinds of states,
namely the roots of the local trees and the leaves of the local trees. The roots are
in slices, and each leaf is an immediate predecessor of a root. (The start state is
also thought of as a leaf.) Readings are removed in two steps called propagation
and removal.

The propagation step assigns sets of states of a rule automaton to the roots
and leaves of the local trees. Initially, a set containing the start state of the rule
automaton is assigned to the start state of the sentence automaton. There is only
one path from the start state of the sentence automaton to the first root, the one
labeled @@; the set containing the state to which the start state of the rule automaton
takes the label @@ is assigned to the first root.

Once initialized, the propagation step continues by assignment of sets of rule
states to the roots and leaves of each local tree in turn. For example, a certain rule

automaton goes to a sink state when it encounters the label @MV after it has already
encountered @MV but not yet encountered a clause boundary. Let state 1 be the start
state, state 2 be the state after the first @MV and state 5 be the sink state. In the
upper automaton in figure 4, the root has been reached through paths that contain
one @MV and paths that do not contain @MV. Therefore, the root is assigned the set
of two rule states {1,2}. When this set 1s propagated further, the rule automaton
stays in these two states until it encounters the @MV label; then the state set would
be {2,5} but the sink state 5 is simply ignored.

In the lower automaton in figure 4, the root has been reached only through
paths that contain one @MV. The state set after the second @MV contains only the

sink state and becomes effectively empty.

£ 02 g 12 -
Tt D <:passed>n pass
-~ "¢ ({1,2} {1,2) {1,2)
(12} {123 {2,5}
= {2}
77N {2} osc {2] VAN
I_/I I_/I
. _? | -O 1{passed> -~ Pass
-/
{2} {2} VFINK-\ oMV {2}
o/
2z {2 {5}

=0

Figure 4 Propagation of a rule state set

The first root has been assigned in the initialization step. There is a unique
path from the root of a local tree to a leaf of that tree. This path and the rule
states in the root determine the set of rule states that are assigned to the leaf. Rule
states In the leaf are those to which some rule state in the root takes the path from
the root to the leaf, excluding sinks. When all the rule states would be sinks, this
set 1s empty.

Unlike leaves, the roots in a slice can have several predecessors. A root is
assigned the set of rule states that are reachable from some rule state in some of its

predecessors by some path from the leaf to the root.

4.2 Removing paths that block propagation

The sets of rule states in the leaves help to remove states and edges. First, if a leaf
is assigned the empty set of rule states, there is no way for the rule to reach this
leaf. The leaf can be removed, and edges and states preceding it can be removed
back to the first state with more than one immediate successor. All boundary

edges forward can be removed, and if the following root had no other immediate

predecessor, removal can continue forward. This means that the edges labeled V
VFIN OMV @@ in the lower automaton in figure 4 can be removed.

Second, if all the rule states in some leaf take some boundary edge to a sink,
the edge can be removed. If all the edges from the leaf to a root are removable this
way, removal can continue backward and forward.

Third, a non-final state in the last slice can be treated as if it were a sink.
There is no way to reach another final state from the last state in the sentence
automaton.

Only such readings are removed as would be removed by intersection. However,
not all such readings can be removed this way. To allow removal of further readings,

the sentence automaton may need to be expanded.

4.3 Expanding the sentence automaton locally

In the new method, the sentence automaton cannot grow while readings are re-
moved. A separate operation of local expansion is provided to open up removal
opportunities.

Observe that the initial sentence automaton is tree-shaped between any pair
of successive slices. The expansion makes it tree-shaped (rather forest-shaped)
between some given pair of slices. Each state that is properly between the two
slices will have exactly one immediate predecessor.

The example sentence ‘Time passed’ is so short that there is only one way to
choose a pair of slices for expansion. The initial automaton is shown in figure 3;
the expanded automaton is shown in figure 5. For longer sentences, such maximal
expansion is not feasible.

The first word form ‘time’ is three ways ambiguous and the word boundary
after it is four ways ambiguous; together ‘time’ and the boundary are twelve ways
ambiguous. Expansion makes twelve copies of the state in the slice between the
readings of ‘time’ and ‘passed’, and the tree of ‘passed’ is turned into a forest of
twelve identical trees.

Much of the new structure is easy to remove. Particularly interesting are the
three trees of ‘passed’ that follow the boundary symbol @/. This boundary symbol
separates finite clauses: there should be the label VFIN both before and after it.
This constraint is not enough to remove anything in the automaton of figure 3 since
VFIN occurs in one of the readings of ‘time’, but in the automaton of figure 5, two
of the three trees can be removed. For example, after @@ <time> time N NOM SG
@SUBJ @/ the rule should be in a sink state.

Another impossibility is to have €< and @@ or @< and @< as successive bound-
aries. The former constraint would allow removal of much of the structure in the
expanded automaton: the label @@ would take a rule to a sink.

Parts of the lower four trees of ‘passed’ are removable by the constraint that
the boundary symbol between two finite verb forms VFIN can not be @, so that the
second VFIN would take a rule to a sink.

<passed>pass
O O

<passed>pass
O O

(<)passed>pass
O @

(<}passed>pass v
O @

E}oassed>pass
O @
v
<passed>pass
Op O @
(gnas sed>pass
O

6passed>pass v
O C

<passed>pass

O O A FI)
v

<passed>pass .

O O

Figure 5 An expanded sentence automaton

5 Computation strategies

The high level strategy to use is an open question. The operations of propagation,
removal and expansion can be used in different orders. In this method, rules need
to be used more than once, and the order of expansions and removals may affect

efficiency significantly.

The simple minded but prohibitively expensive strategy would be to first max-

imize the sentence automaton and then just use every rule in turn.

Another strategy would be to exercise all rule automata on a short interval
in the beginning of the sentece automaton first, and then lengthen the interval. A

third strategy would be to expand short intervals and then propagate and remove.

More intelligent strategies might take into account special properties of each
sentence automaton, or special properties of some rules. Or such intervals might be

expanded that contain relatively few readings.

Kimmo Koskenniemi (personal communication) suggested first propagating a
rule into the sentence automaton and then studying the sets of rule states to see
whether this rule can allow removals after expansion. In the positive case, expand

and then propagate again.

6 Some details

This section gives a more detailed description of the operations on the locally tree-
shaped automata than was given before. All automata here are deterministic finite
state automata.

An automaton is a finite set of uniquely labeled states, partitioned into final
and non-final states, with one state designated as the start state.

All states will be seen as total functions taking sequences to states, as follows.
When s and t are states and a path from s to ¢ is labeled by a sequence of alphabet
symbols w, the notation sw designates the state t. The set of all prefixes of such
sequences w that s takes to a final state is called the domain of s. A state with
empty domain is called a sink; if w is not in the domain of s, then s w is a sink.

Each state s satisfies the equations s () = s and s (a,d,...) = (s (a)) (b,...)
for all a,b, .. .in the alphabet. In a minimal automaton, a sink s is a non-final state
that satisfies sw = s for all sequences w.

If 5 (a) = t for some symbol a, then s is said to be an immediate predecessor
of t, and ¢ is said to be an immediate successor of s.

In the process to be specified, a sentence automaton S is represented as a se-
quence of slices (S, ..., Sn—1). It must be replaced by successive sentence automata
so that the final result represents the intersection of the original sentence automaton

with a number of rule automata Ry, ..., Ri_;.

