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Introduction 

This paper presents an overview of automatic speech 
understanding techniques that combine knowledge- 
based approaches with statistical pattern matching 
methods. Such an approach requires a multidisciplinary 
outlook, addressing both cultural and technical differ- 
antes among the various component technologies. 

As argued in Price and Ostendorf (1994), the repre- 
sentatives of knowledge-based approaches and of ap- 
proaches based on statistical pattern matching may 
view each other with suspicion - -  if they are aware 
of  each other's work. Psychologists and linguists, rep- 
resenting the knowledge-based approaches, may view 
automatic algorithms as "uninteresting collections ofad 
hoc ungeneralizable methods for limited domains." The 
automatic speech recognition community, on the other 
hand, may argue that automatic speech recognition 
should not be modeled after human speech recognition; 
since the tasks and goals of machines are very different 
from those of humans, the methods should also be dif- 
ferent. Thus, in this view, knowledge-based approaches 
are "uninteresting collections of ad hoc ungeneralizable 
methods for limited domains." The two sides may use 
~he same words, but mean different things, as indicated 
ill the glossary in the table. 

Spoken language is a social mechanism evolved for 
communication among entities whose biological prop- 
erties constrain the possibilities. Therefore the mech- 
anisms that are successful for machines are likely to 
share many properties with those successful for people. 
Further, in automatic spoken language applications, at 
least one human being is typically involved. Thus, the 
Imderstanding of human communication may be essen- 
tim for generalizable methods robust to the variability 
maaifested by humans. Just as engineers could gain 
from a better uuderstanding of human mechanisms, 
psychologists and linguists could gain from a better 
understanding of automatic techniques. For example, 
these techniques can be viewed as theories of human 
communication made explicit enough to test. Studying 
where the techniques work and where they fail could 
sh~,d light on the human communication process. AI- 
r.hough differences in training, techniques, approaches, 
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goals, and culture have inhibited multidisciplinary col- 
laboration, there is much to gain from the multidisci- 
plinary approach. As this paper will argue, combining 
knowledge and techniques from the two communities 
can yield results that neither community alone could 
achieve. 

A u t o m a t i c  S p e e c h  U n d e r s t a n d i n g ,  
G e n e r a l  I s s u e s  

Activity and results in automatic speech understanding 
have increased in recent years, largely because of the 
"arranged marriage" by a DARPA (Defense Advanced 
Research Projects Agency; now ARPA) program man- 
ager of two previously independent programs: speech 
recognition and natural language understanding. The 
speech recognition program was focussed on the auto- 
matic transcription of speech, while the natural lan- 
guage understanding program was focussed on inter- 
preting the meanings of typed input. While there are 
psychological and scientific reasons to integrate these 
two areas, there are technical and cultural reasons for 
their past and present degree of separation. 

In the ARPA speech understanding program of the 
1970s (see, e.g., Klatt 's 1977 survey), artificial intelli- 
gence (AI) was a relatively new field with much promise. 
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Expert systems based on speech and language knowl- 
edge were developed by separating knowledge sources 
along traditional linguistic divisions: e.g., acoustic pho- 
netics, phonology, morphology, lexical access, syntax, 
semantics, discourse. Each module had well-defined in- 
puts and evaluation criteria. A key weakness of the 
approach, however, turned out to be the number of 
modules and the decision-making process. Each mod- 
ule may have done fairly well as assessed independently, 
but when each module was forced to make irrevocable 
decisions without interaction with other modules, er- 
rors could only propagate; a seven-stage serial process 
in which each module is 90% accurate has an overall ac- 
curacy of less than 50%. As statistical pattern matching 
techniques appeared to perform much better with much 
less research investment than did the knowledge-based 
approaches, the funding focus shifted. 

Although knowledge-based approaches and statisti- 
cally based approaches were espoused by people in al- 
ready largely nonoverlapping communities, these his- 
torical events led to larger separation. The "knowl- 
edge" proponents argued that the statistical methods 
only worked accidentally in the short term, on this lim- 
ited task. The "statistics" proponents assumed that 
they had been misled by the promise of AI and that 
they had little to learn from the "knowledge" group. 
The two communities seemed to come to an agreement 
that they were working on different problems and had 
little to say to or ask of each other. 

The field of natural language understanding came 
to be populated largely by "computational linguists" 
trained in AI techniques in computer science depart- 
ments for the most part, while speech recognition came 
to be populated mostly by engineers. The methods, 
goals, evaluation criteria, background assumptions, and 
cultures of these two communities are quite different. In 
fact, a basic disagreement persists over what counts as 
science. The "knowledge" side values argumentation 
style, ideas, and long-term research. In their view, the 
"statistical" side is not scientific because it represents 
mere engineering "tweaks." The "statistical" side val- 
ues measurable results. In their view, the "knowledge" 
side is not scientific because it does not measure results 
(insofar as the long term tends never to come). 

