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Abstract 

A generate and test algorithm is 
described which parses a surface form into one or 
more lexical entries using linearly ordered 
phonological rules. This algorithm avoids the 
exponential expansion of search space which a 
naive parsing algorithm would face by encoding 
into the form being parsed the ambiguities which 
arise during parsing. The algorithm has been 
implemented and tested on real language data, 
and its speed compares favorably with that of a 
KIMMO-type parser. 

I. INTRODUCTION 

A generate and test algorithm is 
described which uses linearly ordered 
phonological rules to parse a surface form into 
one or more underlying (lexicai) forms.* Each 
step of the derivation may be rendered visible 
during both generation and test phases. The 
algorithm avoids an exponential expansion of 
search space during the generation phase by 
encoding the ambiguities which arise into the 
form being parsed. At the end of the generation 
phase, lexical lookup matches the ambiguous 
form against lexical entries. Because not a l l  
combinations of ambiguities in the parsed form 
are compatible, a test phase is used to filter 

* 1 have benefited from comments on previous 
versions of this paper by Alan Busernan, and 
several anonymous referees. Errors remain my 
o w n .  

forms found at lexical lookup. In this phase, the 
phonological rules are applied in forward order, 
and the derivations of any final forms which do 
not match the original input word are thrown out. 

The algorithm has been implemented and 
tested on real language data; its speed is 
comparable to that of a KIMMO-type parser. 

2. THE PROBLEM 

Since the publication of The 5bund 
Pattern o f  English (Chomsky and Halle 1968), 
most generative linguists have held that the 
phonological rules of natural languages are 
linearly ordered (Bromberger and Halle 1989). 
That is, when deriving a surface, form from an 
underlying (lexical) form, the input of the N+lth 
rule is the output of the Nth rule. 

While it is straightforward to derive a 
surface form from an underlying form with 
linearly ordered rules, complications arise in 
searching for the Icxical form(s) from which a 
given surface form may he dcrivcd. One 
difficulty is that phonological rules are oRen 
neutralizing, so the result of "unapplying" such a 
rule during parsing is ambiguous. Consider the 
following simple rule: 

[-continuant] --> [-voiced] 

/ __ [-voiced] 

Unapplieation of this devoicing rule to a 
noncontinuant voiceless segment presents a 
dilemma: should the underlying segmcnt be 
reconstructed as having been [+voiced], or was 
the segment originally [-voiced] (with the rule 
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having applied vacuously)7 This dilemma arises 
under most theories with linearly ordered rules, 
whether segmental or autosegmentai. 

A second difficulty for parsing is that if 
rules apply in linear order, later rules can 
obscure the effects of earlier rules. In the 
example given, a later rule might alter the 
cnvironment in which the devoicing rule had 
applied, e.g. by voicing a scgment which served 
as the environment for the first rule. 

This sccond problem arises in any 
theoretical framework which allows opaque rule 
orderings, that is, rule orders in which a later rule 
can opacify (obscure) the effects of earlier rules. 
Theories which disallow opaque rule orders (such 
as Natural Generative Phonology, see Hooper 
(1975)) have not enjoyed lasting popularity 
among linguists. 

The implication of these two problems is 
that parsing would appear to require a 
bifurcation of the search space for each feature 
value assigned in the output of a phonological 
rule. For instance, consider the above devoicing 
rule, followed by a voicing rule which opacities 
the first rule. Suppose we have a surface 
sequence of a voiceless noncontinuant segment 
followed by a voiced segment. In parsing this 
sequence, it would seem that we must explore 
several paths. I f  the surface voiced segment were 
also underlyingly voiced (vacuous application of 
the voicing rule), then there is no fimher choice; 
the surface voiceless noncontinuant could not 
have been devoiced by the devoicing rule. But if 
the surface voiced segment were underlyingly 
voiceless (nonvacuous application of the voicing 
rule), then the first rule might have applied, either 
vacuously or nonvacuously. Given that 
languages may have tens of phonological rules, 
and that each rule may alter multiple features, the 
search space becomes enormous. 

Anderson (1988:5) summarizes the 
problem as follows: 

...if thc phonology of the language 
involvcs a non trivial amount of 
neutralization.., it is nceessary to 
calculate all of the possible 

combinations of alternatives allowed by 
various rules, which may be 
individually large when neutralizations 
are involved and whose product grows 
exponentially as the amount of 
significant rule interaction (ordering) 
increases. 