6.1 Propagation

Rule states can be propagated from S; to S;+1. An intermediate step is to propagate
them to the leaves of each local tree with root in §;. When a path from a root to a
leaf is labeled w and the set of rule states assigned to the root is R, the set of rule
states in the leaf will be {rw | r € R} excluding sinks.

After propagation to the leaves, an immediate predecessor p of a state ¢ in
Si4+1 contains the correct set R’ of rule states. If D is the domain of p, the set of
rule states in ¢t will be a superset of {r (d) | r € R’ and (d) € D} excluding sinks.
Other immediate predecessors of ¢ produce other states.

Rule states can be propagated from the start state to each slice in turn. If
the start state of a rule is rq, the state in the first slice will contain just the state
o (€0).

6.2 Removal

When rule states have been propagated from S to S;, it may be possible to remove

edges and states that precede states in S;.

If p is an immediate predecessor of some state s in S; and the set of rule states
in p is empty, then the rule takes to a sink all sequences that label paths from the
start state to p. The state p can be removed together with preceding edges and

states back to the first state that has more than one edge in its domain.

If the set of rule states in p is not empty but there are several edges from p
to s, all the rule states can take some of the edges to a sink. Such edges can be

removed.

6.3 Expansion

When the sentence automaton is expanded between S; and S; 42, and some state s in
Si+1 has k immediate predecessors, the state s and its local tree are replaced with &
copies, each with its own immediate predecessor out of the immediate predecessors

of the original s.

7 Summary

Intersection of finite state automata reduces readings but may add structure in the
automata. Separation of the two effects may help to keep the size of a sentence
automaton under control. Keeping the sentence automaton locally tree-shaped
makes this separation possible.

Future work will involve implementation of the parser and empirical study of
various prasing strategies.

Acknowledgements

Special thanks to Anssi Yli-Jyra, Kari Grano, Atro Voutilainen and Kimmo Kosken-
niemi, and thanks to Timo Lahtinen, Timo Jarvinen, Mikko Lounela and the two
referees, for reading and comments.

The two example sentences are from the Douglas Adams novel, Dirk Gently’s
Holistic Detective Agency, first published in 1987 by William Heinemann Ltd.

References

Kimmo Koskenniemi. 1990. Finite-state Parsing and Disambiguation. In Hans
Karlgren (ed). COLING-90: Papers Presented to the 13th International Con-
ference on Computational Linguistics, Vol. 2. Helsinki, Finland.

Kimmo Koskenniemi, Pasi Tapanainen and Atro Voutilainen. 1992. Compil-
ing and Using Finite-State Syntactic Rules. In Proceedings of COLING-92,
Vol. I. Nantes, France.

Atro Voutilainen and Pasi Tapanainen. 1993. Ambiguity resolution in a reduction-
istic parser. In Proceedings of EACL-93. Utrecht, The Netherlands.

Atro Voutilainen. 1994. Designing a Parsing Grammar. In Three Studies of
Grammar-Based Surface Parsing of Unrestricted English Text. Ph.D. disser-

tation. Helsinki, Finland.

59

Sense Extension Functions in Lexical Semantics

Peter Rossen Skadhauge
Department of General and Applied Linguistics
University of Copenhagen
E-mail: rossen@cphling.dk

Abstract

Representing polysemy in an economical way is an issue of major impor-
tance within lexical semantics. Polysemy is found both within single lexi-
cal entries, and systematically in some lexical classes with common semantic
properties. Prepositions in various languages are generally considered highly
polysemic in an unpredictable way. The latter participate in what can be
called systematic polysemy. This work is highly inspired by work as different
as Pustejovsky [Pus91], Copestake and Briscoe [CB95], and Lakoff [Lak94)].

I will sketch a framework or the fundamentals of a formalism in which
important polysemic properties can be described. The interpretational se-
mantics is built as typed lambda-calculus. This choice is not essential to the
formalism, which might be extended to situation-theoretical notation and in-
terpretation. Currently, situation-theoretical issues are not discussed within
the framework.

It is briefly outlined how the lexical semantics as construed in this paper
can be implemented in a typed feature structure formalism compatible to
HPSG [PS94). Accounts of various aspects of prepositional semantics are given
in this formalism, with special emphasis on the Danish preposition med.

1 Systematic polysemy

Certain phenomena are usually referred to as polysemy. One such example is the
well-known example by Pustejovsky [Pus91]:

(1) a. Mary enjoys the movie
b. Mary enjoys watching the movie

The sentences (1a) and (1b) are synonymous, and in order to maintain compo-
sitionality and avoid multiple lexical entries for the verb enjoy, the semantics is
accounted for by claiming that enjoy’s semantics ENJOY is a two-place predicate
taking an event as its second argument. The noun movie belongs to a class of
complex lexical entries that enables it to act semantically both as an event involv-
ing some watching and as a simple object that can be watched. The two senses
are related by a process called type-raising. Movie and similar nouns obviously
form a class, which can be represented in a hierarchical lexicon as being marked for
susceptibility to type-raising.

The phenomenon is referred to as logical metonymy because the relation between
a movie and the event of watching a movie can be judged to be familiar with usual
metonymic relations pictured in (2), where the underlined NP’s can be said to be
interpreted identically in certain contexts.

(2) a. Denmark voted against the treaty

b. The majority of the Danish voters voted against the treaty

By accounting for the phenomenon in semantic terms, one does not have to posit
that the syntactic difference between the movie and watching the movie should
trigger different lexical entries of enjoy. Furthermore, enjoying different sorts of
events can still be described by the same verb entry:

(3) Franz enjoyed the sausage

By inserting the semantics for typical events involving sausages into the seman-
tics for sausage, one can infer that the semantics for the clause (3) contains some
eating event.

2 Extending the scope: Lexical metaphor

Within theoretical linguistics, polysemy, metonymy and metaphor are traditionally
regarded as if not out of bounds, then at least as marginal phenomena not worth
paying too much attention to when describing the language system as it is typically
construed by linguists. In computational linguistics it is often thought that such
topics should be treated in an Al fashion, without employing the known structures
of the linguistic system. In my view, polysemy constitutes an at least empirically
indistinguishable part of the language systems. It is the norm rather than the
exception that words are used in different but related senses. It is a lexicological
challenge to account for a system within which the senses of every lexeme are related
instead of just listing the various senses of the individual lexemes, in much the same
sense as it is a challenge for the phonologist to state and arrange the phonemes of
a language in a system stating generalizations on properties across sounds instead
of listing the individual sounds.

The most general system in which all senses of all lexemes can be represented is
not interesting for my purpose: construed as a feature-structure system the number
of primitive features would have the same magnitude as the number of lexemes.

What one needs is a limited system with a few dimensions along which the
sense extensions take place. As it is the case for any kind of linguistic categoriza-
tion, such dimensions or features must be empirically motivated. This restricts the
domain of the functions in question to be a quite narrow one. The sense extensions
must be testable either in the cognitive/physical system or as a means to underpin
grammatical generalizations.

The set of sense extension functions that apply to the whole range of lexical items
is believed to be a very small, general one. One such function is the meronymic
PART-OF function, which is present in Ray Jackendoff’s [Jac91] and several other
authors’ accounts. Other, more special functions apply to special domains. Lexemes
whose semantics have an inherent spatial and/or temporal structure like activity
verbs and prepositions can have spatial functions applied to them.