In fact, however, the cause of the differences in per- 
formance between the two approaches during the 70s is 
likely to be an insight of value to both sides: making 
hard (irrevocable) decisions early, i.e., before consider- 
ing more knowledge sources, can degrade performance 
severely. It happened that statistical models provided a 
mechanism that enabled delayed decision making, and 
subsequent hardware and algorithmic developments en- 
abled for the consideration of increasingly larger sets of 
hypotheses. The remainder of this paper will survey 
the techniques used in combining linguistic with statis- 
tical analyses, the issues of interest, and recent results 
in speech recognition, natural language understanding, 
and their integration. 

S p e e c h  R e c o g n i t i o n  

For several years, the best performing speech recog- 
nition systems have been based on statistical pattern 
matching techniques (Pallett et al. 1990, Pallett 1991, 
Pallett et al. 1992, Pallett et al. 1993, Pallett et 
al. 1994). These models are constrained to various 
degrees by "knowledge" about speech and language 
(e.g., the topology of the models, the units modeled, 
the pronunciations modeled, etc.). The most com- 
monly used method is probably hidden Markov mod- 
els (HMM) (see, e.g., Bahl et al. 1983, Rabiner 1989, 
Picone 1990). There is also much current work us- 
ing other pattern matching techniques (see, e.g., Os- 
tendorf and Roukos 1989, Zue et al. 1992), including 
neural network-based approaches (see e.g., Hampshire 
and Weibel 1990) and hybrid HMM/neural network ap- 
proaches (see e.g., Abrash et al. 1994). One can think 
of the models as representing the linguistic or other 
knowledge (e.g., what are the units? how are they de- 
termined? what aspects need to be represented explic- 
itly? what features will represent the data?). The pa- 
rarneters can then be estimated automatically, given 
the data and the constraints embedded in the model, 
to model our "ignorance" ~ those aspects we can't or 
don't want to model explicitly. 

A Markov model represents the probabilities of se- 
quences of units, e.g., words or sounds. The "hidden" 
Markov model, in addition, models the uncertainty of 
the current "state". By analogy with speech produc- 
tion, and using phones as states, the mechanism can 
be thought of as modeling two probabilities associated 
with each phone: the probability of the acoustics given 
the phone (to model the variability in the realization 
of phones), and the probability of transition to another 
phone given the current phone. Though some HMMs 
are used this way, most systems use states that are 
smaller than a phone (e.g., first, middle, and last part 
of a phone). Such models have more parameters, and 
hence can provide greater detail, which can be used to 
better model duration and context effects. Adding skips 
and loops to the states can model the temporal vari- 
ability of the realization of phones. Given the model, 
parameters are estimated automatically from a corpus 
of data. Thus models can be "tuned" to a particular 
(representative) sample. 

In this example, the words, phones, and states cho- 
sen for the model are units that can be manipulated 
symbolically (for example, in a set of rules for gener- 
ating pronunciations based on base forms provided by 
a dictionary), and they may be theory-driven, data- 
driven, or some combination. The limited use of lin- 
guistic theory in deriving these symbolic components is 
probably largely a function of the cultural dii~culties 
discussed above. Bridging the cultural gap will require 
closer collaboration of the two communities: linguists 
formulating theory in ways that these methods can use, 
engineers formulating methods that can better capture 
these knowledge sources. 
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Typically the HMMs for phones are conditioned on 
the context (of the previous and/or following phone or 
phone-class or word, for example). Knowledge of speech 
and linguistics can provide the choice of the phone set 
(e.g., Are flap and stop realizations o f / t / m o d e l e d  as 
one unit or two?), the topology of the models (e.g., How 
many states per phone model? Do longer phones have 
more states, or are loops on certain states sufficient?), 
and the number of units (e.g., Will phones be modeled 
as a function of their context? If so, what is the nature 
of the conditioning context?). 