The combinatorial possibilities 
involved in undoing the phonology thus 
get out of hand rather quickly. Since 
the depth of ordering in a linguistically 
motivated description can easily 
approach 15-20, with many of  the rules 
involved being many-ways ambiguous 
when regarded from the "wrong end," 
the approach of simply undoing the 
effects of the rules was soon seen to be 
quite impractical. 

But in fact this expansion of  search space can be 
avoided by the use of  a generate-and-test 
algorithm, in which the ambiguity resulting from 
the unapplication of each rule is encoded into the 
form when the rule is unapplied. The resulting 
algorithm turns out to be tractable for the sorts of 
rules and rule ordering which arise in natural 
languages. 

3. THE GENERATE-AND-TEST 
ALGORITHM 

This section presents an algorithm for 
parsing with linearly ordered rules. The 
algorithm is efficient for the sorts of rule sets that 
have been proposed by generative phonoiogists 
for natural languages. 

The algorithm is presented in general 
terms, abstracting away from implementational 
details where possible. Where a certain degree of 
concreteness is unavoidable--as in the definitions 
of the application or unapplieation of a single 
rule--alternative forms of the algorithm are 
mentioned. 

3.1 DEFINITIONS AND INITIAL 
ASSUMPTIONS 

An instantiated (phonetic:).feature is a 
feature-name plus an atomic feature value; an 
uninstantiated feature is merely the feature-name. 
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A segment-specification consists of a 
character representation of some segment (one or 
more characters, e.g. "k" or "oh"), plus a set of  
features, not all of  which need be instantiated. 
An alphabet consists of a set of segment- 
specifications. A given language may employ 
more than one alphabet, distinguishing such as an 
input (surface) alphabet and a lexieal 
(underlying) alphabet. 

A (phonetic) word consists of a list of  
one or more segments, w h e r e  each segment 
consists of  a set Of features. Input words (words 
to be parsed) and lexieal words are usually 
represented instead in a character-based notation; 
the translation between this and a segment-based 
representation is defined below. 

A phonological rule consists of an input 
(left-hand) side, an output (right-hand) side, a left; 
environment, and a right environment. The input 
and output side each consist of  a set of  one or 
more instantiated features. (The extension to 
lists of  sets, representing an input or output of  
more than a single segment, is straightforward. 
Rules in which the input or the output is empty, 
i.e. epenthesis or deletion rules, are discussed 
later.) The environments of a rule consist of a 
sequence of zero or more sets of  instantiated 
features or optional sequences, together with a 
Boolean specification of whether the environment 
must begin (leR environment) or end (right 
environment) at a word boundary. An optional 
sequence consists of  a sequence of oneor  more 
sets of  features, together with a minimum (MIN) 
and maximum (MAX) number of times the 
optional sequence may appear. 

Finally, the analysis target of a rule is 
defined (for a rule with input and output of length 
one) as a set of  features, which set consists of the 
features of the output, together with any non- 
contradictory features of the input. (In most 
rules, the features of the input and output are 
disjoint, so that the target consists of the union of 
the input and output features. Occasionally a 
rule will speei~ one value of a feature in the 
input, and a contrary value in the output. In that 
case, the analysis target takes the value of the 
feature in the output.) 

A rule is said to be ~'elJ-'opaquing if it 
could be applied nonvacuously to a segment of 
its environments, l Such a rule must receive 
special treatment during analysis, because its 
application may have altered the word so that the 
output no longer meets the structural description 
of the rule. 

The list of rules of a language is linearly 
ordered, and given in synthesis order. That is, 
the input of  the first rule is a word from the 
lexicon, the input, of: the second• ruleisthe. ~ . . output. • ..:. ' .. • . ':"i .. 
of the first rule; ete.~ and the output of  the last .. 
rule isa surface form.. ' 

3.2 TRANSLATION BETWEEN 
ALPHABETIC AND SEGMENTAL 
REPRESENTATIONS 

A word in a phonetically based 
orthography (not, say, English orthography) may 
be translated into a segmental representation by 
the following algorithm: 
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IT he precise formulation of "self-opaquing" for 
the purposes of the algorithm is somewhat more 
restrictive. Self-opaquing rules cause difficulty 
for parsing because such a rule may apply 
(nonvacuously) to some segment, while in the 
output the rule seems not to .have applied.to that 
segment because the environment for that 
segment has itself been altered by the rule so that 
it no longer meets the structural description: a 
self-counterbleeding rule. This can only happen 
if a segment of the environment meets the 
structural description of the rule, and the 
structural change of the rule assigns a value 
contrary to the value required in the environment. 
That is, a segment of the rule's environment is 
unifiable with the structural description of the 
rule but not with the structural change. 