I shall restrict myself to treat lexical metaphor. It is not yet clear to me whether
or how phrasal metaphor should be described as a linguistic process.

According to [Lak94], one must distinguish between metaphor and metaphor
use. Metaphor is here construed as a function between structured sense domains.
Metaphor use is a pair containing a metaphor and a source sense. The metaphor is
a mapping from source senses to target senses. Both source and target senses are
linked to the same lexeme, i.e., they are expressible with the same phonology. Some
target senses seem to recur more often than others; a linguist might judge some
recurrent senses as lezicalized metaphorical uses, because they can be conventional
and have achieved unpredictable connotations, use of the latter can be characterized
as creative metaphorical uses. 1 emphasize that I can state nothing about the

psychological status of the senses nor whether the sense extension functions mirror
how any senses come about in the mind of the language user. Just like phrase-
structure rules in formal grammar are often understood as acceptability constraints
on syntax, sense extension functions should be conceived of as formal relations
between interpretations.

The lexicalized uses are parts of the language system according to which com-
putational linguists might consider it worth to enable the computer to parse as well
as generate.

The creative uses are highly relevant for parsing, but probably of minor im-
portance with respect to computational generation, because computer users do not
expect any kind of nonconventional creative behaviour from computers.

The important point is that both lexicalized and creative uses arguably can be
described with the same set of functions, and only statistical methods can distin-
guish between the two.

The cognitivist approach states some metaphors in a quite elaborate hierarchical
system [Lak94)]. This system is highly interesting, certainly not because the cogni-
tivist positions reflect the observations of vagueness that many linguists strive to
account for, but simply because it forms an informal version of a strong hypothesis
about interesting parts of the language system.

One well-known metaphor is TIME IS SPACE. I conceive of this metaphor as a
sense extension function which is no less formally describable than what is usually
the case within formal linguistics. Furthermore, it fulfills the testability require-
ment. The function is an instance of a general sense extension function that con-
nects two partially isomorphic domains. In this case, the time domain is mapped
onto one of the dimensions in the spatial domain. Actually, the time domain can be
construed as a particular instance of a one-dimensional subdomain of the general
three-dimensional spatial domain. With this construal, TIME IS SPACE is a reflex-
ive metaphorical function, i.e., a function from a domain to the domain itself or a
subdomain thereof.

Because the function is reflexive, the inverse metaphor SPACE IS TIME is au-
tomatically present. In other words, it is possible to view time as a trajectory in
space, and thus communicate about time in spatial terms. Vice versa, one can com-
municate about space in temporal terms. You can express a distance by referring
to the time it conventionally takes to travel it.

Because of the reflexive nature of the sense extension function, it is not very well
argued that either time or space is the basic domain of the relevant prepositions.
One could as well postulate that the basic domain is a one-dimensional ordered
space, and apply trivial sense extension functions to evoke the attested uses. With
the sketched method it is not possible to devise one basic sense. In this case, the
choice of basic sense is arbitrary.

When applying sense-extension function to prepositional arguments, one can
account for basic senses of prepositions in the following examples.

(4) a. Jeg bor 10 minutter fra universitetet
‘I live 10 minutes from the university’

b. Toget standsede 8 minutter efter Helsinki
“The train stopped 8 minutes after Helsinki’

¢. Vandet varede 10 kilometer
“The water lasted 10 kilometres’

All the uses in (4) — which I cannot determine as lexicalized or creative — can
be accounted for using the functions in (4').

(4') a. PERIOD(z) — DISTANCE(pq(z))
b. LOCATION(z) — MOMENT(ys(z))

c. DISTANCE(z) — PERIOD (p.(z))

The first of these functions simply states that a sense of the type PERIOD is
mapped to a derived sense of type DISTANCE. The argument z is the period, and
the function ¢, is a physically dermined function that maps a certain period of time
to the distance usually covered in that periode of time. The other functions can be
described in a parallel way.

Polysemy is possible according to the TIME 1S SPACE metaphor. (5) is ambiguous
in the context of a train voyage that Peter performs every day. The PP ‘10 minutter
efter Kgge’ can refer to (a) a location at which the train is usually located 10 minutes
after leaving the station of Kgge, and to (b) the time 10 minutes after the train
leaves Kgge, regardless of how far the train has actually gone.}

(5) Peter spiser altid sin madpakke 10 minutter efter Kgge
‘Peter always eats his lunch 10 minutes after Kgge’

The lexeme fra (‘from’) is stated to have the sense

(6) ([Ma : distance).A(b : location).(c : location)|distance(b, c) = a] : sense)
The lexeme efter (‘after’) is stated to have the sense

(7) ([Ma : period).A(d : moment).(c : moment)|period(b, c) = a] : sense)

The til (‘to’) and for (‘before’) senses are stated parallel to that.

(6) is nothing more than a typed lambda-expression stating that the mapping
from pairs of lengths of paths and locations to locations with a certain cognitive or
physical relation between them is a sense. The physical relation here is the one of
distance.

Senses of spatio-temporal prepositions used without measures can be derived
from the above senses.

2.1 Representing semantics and metaphor

Compositional rules combining syntax and semantics serve to fill in the proper argu-
ments. Unfortunately, this paper leaves no space to describe the details concerning
the syntax. However, I shall give a brief outline of the metaphor representation
system implemented in a feature-structure calculus compatible with HPSG?

The tricky part is to give a formally operational definition of the notion of
domains. I shall just sketch how the domains work in this paper.

Domains are not parts of semantics, but structured concepts to which the lexical
semantics must adhere. Domains contain conditions that domain members must ful-
fill, and mappings between linguistically stated relations between items belonging to
the domain and real-world relations. Domains are arranged in multiple inheritance
hierarchies. This calls for an example.

1(4b) suffers from the same structural ambiguity. Since the event only occurred once, it is not
decidable whether one thinks of the time or the place of the event.

2The semantics is slightly deviant from the HPSG standard. For simplicity, it is assumed that
a suitable representation of the interpretable semantics is a string of A-expressions to be evaluated
by a grammar-external device. The semantics of a phrase is built by concatenating the semantics
of its constituents.

1-dim-space

ORDER T
INTERVAL T
I-dimenssion

/\

Aab.a <,patial b ORDER Aab.a <iemporat b
Aabc.la —spatiat b] = ¢] ~ [INTERvAL
tsme

(8)

ORDER
INTERVAL

Domains are represented as typed feature structures. The above definition (8)
ensures — due to a general wellformedness criterion on typed feature structures —
that all subdomains of 1-dimension have the features ORDER and INTERVAL. The
values of these features are interpretation functions relevant to the individual do-
mains. The actual interpretation functions are here represented as A-abstractions of
logical expressions with domain-specific operators and real-world arguments. These
arguments are projections of locations and times on domain-specific scales. The
example is simplified, the interpretation functions should be typed A-expressions.

The isomorphy crucial to the metaphorical sense extensions is represented in the
wellformedness criterium to which the typed feature structures must conform. That
is, metaphors exploiting 1-dimensional structure are functions between subdomains
of the I-dimension domain.

The lexical entry of far is stated in (9). The DOMAIN feature constrains the
semantic content of fgr to a function relevant to a particular domain. I have (ar-
bitrarily) stated that the relational content of the lexical entry must adhere to the
domain time. Structure-sharing (by the index (i) implies that the value of the
CONTENT feature is Aabc.a <¢emporat b.