Individual HMMs for phones can be concatenated 
to model words. Linguistic knowledge, perhaps in the 
form of a dictionary, determines the sequence of phones 
that make up a word. Linguistic knowledge in the form 
of phonological rules can be used to model possible vari- 
ations in pronunciation, such as the flap or stop realiza- 
tion of/t/. For computational efficiency (at the expense 
of storage), additional pronunciations can be added to 
the dictionary. This solution is not ideal for the lin- 
guist, since different pronunciations of the same word 
are treated as totally independent even though they 
may share all but one or two phones. It is also not an 
ideal solution for the engineer, since there may be many 
more parameters to estimate, and recognition accuracy 
may be lost depending on the implementation, since 
words with more pronunciations may be disfavored rel- 
ative to those with few pronunciations. The work of 
Cohen (e.g., Cohen et al. 1987, Cohen 1989) and others 
(sce, e.g., Withgott and Chen 1993) attempts to address 
some of these issues, but solutions are not simple and 
significant performance gains have been hard to come 
by. Perhaps as researchers are forced to deal with more 
spontaneous speech effects (as opposed to read speech 
and highly planned "push-to-talk" speech), these dif- 
ficult issues will force engineers and linguists to work 
togcther to find better solutions. 

Linguistic knowledge may also be used to model the 
effects of lexical stress on vowels. The number of mod- 
els for vowels could be simply doubled: each vowel has 
a model representing lexical stress and no lexical stress. 
Although this captures the linguistic knowledge that 
lexical stress has an acoustic effect on a vowel, it is 
not linguistically elegant in that it models the effects 
of lexical stress on each vowel as independent. The lin- 
guist dislikes the solution because it does not capture 
a generalization about the effect of lexical stress across 
vowels. The engineer dislikes it because it doubles the 
number of vowels to model and may not be worth slight 
gains in performance. This is another example in which 
the structure of the model constrains how people think 
abo, t  a problem, and in which linguistic and engineer- 
i,g expertise are needed to arrive at a solution. 

Modeling utterances the way words were modeled, 
i.e., a dictionary of all "possibilities," would be even 
more impossible than it is for words. A list of all 
possible utterances and their component words would 
,prickly exhaust our resources. However, for limited ap- 

plications, this solution can be used to simulate contin- 
uous speech (i.e., simply model "words" that are very 
long - -  namely, long enough to be utterances). A sim- 
ple (and generally much cheaper) approach is to model 
all the words in parallel and add a loop from the end to 
the beginning, where one of the "words" is the "end-of- 
sentence" word so that the sentences are not infinitely 
long. Of course, this simple model has the disadvan- 
tage of assuming that the ends of all words are equiva- 
lent (the same state). This model assumes that at each 
point in an utterance, all words are equally likely, which 
we know is not true of any language. Sequences of words 
can be modeled by concatenating the word models and 
estimating the probability of different word sequences. 
The Markov model (minus the hidden part) estimates 
the likelihoods of words given the previous word (or 
N words), based on a training corpus of sentence tran- 
scriptions. In this example, little linguistic knowledge is 
used except the intuition that some sequences are more 
likely than others. That intuition is difficult to call "lin- 
guistic" insofar as many linguists work exclusively with 
grammars in which sentences are either grammatical or 
not. Though there may be some recognition of doubt- 
ful cases, grammaticality is typically a binary decision. 
Statistical modeling of linguistically relevant relation- 
ships is a growing area of interest, though there remain 
significant technical and cultural challenges. 

A survey of recent speech recognition papers reveals 
the engineering bias (and relative lack of linguistic mo- 
tivation) in much recent work. Although the major 
issues facing speech recognition research today include 
both symbolic and statistical aspects, effective use of 
both aspects will require increased bridging of the cul- 
tural gaps between linguists and engineers. Examples 
of current speech recognition issues include: 

• Fea tures .  The raw speech waveform needs to be digi- 
tized for analysis, and if it is simply sampled in time 
and amplitude, there is far too much data to han- 
dle directly; some feature extraction is needed. T h e  
output of feature extraction (sometimes called the 
"front-end") is the input to the recognition search 
(which can be based on HMMs, neural nets, or on 
some other technique). The most common features 
extracted are cepstral coefficients (derived from a 
spectral analysis), and derivatives of these coeffi- 
cients. Sporadically, and especially with reference to 
noise robustness, there has been interest in improving 
front-ends and in auditory modeling. Little work has 
been done since the 70s, however, in modeling lin- 
guistically motivated features (e.g., high, low, front, 
back). Explicit detection of these features has proved 
challenging. However, a representation of phones in 
terms of a smaller set of features would have several 
advantages: fewer parameters could be better esti- 
mated, given a fixed corpus; phones that are rare or 
unseen in the corpus could be estimated on the basis 
of the more frequently occurring features that com- 
pose them; and since 5.;itures tend to change more 
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slowly than phones, it is possible that sampling in 
time could be less frequent. 

• Distributions.  In the HMM formulation, the state 
output distributions have been a topic of research in- 
tersest recently. The issue under debate has been the 
use of discrete state distributions, continuous distri- 
butions, or (currently the most popular) a mixture 
of Gaussian distributions (see, e.g., Digalakis and 
Murveit 1994). Little role for linguistic knowledge 
is apparent in this work. 

