
!

Situat ion Viewpoints for G e n e r a t i o n

Henry Hamburger s and Dan Tufts 2

ABSTRACT: Representation systems are presented for the input and output of the first or deep phase of a language
generation system. Actions and viewpoints are the key factors in determining what sentence is produced; viewpoints provide
a wide range of ways tO discuss actions, their states and the plans they compose. The language generator plays a key role in a
two-medium conversational system for a naturalistic foreign language learning environment.

KEYWORDS: viewpoint, action-based natural language generation, two-medium, conversation

Overview

After an inlroduction to the nature and role of viewpoints,
we motivate this work in terms of our two-medium
system for conversational language learning. Since our
version of generation is action-based, we then sketch
actions. Finally, we ,return to a finer-grained look at
viewpoints.

1 Viewpoints

In the natural use of natural language, a single event can
be talked about in a variety of ways, taking a variety of
viewpoints. Such variety is necessary across languages
because of differences in how cultures prefer to express
things (Delin et al., 1993) and because of differences in
how languages make it possible to express things
(Felshin, 1993). A sel~tion of viewpoints is also needed
within languages, both for coherence (Meteer,
forthcoming) and for effective rhetoric (Hovy, 1988).

For us, varied viewpoints are a way to expose learners of a
foreign language to a v~u'iety of linguistic constructions in
the naturalistic, situation-based, two-medium (graphical as
well as linguistic) conversations that take place in our
foreign language learning environment called Fluent-2.
To achieve this objective, we have been developing and
implementing our notion of an abstract situation
viewpoint, hereafter called simply a view.

1. You picked up the pot.
[description of an action]

2. The pot is in your hand.
[description of a state]

3. Now fill the pot.
[command to continue plan]

4. The water is not on.
[unmet precondition]

5. What is (still) on the counter?
[question on related object]

6. I asked you to pick up the cup,
not the pot. [unheeded command]

These examples show differences not only in views but
also in the type of conversational interaction: #5 is a
question, while #3 and #6 show different aspects of a
command-act interaction. Views differ in what actions
they refer to, with #1 as the most straightforward case,
describing a single action that just occurred. In contrast,
#6 refers to two actions, one of which was created earlier
in formulating a command that was never performed.
Among state views, the most straightforward is to
comment on the new value of an object's attribute, as in
#2, but it is usually also quite possible to comment on
the cessation of the corresponding previous value. Yet
another state View is applicable if the new value is the
same as the corresponding one for another object; one can
then say, for example, that there are two cups on the table
or that both cabinet doors are open.

A view specifies a way to operate on an action or a
possible action in a Situation to produce a language-
independent conceptual structure that corresponds to a
statement, command or question about an action or its
results, purpose, participants, etc. This paper sketches an
internal structure for views and indicates their range of
expression. The choice of which view to use at a
particular point can be made by the tutorial strategist,
taking into account the Student's limited knowledge of the
language (Hamburger, in press). View processing is the
deepest of three levels forming the NLG capability of the
learning environment. The general idea of views can be
seen from a few examples in three categories: action, state
and plan views.

1. Computer Science, George Mason Univ., Fairfax, VA
2. Institute for Informatics, Bucharest, Rumania

Underlying sentence #3, above, is a plan view, in this
case the notion of transition to the next action in the
current plan. Plans can also refer to such things as the
completion of a plan or subplan and the transition from
one subplan to the next. Plans exist in the microworlds
so that the successive actions will make sense, not only
those chosen by the tutor to carry out itself, but also
those the tutor tells the student to do, as in #3. The
resulting situational continuity supports a language
beginner by keeping it clear what is being talked about.
For a more advanced student, plan views provide their own
form of variety, including two-clause sentences like,
"Now that the pot is full, put it on the stove," in which
the first clause involves a state view, the second an action
view and the whole sentence comes from a plan view, the
transition from a just completed subplan to the next
action whose goal is not already satisfied.

2 1 7

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

]Tutor
selected Ise c ed V i e w

'I, A Processor
Situation
Reasoner eflnstantiated

Action &
Microworld Plan State

Sem uc enemfion
View I S~ucture I

Sentence

Figure 1. View Processing in context. Organization of modules relevant to language generation.