ARG1 and ARG2 contain the semantics of the subject and object of the prepo-
sition, respectively. We shall presently look away from the inconsistency regarding
that subjects of temporal prepositions usually denote events, and the proposed
representation is some representation of a moment.

The metaphor is represented as an HPSG-style lezical rule in (10). (10) applied
to (9) yields the derived lexical entry (11), which contains the semantics of the
spatial metaphorical use of fgr.

Aabc.la —iemporal b = ¢

(10) [sEM | DoMAIN

(9) [pHON for 1
DOMAIN [ORDER IIl]
time
SEM CONTENT [1][2]1[3]
ARG1 (2l
| ARG2 @l]

j-dimensian]: [SEM | DOMAIN

1-dim- space]

(11) [pHON far
DOMAIN
1-dim-space

[ORDER [MAab.a <spatiat b]

SEM CONTENT D213
ARG1 @
ARG?2 @

The use of the type system ensures a parsimonious description, because the
features values specific to every subdomain and common to various subdomains are
stated only once, and because the domains and subdomains are common to several
lexical entries.

The definition of the domain type system is in fact a cognitive theory itself,
because it has to reflect the semantic features to which metaphor is judged to apply.

|

It stands as a link between the pure linguistic semantics and the truth-conditional
interpretation functions by which the language describes the world.

As a first approximation of a theory of lexical metaphor, all lexical metaphors
must be represented as instances of the lexical rule (12). The condition ensures that
the domains a and # have one or more features in common, to secure isomorphy.

(12) [sEM | DOMAIN o= [SEM | DOMAIN], features(a) N featuresB # 0.

The use of HPSG-like lexical rules in computer implementations is not unprob-
lematic for known reasons, but such issues are outside the scope of the current
treatment.

The arbitrary choice of basic sense of far has no ramifications for the account.
If one chooses the abstract I-dimension as the basic domain for fgr, metaphors
derived from (12) do the job of deriving the specific spatial and temporal senses. I
am currently ignorant of how a theory should respond to these questions.

3 Sense extension in grammar

The highly polysemic Danish preposition med — largely translatable as English
‘with’ — is used in several syntactic contexts with different senses attached to it.
The semantics is traditionally accounted for by positing either homonymy or com-
bining very different semantic content with each syntactic construction. The latter
approach is motivated by the fact that one typical sense of med resembles the IN-
STRUMENTAL sense of the instrumental case in e.g. Slavonic languages. Often, if
one sense is grammaticalized in one influential language, the scientific community
will soon regard that sense as primitive in the semantic description of a number of
other languages, whether or not that particular sense plays a role in the individual
grammar. Instrumentality is not attested as a semantic element in Danish mor-
phology. One cannot derive the other senses of med from the instrumental sense,
so if the lexeme has one basic sense, it cannot be the instrumental sense.

Introspectively and by examining parts of a Danish written language corpus
[Ber],I state the following senses.

a | Han slog hende med en hammer Instrumental
‘He hit her with a hammer’

b | Han lassede vognene med ost Incremental theme
‘He loaded the trucks with cheese’

¢ | Han vendte tilbage med succes Circumstantial subjective
‘He returned with success’ predicate

d | Han gvede med sangerne® Causative

‘He had the singers practice’

(lit. ‘He practiced with the singers’)
(13) | ¢ | Han gik til bal med sine venner Coagentive
‘He went to a ball with his friends’

f | konen med =ggene Control, Proximity
‘The woman with the eggs’

g | pigen med det lyse har Part/Whole
‘The girl with the blond hair’

h | Dansen med den slemme pige (Deverbal) Coagentive
“The dance with the naughty girl’

i | Ulykken med den valtede tankvogn Unspecified participation

“The accident with the overturned tanker’

The upper block (13a-e) shows use of med in prepositional phrases in verb-
modifying positions, typically in the final part of clauses. The lower block shows
(13f-1) prepositional phrases modifying a noun, i.e., contributing to a noun phrase.

The clausal uses of med often serve to express the state of a secondary agent
to be related to the expressed action. This is quite contrary to the use of med in
noun phrases, where control or contiguity between things is expressed.

But, the exceptions show that the interpretive choice between the event-participative
and the noun-modifying sense is semantic rather than syntactic. In (13c) the object
of the preposition clearly modifies the subject of the phrase, although it can also
be said to describe the circumstances of the event. The fact that ‘success’ cannot
really be counted as a participant triggers the adnominal sense.

In (13i), on the other hand, a tanker can only metaphorically be said to be
‘a part of’ an accident. The tanker is rather interpreted as participating in an
unspecified role of the event of an accident. I cannot say whether the tanker caused
the accident or its turning over was caused by it.

Med with deverbal nouns clearly can function as controlling the original prepo-
sitional object as in (13h). The particular sense is the same as if the preposition
had been controlled by the original verb.

The instrumental sense is special, because the ‘instrument’ is often both partici-
pating (non-voluntarily) in an event and a part of the agent. That is the case when
the agent uses a part of his body as instrument, as in (14).

(14) Hun sparkede professoren med sin hgjre fod
‘She kicked the professor with her right foot’

But what is expressed as new information is not that the foot is a part of the
person, but that the foot is that part of the person which is utilized to perform the
action. Thus, the controlling sense is the most important one.

Basically, the senses of med fall into two groups: Participating in events and
describing physical objects.

Thus, superficially med is a preposition very different from the well-studied
spatial ones, which keep their spatial sense in the adnominal use as well as in the
adverbial and verbal-complementary uses.

3.1 Participative and adnominal senses

Interestingly, the predicative senses of med can be singled out by substituting |. ..
A ... med B] with [B har A] — in English: [B ‘has’ A).

The rest of the senses are participative in the sense that they relate a secondary
partictpant to the expressed action, which I will describe with semantic roles of a
‘chain of action’ as in [Cro93] and others.

The question is, of course, what has the ‘have’ relation got in common with the
relation of a secondary participant.

The link between the senses becomes more obvious if one employs the notion
of accompaniment. 1 shall shortly list some important circumstances of the partici-
pating senses.

Coagentivity Secondary participants often occur together with agents, which
either control them or perform the action in company with them. Thus, the sec-
ondary participant can be part of the ‘agentivity side’ in the activity. When the
secondary participant is coagentive with the agent (which is expressed as subject
or object), the secondary participant is undergraded only for pragmatic reasons.

3This construction also has the Coagentive sense.

5 21307

The expressed agent has no control of the secondary participant, and the agent and
secondary participant are interchangeable.

The accompaniment relation between agent and secondary participant is clearly
a meronymic relation between groups of individuals, and as such a subcase of a
general PART-OF relation.

Instrumentality and incremental themes When the secondary partici-
pant is controlled by the agent and cannot be ascribed intentionality, it is harder
to employ the notion of being part of the active side. The control part is more
important than contiguity. Being an instrument also involves that employing the
instrument for the intended purpose actually forms a part of the action. Thus, ‘He
hit her with a hammer’ and ‘The man with the hammer hit her’ differ exactly on
this point. The instrument interpretation is triggered by the fact that the prepo-
sional phrase i1s grammmatically linked to a verb which is lexically specified for taking
instruments of the relevant kind. ‘?He read the paper with a hammer’ is not that
reasonable.