• Model  Inventory .  An area of growing interest re- 
cently is the choice of units to model. Many systems 
simply model phones, or phones conditioned on the 
surrounding phonetic context. Other systems, how- 
ever, claim improved performance through the selec- 
tion of units or combination of units determined au- 
tomatically or semiautomatically (see, e.g., Bahl et 
al. 1991). 

• Language Modeling. Any method that can be used 
to constrain the sequences of occurring words can be 
thought of as a language model. Traditional gram- 
mars are, for example, a type of language model, but 
so are the Markov models (N-grams) that model only 
local constraints. As mentioned above, it is a ripe 
area of research. The goal is to develop language 
models that can be created easily and can improve 
speech recognition performance by modeling linguis- 
tically motivated attributes (for example, number 
agreement of subject and verb; or co-occurrences of 
adjectives with nouns, which may be an arbitrary 
number of words away from each other) rather than 
the accidents of word sequences typically estimated 
by Markov models. 

• Adaptat ion.  The first speech recognition systems 
tended to be speaker dependent (before using a sys- 
tem, a person had first to read a list of words or sen- 
tences). In recent years, the trend has been toward 
speaker independence. Speaker-independent systems 
can work reasonably well for a variety of talkers, but 
the broader coverage of talker types, dialect types, 
and so on, the more fuzzy the models. The future 
is likely to be in speaker adaptation: the system be- 
gins as a speaker-independent system and gradually 
adapts to the characteristics of a new speaker. This 
approach is not unlike linguistic experience in which 
new dialects may be difficult to understand at first. 
In a foreign language it may be easier to observe 
adaptation to individual speakers. 

• Search. Given the acoustic models, the language 
models, and the input speech, the role of the rec- 
ognizer is to search through all possible hypothe- 
ses and find the best (most likely) string of words. 
As the acoustic and language models become more 
detailed they become larger, and this can be an 
enormous task, even with increasing computational 
power. Significant effort has been spent on managing 
this search: depth-first vs. breadth first, beam search 

(which prunes hypotheses if they are enough b~low 
the best-scoring hypothesis), and, recently, various 
schemes for making multiple passes using coarser 
models at first to narrow the search and progressively 
more detailed models to further narrow tile pruned 
search space (see, e.g., Murveit et al. 1993, Nguyell 
et al. 1993). 

• Robustness.  Robustness is a key area of research. 
Systems can be developed that function well in nar- 
row contexts, but to be useful in a wide range of appli- 
cations, they need to be robust to the variability that 
occurs in speech communication: variability due to 
differences in talkers, speech styles, microphone and 
noise conditions, dialect, and language. This is an 
area in which the forcing function of hard problems 
may help to bridge the cultural gaps, as engineers 
realize that narrowing the solution decreases robust- 
ness and requires the more general solution sought by 
linguists and speech scientists. 

• Portabili ty.  Portability is another key area of re- 
search. Creating a demonstration in a limited do- 
main may give the feel of accomplishment, but sci- 
ence (and applications) demand generalizability and 
reproducibility. We cannot imitate the range of hu- 
man capability with speech recognition systems, but 
we can create useful applications in limited domains. 
The amount of work we have done for one task that 
can be reused in another task is a measure of how 
much we have learned about speech generally. (As 
will be argued in a later section, linguists and speech 
scientists also need to assess the portability of their 
knowledge.) 

• Scalability. In an environment in which computcr 
power is rapidly changing (increasing power on plat- 
forms of the same size, and decreased power on ever 
smaller platforms), another key issue is scalability: 
the capability of using increased memory and com- 
putational power for faster, more accurate recogni- 
tion on the one hand, and the capability of grace- 
fully degrading on platforms with less memory and 
computational power. Although linguistic and speech 
knowledge, as suggested in the examples above, can 
help form more efficient representations, scalability is 
not really a linguistic issue. 

The gap between speech scientists and speech recog- 
nition engineers has meant that some aspects of speech 
have had to be discovered independently. Many cog- 
nitive models appear to be more continuous than they 
used to be, and are looking a bit more like the statisti- 
cal models than was previously true. The gap between 
the two areas has meant that many speech researchers 
have not been able to take advantage of statistical tools 
that could help them advance their knowledge. It has 
also meant that advances in speech research and mod- 
els of cognition have not been able to affect automatic 
speech recognition. For example, the notion of a pro- 
totype and distance from a prototype (see, e.g., Mas- 
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saro 1987, Kuhl 1990) which seems to explain much 
data from speech perception (and other areas of percep- 
tion), is not well modeled in the current speech recog- 
nition frameworks. A person who has not been well 
understood tends to change the speech style so as to 
be better understood. This may involve speaking more 
loudly or more clearly, changing the phrasing, or per- 
haps even leaving pauses between words. These changes 
may help in human-human communication, but in typ- 
ical human-machine interactions, they result in forms 
that are even more difficult for the machine to inter- 
pret. The concept of a prototype in machine recogni- 
tion could lead to more robust recognition technology. 