2 Two-Medium Language Learning

Fluent-2 is a two-medium tutorial system whose principal
goal is to provide an essential form of foreign language
learning experience: realistic conversation in the target
language. Figure 1 shows key parts of the system.

Language interaction in Fluent-2 is tightly integrated with
a visual second medium consisting of partially animated
graphics under shared control of the student and the
electronic tutor. Both the graphics and the language are
the outward manifestations of an underlying microworld of
objects, in a hierarchy of classes, taking part in actions
that are structured into plans. The graphics and animation
provide a realistic auxiliary source of information about
what is being said. This independent channel helps the
student pick up new vocabulary and language
constructions in a clear situational context. This two-
medium interaction capability, including the deep
generation component sketched in this paper, should also
be applicable to tutoring systems in other subject matter.
Surface generation is done by a large natural language
processing system, developed by Susan Felshin of the
MIT Athena Language Learning Project (ALLP) and
adapted for us. It is this system that takes semantic
structures to syntactic structures and ultimately to
sentences of English, Spanish and, to a lesser extent,
other languages. The natural language processing,
graphics, microworlds and tutorial reasoning are all in
MCL2 Common Lisp with CLOS on a Mac-Ilfx with
20MB of main memory.

The availability of the two media, along with situational
continuity, can provide to adults the kind of redundancy
that seems essential to children in their race to fluent use
of their native tongue. This is not to say that adults learn
in the same way as children. Nevertheless, Fluent-2, has
been designed with careful attention to successful second
language pedagogy and appropriate second language
research. Language generation is especially important at
the outset, since the learner must comprehend language
before meaningfully producing it.

Second language research provides support for using
simplified language in meaningful contexts. Three
sources of such experience are foreigner talk (by native
speakers, to foreigners), motherese (by parents and
caregivers, to children) and teacher talk (by teachers, to
students). We seek to replicate the benefits of these styles
in a computational system, by identifying and adapting
specific aspects that underlie their success. Such
properties include: restricted vocabulary size; exaggerated
intonation and stress; short grammatical sentences; use of
concrete references; repetitions, expansions and rephrases;
few pro-forms; few contractions; yes-no, choice and tag
questions rather than Wh-questions; and so on. (See
Hamburger, 1993 for a fuller account).

3 Representing Situations and Actions

The actions in a microworld are of special interest because
they constitute an input to view processing, our central
concern here. Both actions and plans are implemented as
parametrized rules with constrained variables, as in the
action rule example in Figure 2. Binding the parameters
of an action (or plan) to microworld objects yields an
instantiated action (or plan), which can then be carried out,
with graphical and internal consequences, and/or forwarded
to the generation process. Objects are of various types or
classes, with individual properties, some inherited, and
relationships to each other. Actions and objects, the
bridge between the two media, are chosen partly on the
basis of having consequences that are clearly realizable in
graphics. Actions are organized into flexible, hierarchical
plans that support coherent everyday activity

HEADER: (pick-up ($h hand) ($obj physical-object)
($from physical-object)(Stow microworld))

GOALS: ((oav $h grasp $obj))
PRECONDS: ((oav Sh grasp nothing)...)
K-RESULTS: ((modify-oav Sh grasp $obj)

(delete-among Sfrom things-on-top $obj)...)

Figure 2. Non-graphics parts of action rule, Pick-Up

218

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

Action rules are bi-directional: either the student or the
tutor can activate them, depending on the type of
interaction. The student does this in a graphically realistic
manner, for example by dragging a hand to the faucet and
clicking the mouse. The.parameters have scope over the
whole rule; binding originates in any slot. Information
thus can flow among student, tutor and microworld,
supporting the two-way, two-medium conversation.