The semantic role of incremental theme is mentioned in [Dow91]. Tradition-
ally, separate accounts have been made of instrumentality and incremental themes,
though it is very difficult to single out the differences between them. The verbal
semantics decide whether a secondary participant is an instrument or an incremen-
tal theme. They have the same primitive semantic properties with respect to the
agent, l.e., they are controlled by the agent and often propelled by the agent. This
position is supported by the ambiguity of ‘They loaded the trucks with shovels’.

The distinction between instrumentality and incremental thematicity is a lexical
matter of the controlling verb, and I have not yet fulfilled the major lexical-semantic
task of partitioning the verbs according to this distinction.

3.2 Causativity

The causative med constitutes a special problem. [Han71] states an extreme ex-
ample:

(15) Jensen er nede i postkassen med et brev
litt. ‘Jensen is down in the mailbox with a letter’
meaning ‘Jensen performs an action making the letter go into the mailbox’

The secondary participant is simply undergoing the trajectory described in the
predicate, leaving the agent with the only function of causing the event, if one does
not consider the unlikely interpretation where the agent physically ends up in the
mailbox.

The secondary participant overtakes the part of the agentive role from the agent,
which the agent cannot possibly fulfill. This is a very special subcase of coagentivity,
but it is governed by principles not related to the lexical semantics of med.

3.3 Adnominal senses

The important features in adnominal modification are contiguity, part/whole and
control.

Typically the prepositional subject cognitively controls the prepositional object,
as in (13f). Otherwise physical contiguity or attachment is present, as in (13g). In
such cases the prepositional object is often part of the prepositional subject.

In cases when no control is involved, subject and object can be interchanged.
This is a very fundamental issue that applies also to the coagentive cases. The

use of med in this case is simply pragmatically determined, and has the effect of
undergrading the entity chosen as the prepositional object.
I am working on a more detailed account of these issues.

3.4 The lexical entry of med

I state the basic lexical sense of med as follows:
(16) ([A(a : entity).A(b : entity).a controls bV contiguous(a,b)] : sense)

The sense of med is the disjunction of a cognitive relation of control and a
physical relation of contiguity. It is yet to be determined how control is to be
accounted for. As for contiguity, a formal treatment of contiguity is stated in
[Aur91].

The sense in (16) is capable of encompassing events, when the subject argument
(the event) is type-raised in the style of Pustejovsky. The event must simply be
type-raised to yield the agent of the event.

3.5 Representing med in a typed feature structure system

I shall give an overview of the implementation of med in a system like the one
sketched in section 2.1.

To maintain a unified account of the semantics of adjuncts to clauses and nouns
compatible to HPSG [PS94], let us assume that the basic template for preposi-
tion semantics is as in (17). The compositional semantics of the adjunction is the
conjunction of the semantics of the head ([2]) (or subject) and the semantics of
the adjunct. Let us furthermore assume that the basic lexical entry of med is as
(18), which is a particular instance of (17). The somewhat clumsy A-expression
owes its disgrace to the general adjunction account. The entry in (18) is the one
that accounts for adjunction to nouns. This very simple treatment does not ac-
count for more subtle differences between senses of med. It does not rely on any
metaphorical description. Thus, the domain stated in (18) is just an all-purpose
domain containing typical relations among animate and inanimate physical objects.
Again, all typing in the interpretational A-calculus is abstracted from. We shall
not deal further with the actual interpretation functions. The variables v, vy are
purely symbolic devices which feed the arguments with indices [2] and [3] into both
interpretation functions [Ia] and [18].

an [cont [RIAQGIE
SEM |ARG1 [2]
| ARG2 [3]
(18) [PHON med T
'DOMMN ACCOMPANIMENT i
|lcoNnTROL
phys-ob)
SEM CONT @ A /\Vll/z.(]l/z VU1U2) @ El
ARG1 2]
| ARG2 3] 1]

When med-phrases describe events, a metonymic sense extension function must
be applied to raise the agent semantics up from the semantics of the subject clause.
Such a sense extension function can be represented as in (19).

(19) CONT @1 ADR
SEM ARG1 AGT E]

@] [sEM | conT @A @DEE]

This metonymic function seems applicable with other prepositions. One can
imagine other metonymic functions. To account for the ambiguity of (20) related to
the Danish preposition 1, one needs a function which assumes e.g. a recipient role,
and type-raises its semantics.

(20) Han sendte hende et brev i Stockholm
‘He sent her a letter in Stockholm’

4 Conclusion

The treatment of some lexical semantic properties as a very restricted part of
metaphoric and metonymic theory accounts for some obvious problems in the cur-
rent state of lexical semantics. This can to a large extent be done with Pustejovsky-
style type-raising functions. Making the cognitivist assurnptions more precise opens
the possibility of covering much larger aspects of posited language systems than are
usually done in computational linguistics.

Accounting for metaphors as a part of a NLP system seems to be valuable mainly
in the parsing realm. Devices of the sketched kind will probably be judged as highly
over-generating. This is due to the current public expectations to the language use
in computer systems. Most creative metaphorical language is highly stilistically
marked, and it is hard to imagine any commercial need for a system generating
metaphorical language.

References

[Aur91] M. Aurnague. Contribution d ’étude de la sémantique formelle de I’espace
et du raisonnement spatial : la localisation tnterne en frangais, sémantique
et structures inférentielles. PhD thesis, L’université Paul Sabatier de
Toulouse, 1991.

[Ber] H. Bergenholtz. DK87-90. Corpus.

[CB95] A. Copestake and T. Briscoe. Sense extensions and the lexicon. Journal
of Semantics, 1995.

[Cro93] W. Croft. Case marking and the semantics of mental verbs. In J. Puste-
jovsky, editor, Semantics and the Lezicon. Kluwer Academic Publishers,

Dordrecht, 1993.
[Dow91] D. Dowty. Thematic proto-roles and argument selection. Language, 1991.

(Han71] Erik Hansen. Jensen er nede i postkassen med et brev. Danske Studier,
pages 5-36, 1971.

[Jac91] R. Jackendoff. Parts and boundaries. Cognition, 41:9-45, 1991.

[Lak94] G. Lakoff. The contemporary theory of metaphor. In A. Ortony, editor,
Metaphor and Thought. Cambridge University Press, 2 edition, 19947

[PS94] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar.
University of Chicago Press, Chicago, 1994.

[Pus91] J. Pustejovsky. The generative lexicon. Computational Linguistics, 17(4),
1991.

69

An Application of
Inside-out Functional Uncertainty
to Anaphora Resolution

Kjetil Strand
University of Oslo
Department of Linguistics
Postboks 1102 BLINDERN
0317 OSLO
NORWAY
e-mail: kjetil.strand @ilf.uio.no

Abstract

For some time now, it has been known that in unification grammars
we can use functional uncertainty to model certain linguistic
phenomena (Kaplan and Zaenen 1989). Dalrymple et al. (1990)
introduced the notion of inside-out functional uncertainty, and showed
how this concept could account for the description of syntactic
constraints on anaphoric binding. So far, however, no method for
computing inside-out functional uncertainty equations has been
described in the literature. This paper presents an algorithm and a
Prolog implementation for the computation of a subset of equations
involving inside-out functional uncertainty. To illustrate the details, the
method is applied to resolution of the Norwegian long-distance
reflexive [seg]. Prolog is well suited to model the inside-out functional
uncertainty in question, although it is not a functional programming
language. The main reasons for this are the use of logical variables, the
inherent searching behavior of the Prolog machine, and the
backtracking to alternative continuations while failing.