That is, the maximum-likelihood approaches com- 
mon in speech recognition miss a crucial aspect of lan- 
guage: the role of contrast. A given linguistic entity 
(e.g., phone) is characterized not just by what it is, but 
also by what it is not, i.e., the system of contrast in 
which it is involved. Thus, hyperarticulation may aid 
communication over noisy phone lines for humans, but 
may decrease the performance of recognizers trained on 
a corpus in which this style of speech is rare or miss- 
ing. The results can be disastrous for applications, since 
when a recognizer misrecognizes, a common reaction is 
to hyperarticulate (Shriberg et al 1992). Discrimina- 
tive systems, such as neural network formulations, have 
an advantage over maximum-likelihood approaches in 
this respect, though it is an area in which linguists and 
speech perception experts could play a larger role. 

Although things are changing rapidly, and many fac- 
tors will affect just how well a system will perform, ex- 
amining recent benchmark evaluations can give an idea 
of the relative difficulty of various aspects of speech (see 
e.g., Pallett et al. 1994). These areas could be those 
in which increased linguistic knowledge could improve 
performance. For example, the variance across the talk- 
ers used in the test set was greater than the variance 
-~cross the systems tested. Further, the various systems 
tested had the highest error rates for the same three 
talkers who were the fastest talkers in the set. These 
observations could be taken as evidence that variabil- 
ity in pronunciation, at least insofar as fast speech is 
concerned, may not currently be well modeled. Further 
evidence of the need for better modeling of the pronun- 
.~iation variation observed in spontaneous speech arises 
from the degradation in recognition accuracy observed 
in moving from read speech or carefully planned speech 
to normal, conversational speech. 

N a t u r a l  L a n g u a g e  U n d e r s t a n d i n g  

The field of natural language (NL) understanding has 
been traditionally populated by computational lin- 
guists, trained in artificial intelligence, largely in com- 
puter science departments. The approaches have tra- 
ditionally been based in symbolic logic, using expert- 
systems techniques typically involving large sets of 
haIid-crafted rules. The arranged "marriage" with 
speech recognition has resulted in a great increase in 

the use of statistical methods for automatically creat- 
ing natural language components, or for automatically 
training their parameters. Since the first joint meet- 
ing of the speech and natural language communities 
in 1989, the number of papers and the range of topics 
addressed using statistical methods have steadily in- 
creased. At the most recent meeting (March 1994), the 
category of statistical language modeling and methods 
received the most abstracts and was one of the most 
popular sessions. 

The issues of concern in natural language research 
are largely determined by the interests of those doing 
the research, and at present they tend to be compu- 
tational linguists. However, as argued above, there is 
a growing tendency to combine knowledge-based with 
statistical/engineering approaches. Based on recent pa- 
pers, topics of major concern include: 

• Lez icon .  Although speech recognition components 
usually use a lexicon, lexical tools in natural lan- 
guage are more complex than lists of words and 
pronunciations. Different formalisms store different 
types and formats of information, including, for ex- 
ample, morphological derivations, part-of-speech in- 
formation, and syntactic and semantic constraints on 
combinations with other words. There is little evi- 
dence, however, in most of these representations that 
some structures are more likely than others. 

* G r a m m a r .  A grammar is typically a set of rules de- 
vised by observation of occurring patterns in a lan- 
guage or sublanguage. Typically, grammars either 
accept a sentence or reject it, although grammars 
that degrade more gracefully in the face of sponta- 
neous speech and recognition errors are being de- 
veloped (see, e.g., Hindle 1992). Another issue of 
relevance is the development of grammars that can 
be used either for analysis (parsing) or for genera- 
tion. This should become increasingly important as 
machines play a more active role in human-machine 
collaboration. 