If the rule applies left-to-right iteratively, only the 
right environment is relevant, as only that 
environment can be altered after it has been used. 
Likewise, if the rule applies right-to-leR 
iteratively, only the left enviromnent is relevant. 
If the rule applies simultaneously, both 
environments are relevant. " ~ . . .: iiii 



Beginning at the left end of the word, replace 
the longest substring which corresponds to the 
character representation of some segment- 
specification in the appropriate alphabet, with 
its set of features. 

Continue left to right, replacing substrings of 
the word with their features until the right end 
of the word is reached. If the process fails at 
any point (because no substring corresponds 
to a segment-specification), fail. 

This translation algorithm is 
deterministic, and would give wrong results for a 
word like "mishap" (assuming "sh", "s" and "h" 
to be defined as segment-specifications). The 
algorithm could easily be made nondeterministic, 
with the proviso that each translation of an input 
word would be subjected to the remainder of the 
parsing algorithm. However, how multiple 
translations of  lexical words would be treated is 
not so clear. 

The translation between alphabetic and 
segmental representations could instead be done 
by a finite state transducer, with equivalent 
results. 

3.3 UNAPPLICATION OF PHONOLOGICAL 
RULES 

During the analysis phase of the 
algorithm, each rule is unapplied by 
uninstantiating in each segment which matches 
the rule in the correct environment, those features 
which the right-hand (output) side of the rule 
sets. For instance, if a rule assigns the value 
[-voiced] in its output, during parsing the value 
of the feature "voiced" in the segments affected 
by the rule becomes uninstantiated. 

More specifically, given an input 
(surface) .word in its segmental representation 
and a list of phonological rules, the rules may be 
unapplied to the word as follows. 

(1) Reverse the list of rules to give a list in 
analysis order. 

(2) Unapply the first rule of the list to the 
input word, using the algorithm below. 

(3) Unapply each succeeding rule to the 
output of the previous rule. 

The algorithm for the unapplication of a 
single rule in left-to-fight iterative fashion (see 
Kenstowicz and Kissebeah 1979) is as follows; 
note that during analysis, a left-to-right iterative 
rule is applied right-to-left. 

For each segment S beginning at the right end 
of the word: 

If S is unifiable with the analysis target of the 
rule, and the left-hand environment of the rule 
matches against the word ending with the 
segment to the left of S, and the right-hand 
environment of the rule matches against the 
part of the word beginning with the segment 
to the right of S, then uuinstantiate the 
features of S whose feature-names are 
contained in the output of the rule. 

An environment sequence matches a subsequence 
of segments during analysis if: 

For each member of the environment which is 
a set of features, that set unifies with the 
corresponding segment of the word; else (if 
the member is an optional sequence), the 
optional sequence matches against the 
corresponding sequence of segments between 
MIN and MAX number of times If the 
environment must mater at the margin of a 
word, then when the enviromnent sequence is 
used up, the last segment matched must be the 
first segment of the word for the left 
environment, or the last segment for the right 
environment. 

After a rule has been unapplied to a 
word, if the rule is self-opaquing and the 
unapplication was nonvacuous, the rule is 
unapplied again until its unapplication is 
v a c u o u s .  

The unapplication of a rule which 
applies right-to-left iteratively is the obvious 
transformation of the above algorithm. 

The important point in the unapplication 
of a single rule to a form is the use of unification, 
so that a segment in the word matches a feature 
set in the rule even if the value of one or more 
relevant features in the segment has been 
uninstantiated by the unapplication of a previous 
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rule. Matching against an uninstantiated feature 
thus represents an assumption, that the 
underlying value of that feature was correct. 
This assumption can only be validated during the 
synthesis phases when a lexical entry from the 
lexicon will have become available. 