1 Inside-out functional uncertainty

An LFG grammar for a particular language yields a complete and
coherent functional structure for a single sentence if the sentence is well-
formed according to the annotated phrase structure rules and the lexical
entries for the respective words occurring in that sentence. LFG makes use
of a finite set of grammatical functions to give a functional description of an

mailto:kjetil.strand@ilf.uio.no

utterance. If we present the functional structure as a directed graph, it is
possible to reach all the relevant syntactic information for each phrase in the
utterance via the edges labelled with these grammatical functions. Focusing
only on the functional information, a representation of the sentence (1) will
yield a graph like that in figure 1.

(D Hans; hdpet at Jon; ville be Sylvig
forsgke 4 fi Ola, til 4 tenke pa seg?.

Hans; hoped that Jonjwould ask Sylviy
to try to make Ola think of himself/herself>

P seg,

obl,, pred

Fig. 1: A graph for the sentence in (1).

In LFG, it is convenient to let the arguments in the functional equations
denote a set of paths over grammatical functions. Such a set can be
described by a regular expression with the grammatical functions as
alphabet. Functional uncertainty has been used to account for long distance
dependencies (Kaplan and Zaenen 1989), quantifier scope (Halvorsen and
Kaplan 1988) and modelling of syntactic constraints on anaphoric binding
(Dalrymple et al. 1990, Dalrymple 1993). In the latter two cases, the notion
of inside-out functional uncertainty is used. Given a functional description
of a sentence, we can draw a picture of the binding relation as in figure 2.

The two vertical strokes are meant to model the variable point in the
graph at which the actual binding domain for the anaphor in question starts.
The path from the global f-structure and all the way into the anaphor is the
concatenation of pre_path and path_out.

Path into
antecedent
(path_in)

Path into binding domain

(pre_path) -

Path into
anaphor
(path_out)

Fig. 2: The uncertainty point in the functional graph

The uncertainty point in the graph can vary for the same anaphor. This
depends on the syntactic constraints on the binding domain. In figure 1 we
will have more than one of these points. If the path_out is described by a
regular expression like XCOMPY : (ADJ) : OBJ | OBJ2 | OBLg!, and the
total path from the global f-structure and into the anaphor is COMP:
XCOMP : XCOMP : XCOMP : OBL;,, we will have three possible
uncertainty points in this graph. The notion of functional uncertainty is due
to this variation, and the notion "inside- out" is due to the fact that the
uncertainty is rooted at the f-structure of the anaphor.

2 Descriptions containing
uncertainty equations

Dalrymple et al. (1990) propose an equation like (2) to model the
anaphoric relationship between antecedent and anaphor:

<o>TA

(2) < 6> ((PathOut TA) Pathln)

<G> represent the mapping between syntax and semantics, TA the f-

structure of the anaphor, (PathOut TA) picks out the set of f-structures that
contain the anaphor and in which the antecedent must be located, and PathIn
characterizes the set of possible paths into the antecedent from these
domains. The equation should be read as follows: There should exist an f-
structure b from which there is a path in the set of strings PathOut leading to

TA, and from which an antecedent f-structure ant is reachable via a path in
the set of strings PathIn, and ant and TA should map to the same semantic

I In this notation, ":" means concatenation, "*" means zero, one, or more repetitions,
"*+" means repetition one or more times, "I" means disjunction and round parentheses
means optionality.

projection. The equation could very well be satisfiable in more than one
way, depending on the choice of paths from the sets PathOut and Pathln,
respectively. But the contribution of (2) to the global functional description,
is that we stick to one of these ways in the final representation.

In this paper, I express the anaphoric relationship through unification of
the AGR features in the f-structure. These AGR features project from the
lexical entries of nominal heads, and consist in turn of the index, gender,
number and person features.

Norwegian has a rich inventory of reflexives. They comprise 1) [seg
selv], which has to be bound to a subjective noun phrase in the minimal
nucleus ([+sb], [+ncl], in the LFG terminology (Sells 1985)); 2) [seg],
which has to be bound to a subjective noun phrase outside the minimal
nucleus, but inside the minimal finite tensed domain ([+sb], [-ncl]); and 3)
[ham selv], [henne selv], [den selv] and [det selv], which have to be bound
in the minimal complete nucleus, but at the same time disjoint from the
subjective phrase in this domain ([-sb], [+ncl])2. If the PathOut for [seg] is
stated as (GF - COMP)* : OBJ | OBJ2 | OBLg3, and the PathIn as SUBJ |
POSS, the equation in (2) may be expressed in the following way when
applied to [seg]:

(3) (((GF - COMP)*+:0OBJIOBJ2I0BLg: T)SUBJIPOSS:AGR) = (T:AGR)

Both to make (3) more readable and to foresee some of the
implementational matters, I divide (3) into a conjuction of equations. To
achieve this, we introduce existential quantified variables ranging over f-
structures. The equation in (3) will thus be transposed to the three equations
in (4), where b and ant are existentially bound f-structure variables.

(4) b:(GF-COMP)*:OBJIOBJ2IOBLy = T
b:SUBJIPOSS = ant
ant:AGR = T:AGR

The resolution process amounts to instantiating the index value of the
anaphor (or of sharing the variable index with the antecedent). Reflexives
are also often underspecified regarding the other morphosyntactic features in
the AGR feature (e.g., [seg] is underspecified with respect to syntactic
gender and number). Unification of the AGR features will thus, under
normal circumstances, add information to the linguistic description of the
anaphoric phrase, in addition to the index feature.

2 This analysis of the Norwegian anaphors has been questioned, e.g., by Lgdrup
(1985). In this paper I will stick to the analysis given by Sells (1985). The parts of this
analysis relevant for the implementation described here, is also supported by Hellan (1988)
and Dalrymple (1993).

3 As in Dalrymple et al. (1990) I take GF to denote the set of grammatical function
labels.

Under the lexical entry for [seg] is also inserted the constraint in (5)%:
(5) - (ant :GF* = T)

The "non containment condition" in (5) says that no path (including the
null path, i.e., identity) exists between the antecedent and the anaphor f-
structures. This ensures the first requirement of f-command: "For any

occurrences of the functions a, B, in an f-structure F, o f-commands B if
and only if o does not contain B and every f-structure of F that contains o

contains B" (Bresnan 1982; 334).The Pathln in the second line of (4) is the
disjunction SUBJ | POSS, which means that this path has length one. This
ensures the other requirement of f~command (Dalrymple 1993; 156).

The problem with (5) is that it involves universal quantification over
paths in the set of strings GF*. This is the effect of negating an equation
involving functional uncertainty (Dalrymple 1993; 123). Such equations
only make sense if related to completed f-structures, where they will be
evaluated as true or not. This is accounted for in LFG by treating negation
nonconstructively (Kaplan and Bresnan 1982; 210, Dalrymple 1993; 123).
The last equation is thus only constraining, i.e., it will be checked for
satisfaction in a complete and coherent f-structure.