• Robus tness .  Robustness has been a major issue in 
recent years in natural language. The traditional 
computational linguistic approach of covering a set 
of linguistically interesting examples was put to a se- 
vere test in the attempt to cover, in a limited domain, 
the set of utterances produced by people engaged in 
problem-solving tasks. Several new sources of com- 
plexity were introduced: the move to an empirically 
based approach (covering a seemingly endless num- 
ber of "simple" things became more important than 
covering the "interesting," but more rare, complex 
phenomena), the separation of test and training ma- 
terials (adding rules to cover phenomena observed in 
the training corpus may or may not affect coverage 
on an independent test corpus), the nature of spon- 
taneous speech (which has a different, and perhaps 
more creative, structure than written language, pre~ 
viously the focus of much NL work), and recovery 
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from errors that can occur in recognition. 
• Pars ing .  The goal of parsing is to retrieve or as- 

sign a structure (based on the grammar used) to a 
string of words for use by a later stage of processing. 
Typically, parsers have worked deterministically on 
a single string of input. When parsers were faced 
with typed input, aside from the occasional typo, 
the intended words were not in doubt (though their 
parts of speech or syntactic role might have been). 
When speech is the input, however, speaker disflu- 
encies, novel syntactic constructions and recognition 
errors pose serious difficulties for traditional parsers. 

• I n t e r p r e t a t i o n .  Interpretation may or may not be 
separated from parsing. Typically, however, pars- 
ing is faster than interpretation and narrows the field 
considerably for the interpretation stage. Interpreta- 
tion is the stage at which a representation of meaning 
is constructed. Of course, this representation is not 
of much use without a "back-end" that can use the 
representation to perform an appropriate response, 
e.g., retrieve a set of data from a database, ask for 
more information, etc. This stage is typically purely 
symbolic, though likelihoods or scores of plausibility 
may be used. 

• Por tab i l i t y .  Portability has been less of a research 
area in NL than in speech recognition, largely be- 
cause many of the methods used are so costly (data 
collection for speech recognition can be costly as well, 
but it may be argued that it can be done by non- 
experts). The portability issue can be expected to 
grow in importance in NL work. Automatic acquisi- 
tion and automatic tuning of parameters are already 
growing areas of research, representing the impact 
of cross-disciplinary fertilization (see, e.g., the recent 
ARPA Human Language Technology Workshop pro- 
ceedings). 

• Scalabi l i ty .  As for speech research, scalability be- 
comes increasingly an issue as the technology be- 
comes appropriate for technology transfer. Even for 
demonstrations of feasibility, it can be important to 
develop algorithms that run quickly enough on a plat- 
form small enough to be widely available. 

The combining of traditionally linguistic or AI ap- 
proaches with statistical modeling techniques, as al- 
ready mentioned, is more or less involved in all the 
issues just outlined. Although difficult, such cross- 
disciplinary work still holds much promise for future 
advances. Recent trends in ARPA proceedings papers 
indicate that new uses of statistics in NL areas far out- 
number new uses of linguistics in speech recognition. 
Perhaps the difficulties posed by conversational sponta- 
neous speech will cause engineers to take another look 
at linguistics. 

Results in natural language understanding have been 
more resistant to quantification than those in speech 
recognition (where there is fairly good agreement on 
the string of words produced). What does it mean to 

have understood properly? Can there be more than one 
way to understand properly? In the ARPA community, 
these hard questions have been postponed somewhat 
by agreeing to evaluate on the answer returned from 
a database. Trained annotators examine the string of 
words (NL input) and use a database extraction tool 
to extract the minimum and maximum accepted set of 
tuples from the evaluation database. A "comparator" 
then automatically determines whether a given answer 
is within the minimum and maximum allowed. 

The community is not, however, content with the cur- 
rent expense and limitations of the evaluation method 
described above, and is investing significant resources 
in finding a better solution. Key to much of the debate 
is the cultural gap: engineers are uncomfortable with 
evaluation measures that cannot be automated (forget- 
ting the role of the annotator in the current process); 
and linguists are uncomfortable with evaluations that 
are not diagnostic; and, of course, neither side wants 
significant resources to go to evaluation that would oth- 
erwise go to research. 

Integration of Speech Recognition and 
Natural Language Understanding 

The integration of the two technologies outlined ill 
the previous sections seems to be a natural connec- 
tion. Nonetheless, the two communities were distinct 
enough that, except for the funding impetus, the cou- 
pling might not have happened. Many researchers in 
both communities would agree however, that the in- 
tegration effort has been good for both. To natural 
language understanding, speech recognition can brillg 
prosodic information, information important for syntax 
and semantics but not well represented in text. NL can 
bring to speech recognition several knowledge sources 
(e.g., syntax and semantics) not previously used (N- 
grams model only local constraints, and largely ignore 
systematic constraints such as number agreement). For 
both, the integration affords the possibility of many 
more applications than could otherwise be envisioned, 
and the acquisition of new techniques and knowledge 
bases not previously represented. 

One of the main lessons of the ARPA speech under- 
standing project of the 1970s was that considering all 
knowledge sources before making hard decisions was a 
big win. In speech recognition, tighter integration has 
consistently led to improved performance. However, 
technical and cultural differences inhibit such tight in- 
tegration. 