The unapplication of a rule which 
applies simultaneously to its input may be 
performed by either left-to-right o r  right-to-left 
iterative unapplication, although the un- 
application may need to be repeated if the rule is 
self-opaquing. To see why the self-opaquing test 
might be necessary, consider the following 
hypothetical rule: 

[--sonorant] --> [+continuant] 

/ __ [-continuant] 

When applied simultaneously to the form apkpa, 
the result is afxpa. If the rule were unapplied to 
afxpa left-to-right iteratively, after the first pass 
we would have af[x klpa, where the sequence Ix 
k] is intended to represent a voiceless velar 
obstruent with an uninstantiated value for the 
fcature [continuantl (hence ambiguous bctween 
the fricative x and the stop k). Only after a 
second pass would we get a[.fPllx k]pa. (In this 
example the rule could have been unapplied 
right-to-left iteratively in a single pass, but a 
single right-to-left iterative application would 
have given the wrong result with the mirror 
image of the given rule.) 

As an alternative to the above algorithm, 
the unapplication of a single rule could be 
performed by a Finite State Transducer (FST) 
(Johnson 1972, cf. also Kaplan and Kay, in 
press). It will be more convenient to compare the 
FST method with the above algorithm when we 
considcr the application of a rule (as opposed to 
its unapplication). 

3.4 LEXICAL LOOKUP 

A word, some of whose segments may be 
partially instantiated, matches against a word in 
the lexicon if the features of each of its segments 
are unifiable with the corresponding segment of 
the iexical word. Lexical lookup consists of 
finding all such matches. 

The unapplication of the phonological 
roles and the process of lexical lookup constitute 
the analysis phase of the algorithm. 

3.5 APPLICATION OF PHONOLOGICAL 
RULES 

As a result of the unapplication of rules 
to forms some of whose features may have been 
uninstantiated by earlier rules, some 
overgeneration may result, because a form taken 
from the lexicon may not have the value which 
was a s sumed  during analysis: This 
overgeneration is filtered out by applying the 
rules in a synthesis phase. Thedeg ree  of 
overgeneration is small, for reasons discussed in 
Maxwell (1991). The algorithm for applying 
rules during synthesis is straightforward: 

Given a lexical word and the list of rules, the 
first rule is applied to the lexicai word, the 
second rule is applied to the output of the 
first, etc. 

The application of a single rule in lefbto-right 
iterative fashion is as follows: 

For each segment S beginning at the left end 
of the word: 

If S contains all the features of the left-hand 
side of the rule, and the left and right 
environments match parts  of the word 
immediately to the left and right of S, then set 
the value of each feature in S whose name 
appears in the output of the rule tO the value 
in that output. 

An environment sequence matches during 
synthesis if: 

For each member of the environment which is 
a set of features, the corresponding segment 
of the word contains those same features; else 
(if the member is an optional sequence), the 
optional sequence matches against the 
corresponding segments of the word between 
MIN and MAX number of times. The 
condition on matching a word boundary is the 
same as during unapplication. 

Right-to-left iterative application is again 
the obvious transformation of this algorithm. 
Simultaneous application may be modeled by . . ' Z  : .. 
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first collecting the set of all segments which 
satisfy the structural description of the rule, and 
then applying the output of the rule to each 
segment in that set. 

There is no need to check for possible 
reapplieation of a rule during synthesis, as there 
was during analysis. This is because if the 
application of a rule creates new environments to 
which it might apply, those environments do not 
serve as fiarther input for the rule apart from 
iteration or cyclic application. Directional 
iterative application is handled directly by the 
above algorithm, while nondirectional iterative 
application has generally been rejected by 
phonologists (cf. Johnson 1972: 35ff., and for a 
slightly different form of nondirectional iterative 
application, Kcnstowicz and Kisseberth, 1979: 
325). Cyclic application is not treated under the 
above algorithm, but would constitute only a 
restricted form of reapplication in which the 
application of a set of  phonological rules would 
be sandwiched between each pair of cyclic 
morphological rules (as argued originally by 
Pesetsky 1979). If two or more cyclic 
morphological rules applied in a given word, the 
cyclic phonological rules would also apply at 
least twice. But each such application would be 
separated by the application of other rules, both 
phonological and morphological. 

! will refer to this algorithm for applying 
a single rule as the Target-First Application 
Algorithm, or TFAA; it is analogous to the 
algorithm given earlier for unapplication of a 
rule. 

As an alternative to the TFAA, each rule 
could instead be applied by an FST. 