An action rule's Header slot is a key to view processing.
It contains the rule name or predicate as well as argument-
constraint pairs, and is used in the straightforward view in
Figure 3 for a simplel description of the action. Also
useful in view processing is the K-Results slot,
containing object-attribute-value triples for updating the
internal situation as a :result of the action. State views
can select among these results to report various changes.
The Goal slot makes it possible, when executing a plan,
to skip over any actions and subplans whose goals are
already achieved. Besides permitting variety in student
action sequences, the satisfied goal can form, via a view,
the basis of a useful remark. Views for failed Preconds
can also yield comments worth making. Two other action
rule slots are for information passed to and from the
graphics module; they are not used for views and are
omitted from Figure 3..

To see the key role of views, suppose that the student has
just made something happen and the system's role is now
to make a relevant comment. A simple choice is to say
what the student just did, using a representation of the
student's preceding microworld action, consisting of an
operator with its operands. Just such a representation is
in the Header slot of the action rule just triggered by the
student (via the graphics input slot). It can be transformed
to a semantic structure that is an appropriate input for the
surface generation module, which can output the resulting
sentence. We do exactly that, but not deterministically.
Into this action-to-semantics connection, we use views to
insert the possibility of a wide-ranging choice of different
approaches to constructing something to say.

4 Views, Levels and Instantiations

A view is an abstraction of what to say and how to say it,
expressed as a structure. It guides the view processor in
selecting parts of an instantiated action, to instantiate the
view. The instantiatedi view is a language-independent
intermediate representation which ultimately yields an
output sentence.

The partial example of a view in Figure 3 shows the
context level, event level and object level. (Object-level
information is not shown.) The event level is central in
that it corresponds roughly to the proposition expressed in
the main (or only) clause of a sentence. The view type
here is 'action', yielding a view that expresses the action
itself, without reference:to the plan or the resulting state.

'What-action' can be one that has actually occurred, has
been talked about or has been constructed for generation.
In Figure 3, this choice depends on the interaction type,
which also controls the distinction between commands and
declarative sentences and the choice of tense.

NAME: current-action
CONTEXT: (case interaction-type

((movecaster tourguide) '(recent-pas0)
(antetourguide '(near-future))
(commander '(imperative)))

EVENT: view-type: action
what-action: (case interaction-type

(movecaster 'student-did)
(tourguide 'tutor-did)
((antetourguide commander)

'tutor-thought))
OBJECT: ...

Figure 3. Part of the view, Current-Action.

These observations point to the key role of interaction
types within views. Interaction types complement views
by organizing the basic conversational move structure.
An interaction is a short sequence of specified kinds of
linguistic and spatial turns by the tutor and student.
Choosing an interaction type determines whether it is the
tutor or the student that momentarily takes the initiative.
A pedagogically useful interaction type for language
learning has at least one linguistic move (is not purely
graphical). Either the tutor or the student can start with
one of four move types: action, command, question or
statement. Following each with its anticipated response
yields the eight simplest interaction types.

In the Movecaster type, the student can make any possible
move, and the tutor then comments; the tutor asks a
question in Quizmaster; it gives a command that the
student may act on in Commander; and these roles are
reversed in Servant. Tourguide is an interaction type with
three moves: an action by the tutor, a description of that
action, and acknowledgement by the student. Tourguide
can provide initial exposure to a new microworld.
Variations of it allow the'description to precede or follow
the action, or both, giving a basis for variations in tense.

The second move in an interaction should be responsive to
the first. Thus some kinds of questions call for a sentence
in answer, others a phrase or "yes" or "no". Similarly,
actions are expected to be responsive to commands. The
tutor may comment about responsiveness to a command
or lack of it, using a view-constrained interaction type.

It is now easier to see why, in Figure 3, Movecaster is
associated with Student-Did, the student's action, whereas
Commander calls for an action - Tutor-Thought - not yet
carried out by anyone. What-Action takes four possible
values: Student-Did or Tutor-Did for the most recent
action executed by the student or tutor; and Tutor-Did or

219

7th International Generat ion Workshop * Kennebunkport , Maine • June 21-24, 1994

Tutor-Thought for an action constructed by the tutor as
the basis of something already said or about to be said.

State views need two slots at the event-level that are not
in event views; see Figure 4. Since an action may result
in more than one change inthe values of object attributes,
state views have an Aspect to specify how to select one of
the changes. The selection method in Figure 4 simply
takes the first one in the list of updates - reasonable if
results are in order of importance. The Pre-Post slot tells
whether to use the updated value or the prior one.