The equations in (4) and (5) have to be further elaborated to account for
all the syntactic constraints on anaphoric binding.The [+sb] anaphors must
be bound inside the minimal tensed domain. This means that no intervening
f-structure in the PathOut should contain the feature TENSE. This can be
expressed in the following way?>:

(6) - [int : GF+ =)
b : GF+ = int
int: TENSE]

The [-ncl] feature states that all non-reflexive arguments inside the
minimal nucleus should be disjoint from the anaphor in question. As (7)
shows, it is perfectly possible for the [-ncl] anaphor [seg] to corefer with a
reflexive argument inside the minimal nucleus:

4 The constraints in (5) and (6) are assumed to be expressed as conjuncts to the
existential quantified constraints in (4), so the variables ant and b will be properly bound.
5 Dalrymple (1993; 136) uses the following notation to express the constraint in (6):

((DomainPath GF T) AntecedentPath)g = Ts
— (-> TENSE)
This should be read as follows: None of the f-structures that is picked out along the path

DomainPath, should contain the feature TENSE. The equation in (6) involves universal
quantification of the variable int, as the negation sign has wider scope.

(7 Martin; ba oss snakke til seg; om [seg selv]i/seg;.
Martin; asked us to talk to him; about himself;.

The minimal nucleus is the minimal f-structure containing both the
anaphor and a feature PRED, that is, no intervening f-structure between this
f-structure and the anaphor should contain PRED. In this domain all the
non-reflexive co-argumenting f-structures should have an index disjoint
from the index of the anaphor. This so-called co-argument disjointness
condition can be stated with the help of a constraint like that in (6).

3 The inside-out algorithm

Kaplan and Maxwell (1988) showed that the verification problem for
equations containing outside-in functional uncertainty was trivial, while the
satisfiability problem was decidable in the acyclic case. Whether these
results hold also for equations involving inside-out uncertainty, is not
obvious. Imagine, for instance, the case where an equation enables us to
build ever more comprehensive f-structures by adding ADJ on our way out.
This cancels the property of rootedness which is usually presupposed for
linguistic descriptions.

In the application considered in this paper, however, this problem need
not arise. This will be evident by a closer inspection of the equations
comprising inside-out functional uncertainty, and in particular the first two
equations in (4). None of these equations could be defining, using the
LFG terminology, in that they allow information to be added in a monotonic
way during construction time. The antecedent ant for an intrasentential
anaphor always has to be realized by other means in the global f-structure,
either as an element subcategorized for by an existing PRED, or otherwise
realized in terms of a projection from the c-structure. This is also the case for
the f-structure representing the binding domain b, and for all grammatical
functions in PathOut and PathIn. Only the third equation in (4), unifying the
AGR features, adds information, in that the anaphor is attached with its
antecedent by sharing of index values. Thus only the latter equation is
defining in the LFG sense. The consequence of this argument, is that we can
treat the inside-out uncertainties with respect to the final coherent and
complete f-structure for the sentence as a whole. For this application we
only have to consider the grammatical functions in the final global
representation as candidates for possible steps in the uncertainty paths.

The algorithm is called IO, as it is based upon a true, "inside-out”
recursive traversal of a finite graph. Input to the algorithm are the global f-
structure FS, the f-structure for the anaphoric element ana and the regular
expression reg_exp describing the PathOut from ana to the possible

6 This example is from Dalrymple (1993; 150), where it is used to illustrate binding
asymmetries.

binding domains. We start by assigning FS to the variable parameter
fstruc. Then we traverse into ana, one step (gf) at the time. At each step
gf we instantiate the corresponding part of path by concatenating gf in
front of the variable path rest. On each corresponding step during
withdrawal we check for a match between reg_exp and path, and try to
resolve the anaphor if we have a match. Output is either success, with the
AGR feature of ana unified with the antecedent, or failure.

Above, we stated that reg_exp in the [seg] case could be described by
the regular expression (GF - COMP)* : OBJ | OBJ2 | OBLg. Only f-
structures at this "distance" from ana should be taken into account as
possible binding domains. If some suffix of path satisfies this description at
all, we will be in one of three situations on our way out of the graph,
starting from ana at the innermost level:

1) We have not reached the variable point in the graph where path
matches reg_exp. In this case path should be a suffix of
reg_exp. (e.g., path = OBLy).

2) We have a situation where path matches reg_exp.
(e.g., path = XCOMP : XCOMP : OBLy).

3) We have passed the variable point where path matches reg_exp.
(e.g., path = COMP: XCOMP : XCOMP : XCOMP : OBLy).

These three situations can be illustrated as in figure 3:

3. Pre_path 2. Matching 1. Not yet matching
-+ 4>

e ————
FS ANA

Fig. 3: The three possible situations

The matching process can be done on each level while withdrawing in the
recursion. To keep track of which of the three situations we are in, we
introduce two flags: match? and resolved?. These flags can be in one of
two states: true or false. Initially, and in situation 1 above, they are both
false. From the first level of matching an onwards (situation 2) match? =
true. We should try to resolve the anaphor only on this level. If we succeed
in resolving the anaphor, resolved? is set to true, and all higher levels of
IO succeed without any further ado. If we are in situation 2, and no longer
have a match between path and reg_exp, 10 should fail on this level.

Now we are in a position to describe the algorithm:

10 1.

10 2.

[We have reached the anaphor]
If fstruc is identical with ana, terminate with path set to
the empty path.

[Search a step further down in the f-structure]}
Follow a grammatical function gf from fstruc. Call the f-
structure which gf picks out for temp. Set path to the
concatenation of gf and the variable path_rest and call 10
recursively with temp and path_rest, and the other
parameters unchanged. Let us assume that we seek depth
first. If fstruc contains no grammatical function, continue
in the last possible alternative continuation. Eventually we
will reach the anaphor ana.
On each level on the way back in the recursion we do the
following:
a) If resolved? is true, terminate with success.
b) Make a resolution try if
1) the flag resolved? is false and
2) we are in a legal binding domain (there is a
match between path and reg_exp, and
match? is set to true)
If the resolution succeeds, set resolved? to true. In
any case, terminate with success (if resolution fails
on this level, we should anyway try on a higher
level).
c) If match? is true, and we don't have a match
between path and reg_exp, terminate with failure
(we are in situation 3 above, and have not succeeded
in resolution of the anaphor inside the legal binding
domain).
d) Otherwise, if path is a suffix of reg_exp, terminate
with success.
(Both resolved? and match? are false. This
means that we have not yet reached a legal binding
domain on our way out)
e) Otherwise, terminate with failure. (No suffix of this
path between FS and ana will ever satisfy

reg_exp.)

4 Advantages using Prolog

There are two obvious advantages in using Prolog to implement the
described algorithm?. First, there is the depth-first searching machine
inherent in the proof resolution of Prolog. This can be utilized in step 102,
where we pick out a reachable f-structure temp, following an edge labelled
gf from fstruc. Prolog will search through the graph until the anaphoric
element is found, without any special machinery.

The search mechanism of Prolog has also one further advantage.
Backtracking to the last alternative continuation will give us all possible
solutions, one at a time, in a "don't know" indeterministic way. This goes
together well with the notion of functional uncertainty.

Second, the logical variables of Prolog are utilized in the recursive call on
IO with the variable dynamic parameter path_rest in 102. This parameter
will be instantiated through unification if the goal succeeds. We would have
difficulties in modelling this dynamic instantiation with the same elegance
and descriptive power in any other programming language.