A disadvantage of application of a rule 
by the TFAA, compared with its application by 
FST, is that when checking the left-hand 
environment (assuming the rule applies leg-to- 
right iteratively), the TFAA must retest segments 
it has already considered as possible target 
segments. In other words, the TFAA backs up 
through the form when checking the lett-hand 
environment. Under those same circumstances, 
the FST nccd do no backing tip when checking 
the left environment, as the applicability of the 

left environment is already determined when the 
FST arrives at a potential target. The distance 
the TFAA backs up can be considerable, in 
particular when the left environment (or the right 
environment, for a right-to-let~ iterative rule) has 
optional sequences (so that backtracking must be 
employed in case of  failure to match the 
environment on the initial check), or when the 
word being parsed has "optional" segments. 
(Optional segments arise in analysis during the 
unapplication of deletion rules, as discussed 
later.) 

Both the FST and the TFAA may test the 
same segments multiple times when the right- 
hand environment is nonempty (assuming Ictt-to- 
right iterative application). For the FST, this will 
only happen if it made an incorrect choice. An 
example would be the rule: 

[-continuant] --> [-voiced] 

/ __ [-voicedl 

when applied to the form ba. After the FST tests 
the target, it could attempt to apply the rule by 
assigning the feature [-voiced] to the b (changing 
it to p). This would be incorrect, however, as the 
FST discovers when it processes the [+voicedl 
segment a; it must therefore back up, restore the 
[+voicedl value to the b, and move right to 
process the a again. 

The TFAA, applying the same rule to the 
same form, would first notice the potential target 
b. Before altering the value of the feature 
[voiced], however, it would check the right 

environment: the segment a. Noticing that it does 
not satisfy the requirement that the right 
environment be [-voicedl, it refrains from 
altering the feature [voicedl on the b. it then 
goes on to check whether the a constitutes a 
potential target. 

However, the real question is not the 
worst case behavior, but the average case 
behavior; how many comparisons must be done 
for the average word with the average rule? 
Unfortunately, this is not a straightforward 
question. Examples are readily constructed in 
which the FST would do more COluparisous thn.n 
the TFAA. Given that m solnc cases tile TFAA 
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must back up through segments it has already 
considered while the FST need not, while in other' 
cases the FST does more comparisons than the 
TFAA, I leave the question of average ease 
behavior open. Note that similar considerations 
pertain to the behavior of the algorithm given 
earlier for the unapplieation of rules. 

A potential advantage of the TFAA over 
an FST implementation concerns the debugging 
of a single rule. When scanning a word for 
possible rule applications, people often search 
first for segments matching the input side of the 
rule, then cheek whether the left and fight 
environments of potential targets also match. 
This is essentially the method employed in the 
TFAA. If a rule is at all complicated, trying to. 
apply it as an FST instead becomes quite difficult 
for humans. By the same token, determining why 
a parser did or did not apply a rule to a certain 
segment of a form should be much easier if the 
parser presents: a trace of its application in the 
same form that the human would do it. This is of 
course only an advantage of the TFAA if the user 
is actually tracing a given rule. Indeed the parser 
need not use the same algorithm to apply a rule 
when debugging is turned on as it uses when 
debugging is not turned on (although it is 
certainly easier on the writer of  the parser if it 
does). 

3.6 COMPARISON WITH INPUT FORM 

Returning to the overall algorithm, 
specifically the test phase: the derivation of a 
word to which all the rules have been applied is 
correct if the derived word matches the original 
input word, that is, if each .segment of the two 
words correspond. A segment corresponds if 
each of its features is identical. 

During the test phase of the algorithm, a 
derived word may fail to match against the 

original (input)' word under two circumstances: 
either one or more pairs of rules are opaquely 
ordered (see Maxwell 1991), or one or more rules 
are dcpendent on nonphonetic information, such 
as the location of a morpheme boundary or 
nonphonetic features. The resulting (potential) 
overgeneration is the reason for the test phase of 
the generate-and-test algorithm. 

This completes the discussion of the 
generate-and-test algo~rithm for feature-changing 
rules. The next two sections discuss some 
refinements. 

3.7 EPENTHESIS AND DELETION RULES 

During analysis, a segment which has 
been inserted by an epenthesis rule 2 must be un- 
epenthesized, while segments which may have 
been deleted must be re-inserted. To avoid 
bifiarcation of the search for each such segment, 
segments may be assigned an additional feature 
called "optional." All segments in the input word 
are marked [-optional I. When an epenthesis rule 
is unapplied (using an algorithm similar to that 
given above for feature-changing rules), the 
segments which might be epenthetic are marked 
as [+optional]. Similarly, a deletion rule may be 
unapplied by inserting a new segment with the set 
of features specified on the input side of  the rule, 
and marking that segment as [+optional]. 