VIEW-TYPE: state
WHAT-ACTION: last-action
ASPECT: (position 1)
PRE-POST: pre

Figure 4. State view, event level: "The cup was in
your hand"

Whereas a view tells where to get information, the
instantiated view (IV) holds the information itself, which
the view processor has for the most part extracted from the
instantiated action. For an action view, this is pnncipally
the arguments, taken from the action header and placed in
IV slots called Agent, Objectl, Object2 and Modifier.
Under the guidance of the object level of the view, the
view processor associates each argument with the correct
slot and puts in the contents. Designed for this purpose is
the IV-O, or object level of an IV. Each IV slot can be
filled by (i) an IV-O, (ii) a microworld object, (iii) a class,
which is a language-independent meaning corresponding to
a common noun, (iv) a list of items of the three foregoing
kinds, or (v) another IV. The latter yields a subordinate
clause, whereas each of the others underlies a noun phrase.

Object-level views determine how to express a particular
microworld object to convey its relationship to other
aspects of a conversation. With a black and a grey cup,
for example, after moving the black one, the grey one can
be referred to as "the other one," "the grey cup," "the
second cup" or even "the cup that is still on the table." In
each noun phrase the head noun corresponds by default to
the class of the object, unless "one" is included in the
specification for that object (giving, in English, the likes
of "the red one"). The decision whether to include
modifiers (adjectives, relative clauses, and prepositional
phrases) may in some cases be expressed by code that
includes a method that selects whatever properties are
needed to distinguish an entity from others of its class.

The object level may also have information that affects
decisions about determiners and possibly quantifiers or
pronouns. The choice of determiner can not be specified
in isolation by the view, since it must take into account
the recent mentions of, and actions on, an entity, for
example, "Pick up a (indefinite) box" and then, "Good!
You picked it (definite pronoun) up."

Subslot Possible Values

PRECISION
REFERENCE
PROMINENCE

Top,Parent, Direct, Distinct
Other, Pronoun, Nil
Topic, Wh, Nil

Figure 5. Possible values at Object level

Object-level subslots and their permitted values appear in
Figure 5. First comes the degree of Precision with which
the object is to be described. It can indicate whether the
class for describing the object should be its direct class
(e.g., girl, teaspoon), its parent class (e.g., child, spoon)
or the highest class permitted by the type constraint for
the particular argument of the action rule (e.g., person,
thing). Another option is the highest level distinguishing
the item from everything else in the current situation. If
the item is not alone in the class named, the output needs
a modifier or else an indefinite determiner.

I f the Reference subslot in a view has the value Other, the
item is to be described in terms of other items in its class,
e.g., "'the other X" or "the rest of the Xs", as opposed to
the default case, a description of an object by its own
properties. The Prominence subslot specifies whether its
object should be made prominent or not, and if so,
whether by topicalization - Topic - or by being questioned
with a Wh word.

Acknowledgement. This work is supported under
grant IRI-9020711 from the National Science Foundation.

References

Delin, J., Scott, D. and Hartley, T. (1993) Knowledge,
intention, rhetoric. In O. Rambow (Ed.) Intentionality
and Structure in Discourse Relations. Morristown, NJ:
Association for Computational Linguistics.

Felshin, S. (1993) The Lingo Manual. Carnbndge, MA:
Lab. for Advanced Technology in the Humanities, MIT.

Hamburger, H. (in press) Tutorial tools for language
learning by two-medium dialog. In M. Holland, J.
Kaplan and M. Sams (Eds.) Hillsdale, NJ: Lawrence
Erlbaum Associates.

Hamburger, H. (1993) SCIALogie and Fluent: Pedagogy
and microworlds for language immersion and tutoring. In
T. Chanier, D. Renie and C. Fouquere (Eds.) Actes du
Colloque SCIAL. Clermont-Ferrand, France.

Hovy, E. (1988) Generating Natural Language under
Pragmatic Constraints. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Meteer, M. (forthcoming) Text planning and text
structuring. Computational Linguistics.

220