The Prolog variable, preliminarily distributed as the value of the IND
feature from the lexicon, ensures that structures sharing this variable will
continue to share this property, regardless of the course of the processing
history: syntactic and semantic analysis, noun phrase processing including
anaphoric resolution, foci and knowledge base updating, etc.

Indexing is done on the functional description of the clause. But as the
representations of the discourse referents share the same Prolog variable as
value of the index feature both in the functional and the semantic
representation, the instantiation will affect all structures simultaneously and
in the same way.

Sometimes we try to unify two AGR features where neither have an
instantiated index. This happens if an anaphor has a pronominal as its
antecedent. If the unification succeeds, the two structures in question will
share the same Prolog variable as value of the IND feature. When the
pronominal is resolved later on, both structures will be instantiated with the
same index value.

Logical variables can also be utilized to model the two flags in IO. Both
flags are first false, then eventually true, but never changing back to false
again. This we can model in Prolog, letting false be a logical variable, and
true the constant true. We check the value of a flag asking if it is a variable

7 1 have troughout this paper considered acyclic f-structures only. Jan Tore Lgnning
(p.c.) has pointed out to me, that Prolog is not the best programming language for
representing cyclic graphs, in that it is impossible for a Prolog variable to contain itself.
The algorithm presented in the preceding section might handle cyclicity by naming the f-
structures in the path, checking in each step that we do not pass through the same f-
structure twice. The interaction of cycles with uncertainty paths may pose other problems,
however.

or not. Once instantiated to true, a flag will keep this value in the actual
environment.

5 The Prolog code

The program consists of two predicates: inside_out/6 and check/6.
Inside_out/6 has two entries, while check/6 has three entries. The arguments
in both cases come in this order: fstruc, ana, path, reg_exp, match?,
resolved?.

inside_out(Ana, Ana, [], RegExp, Match, Resolved) :- !.

inside_out(FS, Ana, [GF | Path], RegExp, Match, Resolved) :-
follow(FS, GF, Temp),
inside_out(Temp, Ana, Path, RegExp, Match, Resolved),
check(FS, Ana, [GF | Path], RegExp, Match, Resolved).

The flags (and the resolution of the anaphor) are handled inside the
check/6 goal. If Resolved is set to true on an earlier level, we continue to
withdraw:

check(_, _, _, _, _, Resolved) :- nonvar(Resolved), !.

We are in situation 2: We have a match between Path and RegExp. We
set Match to true, and try to resolve the anaphor. If resolution succeeds on
this level, Resolved is set to true, otherwise it remains a variable. In any
case, the goal will succeed, so we can continue to withdraw:

check(FS, Ana, Path, RegExp, Match, Resolved) :-
match(Path, RegExp),
!

.y

Match = true,
resolve(FS, Ana, Path, Resolved).

We are in situation 1: Both Resolved and Match are variables, and we do
not have a match yet. The Path so far is a suffix of one of the described
paths in RegExp. The check/6 goal succeeds, and we continue to withdraw:

check(_, _, Path, RegExp, Match, _) :-
var(Match),
suffix(Path, RegExp).

This procedure tries out a solution on the level nearest to the anaphor
first. If this solution is in conflict with other constraints, we back-track to

the continuation inside entry 2, where Resolved remains a variable. On the
successive levels, entry 2 will be evoked as long as we have a match.

If we reach situation 3 without any resolution (Match is true, and
Resolved is still a variable) check/6 fails on this level, and due to this,
inside_out/6 fails on the same level.

If we reach a situation where both Resolved and Match are still variables,
and Path neither matches RegExp nor a suffix of RegExp, check/6 fails
immediately.

To give a flavor of the approach taken, I include an example of the
resolve/4 goal in the [seg] case:

resolve(FS, Ana, _, Resolved) :-
(follow(FS, subj, Ant); follow(FS, poss, Ant)),
not(contained(Ana, Ant)),
Ant : agr === Ana : agr,
Resolved = true.

resolve(_, _, _, _).

The f-command restriction is guaranteed by the first two lines: In line one
we follow a path of length one (subj or poss) to identify the f-structure of
the antecedent (Ant), and in line two the goal fails if Ana is contained in (or
identical to) Ant. Resolution amounts to unification of the AGR features,
and if all these goals succeed, Resolved is set to true.

If any of the goals fails, the second entry for resolve/4 succeeds, and the
Resolve flag remains a Prolog variable.

6 Conclusion

I have presented a Prolog implementation of inside-out functional
uncertainty with an application to intrasentential anaphora resolution. The
main predicate inside_out/6 and the subgoal check/6 take care of the binding
constraints. It turns out that the inside-out functional uncertainty approach is
well suited for an efficient implementation of intrasentential anaphora
resolution. This is so because, for this application, we only have to concern
ourselves with the f-structures and the grammatical functions legitimated by
other defining equations in the linguistic description, as they are projected
from the c-structure tree and the lexical entries of the morphemes occuring in
the string. Thus we can take the complete and coherent f-structures as input
to the resolution algorithm. Although not a functional programming
language, Prolog is well suited for implementation of the algorithm in
question.

7 Acknowledgements

I am grateful to Mary Dalrymple for stimulating discussions and helpful
comments on an earlier version of this paper. I would particularly like to
thank Jan Tore Lgnning for extensive and very helpful discussion of the
issues presented here. I of course take responsibility for all flaws in the
reasoning, errors or confusions in the paper.

8 References

Bresnan, Joan 1982: Control and Complementation. In Joan Bresnan (Ed.):
The Mental Representation of Grammatical Relations. Cambridge,
Massachusetts: The MIT Press. (pp. 282 - 390)

Dalrymple, Mary 1993: The Syntax of Anaphoric Binding. CSLI Lecture
Notes. Number 36. Stanford.

Dalrymple, Mary, John Maxwell and Annie Zaenen 1990: Modeling
Syntactic Constraints on Anaphoric Binding. In Proceedings of
COLING 90, Volume II. Helsinki. (pp. 72 - 76).

Halvorsen, Per-Kristian and Ronald M. Kaplan 1988: Projections and
Semantic Description in Lexical-Functional Grammar. In Proceedings of
the International Conference on Fifth Generation Computer Systems.
Tokyo, Japan. Edited by ICOT. (pp. 1116 - 1122).

Hellan, Lars 1988: Anaphora in Norwegian and the Theory of Grammar.
Foris, Dordrecht.

Kaplan, Ronald M. and Joan Bresnan 1982: Lexical-Functional Grammar:
A Formal System for Grammatical Representation. In Joan Bresnan
(Ed.): The Mental Representation of Grammatical Relations. Cambridge,
Massachusetts: The MIT Press. (pp. 173 - 281).

Kaplan, Ronald M. and John Maxwell 1988: An Algorithm for Functional
Uncertainty. In Proceedings of COLING 88, Volume 1. Budapest. (pp.
297 - 302).

Kaplan, Ronald M. and Annie Zaenen 1989: Long-distance Dependencies,
Constituent Structure, and Functional Uncertainty. 1 Baltin, M. and
Kroch, A. (Eds.): Alternative Conceptions of Phrase Structure. Chicago
University Press. (pp. 17 - 42).

Lgdrup, Helge 1985: En note om seg og seg selv. (A note on seg and seg
selv). In Skriftserie No. 21, University of Bergen.

Sells, Peter 1985: Lectures on Contemporary Syntactic Theories. CSLI
Lecture Notes. Number 3. Stanford.