The unapplication of deletion rules must 
be ~ahe r  constrained to prevent infinite looping. 
To take a concrete example, consider the 
following consonant cluster simplification rule: 

C --> 0 / C  C 

If this rule is un-applied to a surface 
form with a two consonant cluster, the result will 
be an intermediate form having a three consonant 
cluster. But the rule is Self-opaquing, in the 
sense that it can dclete consonants which form 
part Of the environment. Hence during analysis, 
it-should be allowed to re-unapply to its own  
output. But ifthe rule is allowed to un-apply to 
the intermediate form produced by its first 
unapplieation, namely a three consonant cluster, 
it can un-apply in two places to yield a five- 
consonant cluster; to which the rule can again be 
unapplied, ad infinitum. 

2 Pretheoretically, an .epenthesis rule is a 
phonological rule which inserts a segment into a 
word. An example might be the insertion of p 
into warm-~th to give [warmO]. 
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The best solution to this problem would 
be to use reasoning to determine the maximum 
number of contiguous consonants which could 
appear in the input to the rule. But this is by no 
means simple. It would be straightforward to 
determine the maximum number of consonants 
which could appear in underlying forms (based 
on the maximum number of consonants which 
appear in lexical entries and in affixes, assuming 
a morphological component), and in fact the 
lexicon itself is often used for this purpose in 
KIMMO-based systems. However, with linearly 
ordered rules the number of adjacent consonants 
could in principle be increased by the application 
of certain rules preceding the deletion rule, 
including rules epenthesizing consonants, rules 
deleting vowels, and rules changing vowels into 
consonants. Whether such rules in fact exist, or 
whether they exist but would be blocked by other 
principles from creating inputs to such a 
consonant cluster simplification rule is an area of 
research in phonology. 

In the absence of a principled way of 
determining the maximum number of consonants 
that could appear in a cluster (or analogous limits 
on other deletion rules), an ad hoe limit may be 
placed on the application of deletion rules. One 
such limit is to unapply a deletion rule 
simultaneously, and only once (or only N times). 

To take a concrete example, consider the 
input abbabba, where a is a vowel and b is a 
consonant. A single simultaneous unapplication 
of the above consonant cluster simplification rule 
would give abCbabCba, while two un- 
applications would give abCCCbabCCCa, where 
the first and third Cs in each cluster result from 
the second unapplication. Limiting the un- 
application of deletion rules in this way is ad hoe, 
but probably sufficient for practical purposes. 

The presence of l+optional] segments 
arising from the unapplication of epcnthesis and 
deletion rules slightly complicates the algorithm 
given earlier for rule unappl!cation, in that such 
segments may optionally be passed over when 
checking rule environments. 

During synthesis, epenthesis rules are 
straightforwardly applied by inserting a segment 

with the features of the output of the rule, while 
deletion rules are applied by simply deleting the 
relevant segments. 

3.8 NONPHONETIC FEATURES, 
BOUNDARY MARKERS, ALPHA 
FEATURES ETC. 

Nonphonetic (diacritic) features and 
obligatory boundary markers in rules may simply 
be ignored during analysis, leading to some 
overgeneration, In (manually) checking a number 
of such rules against large dictionaries, 
overgeneration appears to be surprisingly small, 
in fact virtually nil. 

Alpha variable features (commonly used 
in assimilation rules) may be modeled by the use 
of variables which become instantiated to the 
value of  features in the appropriate segments, so 
that checking for a match during analysis is a 
matter of unification. During synthesis, a 
variable in the output of a rule results in the 
features of the corresponding segment of the 
word being set to the value to which the variable 
becomes instantiated in some other part of the 
rule. 

4. AN IMPLEMENTATION OF THE 
ALGORITHM 

The generate-and-test algorithm has been 
implemented, as a parser which uses 
phonological rules of classical generative 
phonology, resembling those of Chomsky and 
Halle (1968) and much related work. (A sample 
rule is shown in the appendix.) ! call the parser 
"Hermit Crab." There is provision for feature- 
changing rules (including alpha variable rules), 
epenthesis rules, and deletion rules. Disjunctive 
rule ordering may be modeled, as well as 
simultaneous or directional iterative application. 
The environments of rules may incorporate 
optional sequences (such as (CV)~). 