Technically, as coverage increased, language models 
tended to grow and required either increasingly large 
amounts of storage (possibly infinite, if all rules were 
to be compiled, and some rules had infinite loops), or 
increasingly large amounts of computation (if an inter- 
pretive approach was envisioned). Thus, the prospect of 
NL guiding the recognition search became nearly hope- 
less; rather, it appeared that speech output was needed 
to guide the NL search if the task was to be done quickly 
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enough. Further, increased coverage also meant that 
N L grammars provided less constraint, and constraint 
c,f a type that made it difficult to prune recognition 
hypotheses early in the speech stream. Although Iong- 
distance constraints like this were desired, the solutions 
resulted in too many active speech hypotheses to be 
manageable. 

The cultural difficulties have already been outlined, 
and as technical difficulties settled in, there was a ten- 
dency to take the easy way out and settle into the ar- 
ranged marriage with separate bedrooms: a strictly se- 
rial approach defined the turf, and each side focussed on 
improving its own technologies, though with some ex- 
posure to the techniques and culture of the other side. 

In this climate of compromise, the N-best integration 
approach became popular. In this approach, the con- 
nection between the two components is strictly serial, 
but the hard-decisions-early issue is softened by sending 
not. just the best hypothesis from speech recognition, 
but the N-best (where N may be on the order of 10 to 
100). Tile NL component can then score this set for 
grammaticality (where in some cases the "score" is just  
a I for "grammatical" or a 0 for "not grammatical") ,  
and combine the acoustic with the grammar score to 
determine the best-scoring hypothesis. This approach 
is computationally tractable, and accomodates great 
modularity of design (different speech and NL modules 
can be swapped in and out).  Examples of N-best in- 
terfaces include: Veilleux and Ostendorf 1993, Rayner 
1994. 

The limitations in the N-best integration are related 
to the modules: (1) if the speech module is not very 
accurate, N may have to be very large to ensure that  
the correct string is included; this becomes more of a 
problem as vocabulary size, noise, or other parameters 
that degrade performance increase; (2) an NL compo- 
nent that provides only a score of 1 or 0 is limited in its 
ability to take advantage of the N-best outputs,  par- 
ticularly for large N, since many of the N-best may 
be grammatical,  and some will be more grammatical  
than others. A strategy to combat this problem is a 
lattice-based interface (Murveit et al. 1993). A lat- 
tice of speech hypotheses can compactly include a very 
large N and greatly improve computational  efficiency, 
especially for parsers that can parse lattices. 

The integration of speech recognition and NL is con- 
cerned with many of the same issues that each of the 
components face: robustness, portability, speed, and 
size. This section has so far outlined some issues that 
arise in designing the architecture for combining the 
speech and NL. However, the integration gives rise to 
some new areas as well: how can an NL component deal 
with spontaneous speech effects such as false starts and 
repairs and how can a speech component send informa- 
tion l.o help the NL component (see e.g., Bear et al. 
19.q2, Shriberg et al. 1992), how can techniques from 
the two component areas be effectively combined, and 
how can prosodic information be effectively communi- 

cated between the two components (see, e.g., Price and 
Ostendorf 1994 for survey). 

Speech understanding in some sense works as well as 
its two components if they are serially connected. How- 
ever, performance can be maximized if the two compo- 
nents take into account the strengths and weaknesses of 
each other. In the ARPA benchmarks, if we compare 
on the same testset, we find that  the best speech recog- 
nition results provide a completely correct transcription 
of the utterance less often than the speech understand- 
ing results (speech recognition plus NL) provide a cor- 
rect answer. This condition arises because many of the 
speech errors do not affect the correctness of the an- 
swer (e.g., "flight" vs. "flights", "a" vs. "the"), and be- 
cause the understanding components have become more 
robust to speech recognition and speaker errors, false 
starts, and neologisms. This situation is not unlike hu- 
man speech understanding (particularly apparent over 
the telephone or in a language that is not your native 
language), when you can better  make out the sense of 
what is meant than give an exact transcription of what 
was said. 