PC-KIMMO, ml implementation of two- 
level phonology (Antworth 1990) was used to 
provide a comparison between parsing with 
linearly ordered generative phonological rules, 
and with two-level rules. Both PC-KIMMO and 
Hermit Crab run under MS-DOS. 



PC-KIMMO comes with example 
analyses of the phonologies of several languages, 
including Hebrew, Turkish, Japanese, and 
Finnish, each analysis containing from 16 to 27 
two-level rules. The PC-KIMMO analyses were 
converted into analyses using linearly ordered 
generative rules, which were equivalent in the 
sense that they derived the surface forms from 
the same underlying forms. In most cases the 
linearly ordered roles were simpler than the two- 
level rules, in part because rule ordering rendered 
redundant some of the constraints necessitated by 
the two-level formalism. The number of rules for 
each language was reduced to between 7 and 11, 
as some two-level rules (such as default rules) 
are unneeded in a generative analysis, while 
others collapse into disjunctively ordered rule 
sets. For instance, PC-KIMMO has six rules for 
vowel harmony in Turkish: two for backness 
harmony in low vowels (one to make a low vowel 
I+back] in the appropriate environment, and one 
to make it i-baekl in the opposite environment), 
and four rules for backncss and rounding 
harmony in nonlow vowels. These collapse into 
two generative rules: one for baekness harmony, 
which affects all vowels, and uses an alpha 
variable for the two possible values of the feature 
back; and one rule for rounding harmony, which 
affects nonlow vowels, again using an alpha 
variable for the two possible values of the feature 
round. 

Because the focus here is on 
phonological parsing, rather than morphological 
parsing, the morphological rules given in PC- 
KIMMO's sample analyses were ignored, and 
fully affixed forms were used for underlying 
forms, e.g.: 

<lex_entry shape "oda+sH" 

... gloss "room+POSS"> 

In a sample of several hundred words, 
PC-KIMMO was about three times faster than 
the parser using linearly ordered rules. This 
difference is not large, and indeed may be 
attributed in part to the different programming 
languages used (PC-KIMMO is written in C, 
while the parser implementing the generate-and- 
test algorithm is written in Prolog and C). The 

ratio of 3:1 is approximately constant among the 
four grammars, and independent of word length, 
indicating that the results should scale. 

5. CONCLUSION 

The algorithm as described and 
implemented models segmental phonology. An 
extension to multiple strata of rules, as in lexical 
phonology, is trivial, and has also been 
implemented. Allowing cyclic application of 
rules is also simple, although it has not been 
implemented yet (because most phonologists 
since Pesetsky 1979 have interpreted cycli c 
phonology as the interleaving of phonological 
rules and morphological rules, and morphological 
rules have not yet been implemented). 

The algorithm could be extended to 
autosegmentai models of phonology by 
reinterpreting e.g. feature spreading rules as 
feature assignment rules with alpha variables 
during the analysis phase, and reverting to the 
standard interpretation of autosegmental rules 
during synthesis. For instance, an autosegrnental 
rule spreading the place of articulation features 
of an obstruent onto a preceding nasal consonant 
can be modeled during analysis by the following 
rule: 

. _, r-continuent- 

F+cons ] [~high 1, ]c~ high 
poacK / k+nas J /rcoron J--/pba k 

- L?,corona 1 

The modeling of autosegmental 
phonology has not been implemented, although 
the use of alpha variables has. 

In summary, and contrary to many 
earlier claims, it need not be eomputationally 
expensive to parse surface forms into their 
underlying forms using linearly ordered rules. 
Furthermore, unlike rule compilers (Kaplan and 
Kaye in press), the use of a rule interpreter 
simplifies grammar debugging, as the input and 
output of each rule can be studied (a sample trace 
is shown in the appendix). 
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7. APPENDIX: A SAMPLE PARSING RUN 

This appendix presents excerpts of the input to and output from the phonological parser. Some 
information in the original has been omitted here for simplicity. The language being parsed is Japanese. 
The data and rules were adapted from one of the sample data sets provided with PC-KIMMO (see 
Antworth 1990). The rule notation is an internal format, not necessarily intended for the end user. 
Structures are enclosed in "< >". Added comments are shown in italics. 

We first load the rules. The rule shown here ([+voc -round] --> 0 / [+voc] + __) deletes a non-round 
vowel immediately after another vowel, but note the obligatory morpheme boundary ("+ "): 

(load morpher_rule 
<prule rname vowel_deletion 

p_lhs <p_lhs pseq ((+ voc -round))> 
p_rhs <p_rhs pseq 0 > 
left environ <ptemp pseq ((+ voc) "+")>>) 

... remaining rules are not shown here. 