The results compiled in the ARPA benchmark pa- 
pers document the state of the art. However, it is not 
at all clear that  these are the right measures, or at least 
the only right measures. In separate experiments, we 
have tried to correlate the "correctness" of the system's 
answer with subsequent user behavior. We have found 
many factors that  affect user behavior in predictable 
ways, but  the correctness or incorrectness of the an- 
swer seems to have little effect. While it might be that  
we just  have not yet found the right measure, there are 
several reasons that  this correlation may be difficult to 
obtain. For example, the user may or may not notice 
that  the answer is incorrect; the system's answer may 
be incorrect but  provide a superset of the information 
requested so that  the user can continue without mea- 
surable interruption; or the system's answer could be 
correct but  look incorrect to the user, either because of 
user error, or because a mistake in understanding hap- 
pens to result in a correct answer (as frequently hap- 
pens when a day of the week is misrecognized, since 
information on different days is the same). In partic- 
ular, we know that  performance is affected by factors 
such as vocabulary size, task complexity, noise condi- 
tions, but  we do not know how to generalize results from 
a particular benchmark condition to those in which all 
these parameters may differ. Complementary measures 
to "correct answer" include: user satisfaction, t ime to 
complete standard tasks, user preference, and (perhaps 
the bot tom line) units sold. The speech understanding 
community is quite active in refining evaluation mea- 
sures and in developing new ones (see e.g., Price et al. 
1992, Hirschman et al. 1993, Dahl et al. 1994). because 
the evaluation measures guide the research directions, 
it is important  to choose the right measures, 
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Discussion and Summary 
This audience should not require motivation of sym- 
bolic and traditionally linguistic knowledge sources, al- 
though some may have hesitation about statistically 
based engineering approaches. This paper is an at- 
tempt to help bridge the gap between the largely sym- 
bolic and the largely statistical approaches. Although 
statistical models are far from the only tool for inves- 
tigating speech and language, as argued in Price and 
Ostendorf (1994) they do provide several important fea- 
tures: they can be trained automatically, they can pro- 
vide a systematic way to combine multiple knowledge 
sources, they can express the more continuous proper- 
ties of speech and language, they make it easier to deal 
with large corpora, they provide a means for assessing 
incomplete knowledge, and they provide a means for 
acquiring knowledge about speech and language. 

The ability to consider large corpora isa  particularly 
valuable attribute. Large corpora are the only place 
rare phenomena will be found in sufficient number to be 
studied adequately. Large corpora offer the possibility 
of mediating two competing trends in speech and lan- 
guage research: "ecological validity" (which acknowl- 
edges that any change in conditions can affect the data, 
and therefore limits the data to speech and language oc- 
curring in conditions as natural as possible) and "speech 
science" (which acknowledges that any change in con- 
ditions can affect the data, and therefore limits the 
data to speech and language occurring in strictly con- 
trolled environments such as sound-proof booths, and 
read speech.). Both sides start with the same premise 
and choose opposite approaches. Because language is 
so rich and variable, there will continue to be a need for 
both approaches. However, large corpora offer a data 
point somewhat in between: if the variable of inter- 
est recurs frequently enough, large corpora can provide 
enough naturally occurring instances to "wash out" the 
effects of the various environments in which it occurs. 
Without automatic methods, many of them involving 
statistics, large corpora would be impossible to analyze. 

As argued in Price and Ostendorf (1994), the increas- 
ingly popular classification and regression trees, or de- 
cision trees (see, e.g., Breiman et at. 1984) appear to he 
a particularly useful tool in bridging the cultural and 
technical gap in question. In this formalism, the speech 
researcher or linguist can input the types of informa- 
tion that are known to affect variability (duration of a 
phone, for example), and based on a corpus of data in 
which these parameters are observed, the resulting tree 
can show how much of the variability is accounted for 
by each source of information (for example, voicing of 
following consonant, compared to existence of follow- 
ing silence). Examples of the use of this tool are nu- 
merous: e.g., Hirschberg 1993, Ostendorf and Veilleux 
1993, Wang and Hirschberg 1991, and Withgott and 
Chen 1993. 

Of course, the biggest disadvantage of many of the 
existing statistical and other engineering models is cul- 

tural discomfort. New techniques structure tile way ,m,, 
thinks about problems, and this can be uncomforl.ahh, 
and even threatening, ltowever, tile advantage.~ oll'erc'd 
by multidisciplinary approaches are large. Obviou.~ly. 
the gap can be bridged by becoming fluent ill the new 
techniques, but this is increasingly difficult as the chal- 
lenges of keeping up with existing fields increase. The 
gap can also be bridged by collaboration with others 
who are already fluent in the techniques, and by en- 
couraging students to learn more about the techniques. 

In sum, combining statistical with linguistic models 
has led to important gains in speech recognition and 
speech understanding, and to more powerful tools for 
acquiring further knowledge. Fuller understanding will 
require knowledge that spans all linguistic levels, from 
acoustics through semantics and pragmatics/discourse. 
Few people are trained in all these areas. Fewer still 
have training in statistical methods. Therefore, in the 
near term, multidisciplinary collaborations will be es- 
sential for rapid progress. 
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