Turn tracing on ('7').fiw lexical lookup: 
(trace lexicaLIookup T) 

Also turn tracing on for the vowel deletion rule, both during analysis (the first '1"9 and synthesis (the 
second 'T g : 

(trace_morpher rule ('1" T vowel deletion)) 
Finally. parse the Japanese word "neta ": 
(morph_and_lookup_word "neta") 
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the parser ~' trace outputJbllows, l,~rst the trace repeats the input." 
<trace shape "neta" 

continuations ( 
The "continuation" list is a list o f  paths Jollowed by the parser from the current position. 7he parser 
proceeds by unapplying the rules, the trace shows the unapplication o f  the traced rule, 
"vowel deletion". The form which is input to this rule is the sequence o f  segments resulting from the 
unapplication o f  shallower rules, and corresponds to the regular expression "n([r y])et([r yJ)a", where 
"Jr y]"  signifies a segment ambiguous between "r" and "y" which the parser has undeleted; the 

parentheses indicate that it is optional (since perhaps the parser shouldn't have undeleted iO. 
Unapplication o f  the traced deletion rule results in the insertion o f  more optional segments in two places, 
whose features Correspond to the Set o f  vowels/i e a/: 

<rule unapp mame voweldeletion 
input <lex_entry shape "n([r y])et([r y])a"... > 
output <lex_entry shape =n([r y])e([i e a])t([r y])a([i e a])"... > 
cont inuat ions  ( 

('ontimting. the parser unapplies various other rules (not shown here, since they arch 't being traced): 
qfh'r all the rules have been unapplied, it does lexical lookup." 

<lex lookup virtual 
- -  m > <lex entry shape =n([r yl)e([i e a])t([r Yl)a([i e al) ... 

7he above "virtual" (i. e. created during analysi.~9 lexical entry corresponds to a "real" one fi)und in the 
lexicon. 

continuations ( 
<succ lookup real <lex entry shape =ne+ta" gloss =(sleep)+PAST"... > 

continuations ( 
7he parser continues 39om this lexical lookup by applying the rules to the form in the ~Tnthesis phase; 
again, only one application is shown, the traced one. The rule does not apply, since its structural 
description is not met; hence the output form is the same as the input form: 

<rule_app rname vowel_deletion 
input <lex_entry shape =ne+ta" gloss =(sleep)+PAST" ...> 
output <lex_entry shape "ne+ta" gloss "(sleep)+PAST"...> 
cont inuat ions ( 

A f ie f  applying the remaining rules, a surJbce form results whose phonetic shape is identical to the input 
fi)rm: 

<lex_entry shape =neta" gloss "(sleep)+PAST"...>)>)> 
Now we return to continuations from lexical lookup. There is a second "real" lexical entry in the user's 
lexicon which corresponds to the "virtual" lexical entry the parser created: 

<succ_lookup real 
<lex entry shape =ne+itai" gloss =(sleep)+VOL"...> 

cont inuat ions ( 
Again, the continuation from the lexical item consists of the application of the rules," only the traced 
rule ~" application is shown. 7he deletion rule applies to the first pair o f  adjacent vowels, turning/ei/into 
/eL but does not apply to the second pair o f  vowels/aft, although during analysis it was unapplied in 
both places. 7he reason is that the rule requires a morpheme boundary to appear between the vowels, 
and there is only a morpheme boundary between the first pair o f  vowels. (During analysis, the position o f  
morpheme boundaries is unknown, hence they are impossible to check for.) This analysis will be filtered 
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out; it is an example o f  overgeneration due to a rule whose application is governed by morpheme 
boundaries: 

<rule_app marne voweldeletion 
input <lax entry shape "ne+itai" gloss "(sleep)+VOk"...> 
output <lex entry shape "ne+tai" gloss "(sleep)+VOL"...> 

The continuation list from this rule application is empty, because the output does not match the input 
word: 

continuations ( ) 
>)>)>)~)> 

This completes the trace. Last comes the parser ~ output, the single analysis o f  the word, depicted as a 
lexical entry at the surface level This wouM have been output even i f  tracing had not been turned on: 

(wordanalysis 
<lex_entry shape "hera" gloss "(sleep)+PAST"... > ) 

'fr~ 


