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Introduction 

In this paper we pursue the idea that  by making the 

descriptions of primitive items (lexical items in the lin- 

guistic context) more complex, we can make the com- 

putation of linguistic structure more local 1. The idea is 

that  by making the descriptions of primitives more com- 

plex, we can not only make more complex constraints 

operate more locally but also verify these constraints 

more locally. Statistical techniques work better when 

such localities are taken into account 2 Of course, there 

is a price for making the descriptions of primitives more 

complex. The number of different descriptions for each 

primitive item is now much larger than when the de- 

scriptions are less complex. For example, in a lexical- 

ized tree-adjoining grammar (LTAG), the number of 

trees associated with each lexical i tem is much larger 

than the number of standard parts-of-speech (POS) as- 

sociated with that  item. Even when the POS ambiguity 

is removed the number of LTAG trees associated with 

each item can be large, on the order of 10 trees in the 

current English grammar in the XTAG system s. This 

is because in LTAG, roughly speaking, each lexical item 

1 Let ~ be the alphabet consisting of the names of el- 
mentary trees in an LTAG. Then ~ *  is the set of all strings 
over this alphabet including the null string. The tree 71 
and 7~ in a string of tree names axe said to be ~*-local if 
they are separated by any string in ~ * .  For brevity, we will 
continue to use the term local instead of the term ~*-local. 

2The work described here is completely different from 
the work reported in (Resnik, 1992) and (Schabes, 1992) 
concerning stochastic TAGs. 

3See Section on Data Collection 

is associated with as many trees as the numb~,r of dif- 

ferent syntactic contexts in which the iexical item can 

appear. This, of course, increases the local ambiguil.y 

for the parser. The parser has to decide which com- 

plex description (LTAG tree) out of the set of descrip- 

tions associated with each lexical item is to be used for 

a given reading of a sentence, even before combining 

the descriptions together. The obvious solution is to 

put the burden of this job entirely on the parser. The 

parser will eventually disambiguate all the descriptions 

and pick one per object, for a given reading of the sen- 

tence. This is what the parser is expected to do for dis- 

ambiguating the standard POS, unless a separate POS 

disambiguation module is used (Church, 1988). Many 

parsers, including XTAG, use such a module ('alh'd a 

POS tagger. 

LTAGs present a novel opportunity to reduce the 

amount of disambiguation done by the parser. We 

can treat the LTAG trees associated with each lexic'al 

item as more complex parts-of-speech which we call su- 

p e r t a g s .  In this paper, we report on some experiments 

on direct supertag disambiguation, without parsing in 

the strict sense, using lexical preference and local lexi- 

cal dependencies (acquired from a corpus parsed by the 

XTAG system). The information extracted from the 

XTAG-parsed corpus contains, for each item and its 
supertag, a probability distribution of the distances of 

other items and their supertags that  are expectcd by it.. 

We have devised a method somewhat akin to tile stare 

dard POS tagger that disambiguates supertags without 
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doing any parsing. 

'File idea of using complex descriptions for primitives 

to capture constraints locally has some precursors in AI. 

For example, the Waltz algorithm (Waltz, 1975) for la- 

I)eling vertices of polygonal solid objects can be thought 

of in these terms, although it is not usually described 

in this way. There is no statistical computations in the 

Waltz algorithm, however. The supertag disambigua- 

tion experiments, as far as we know, are the first to 

use these ideas in the linguistic context. Of course, we 

:ds(~ show how the supertag disambiguation naturally 

lends itself to the application of statistical techniques. 

I1, tl , ,  lbllowing sections we will briefly describe our 

approach and some preliminary results of supertag dis- 

ambiguation as an illustration of our main theme: the 

relationship of the complexity of descriptions of primi- 

tives to local statistical computations. A more complete 

analysis of this technique and experimental results will 

eventually be reported elsewhere. 

Lexicalized Tree Adjoining Grammars 

l,exicalized Tree Adjoining Grammar  (LTAG) is a lex- 

icalized tree rewriting grammar formalism (Schabes, 

1990). The primary structures of LTAG are called EL- 

EMEN'FARY TREES. Each elementary tree has a lexi- 

cal item (anchor) on its frontier and serves as a com- 

plt~x description of the anchor. An elementary tree 

provides a domain of locality larger than that  pro- 

vided by CFG rules over which syntactic and semantic 

(predicate-argument) constraints can be specified. El- 

ementary trees are of two kinds: INITIAL TREES and 

AUXI,,IARY TREES. Examples of initial trees (as) and 

~u]xi[iary trees (,Ss) are shown in Figure 1. Nodes on 

th(. frontier of initial trees are marked as substitution 

sites by a '~', while exactly one node on the frontier 

~)[" an auxiliary tree, whose label matches the label of 
the root of the tree, is marked as a foot node by a ' . ' .  

'l'hv other nodes on the frontier of an auxiliary tree are 

marked as substitution sites. LTAG factors out recur- 

si()n f,-om the statement of the syntactic dependencies. 

Eh,n,,,,,tary tr~,es (initial and auxiliary) are the domain 

I;,r sp,,cifying dependencies. Recursion is specified via 
i,h~" auxiliary trees. 

Hcm('nt.ary trees are combined by S u b s t i t u t i o n  and 

A d j u n c t i , ) n  operations. Substitution inserts elemen- 

l;iry I.i',.,~s at the substitution nodes of other elementary 

trees. Adjunction inserts auxiliary trees into elemen- 
tary trees at the node whose label is the same as the 
root label of the auxiliary tree. As an example, the 
component trees ( as, c~2, aa, c~4,/38, as, as), shown in 
Figure 1 can be combined to form the parse tree for the 
sentence John saw  a m a n  wi th  the t e l e scope  4 as follows: 

1. ors substitutes at the NP0 node in a2. 

2. aa substitutes at the DetP node in c~4, the result of 
which is substituted at the NP1 node in c~. 

3. a5 substitutes at the DetP node in as, the result of 
which is substituted at the NP node in/3s. 

4. The result of step (3) above adjoins to the VP node 
of the result of step (2). The resulting parse tree is 
shown in Figure 2. 

The process of combining the elementary trees that 
yield a parse of the sentence is represented by the 
derivation tree, shown in Figure 2. The nodes of the 
derivation tree are the tree names that are anchored by 
the appropriate lexical item. The composition opera- 
tion is indicated by the nature of the arcs-broken line 
for substitution and bold line for adjunction-while the 
address of the operation is indicated as part of the node 
label. The derivation tree can also be interpreted as a 
dependency graph with unlabeled arcs between words 
of the sentence as shown in Figure 2. 

We will call the elementary trees associated with each 
lexical item super part-of-speech tags or supertags.  

4The parse with the PP attached to the NP has not been 
shown. 
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Figure 1: E l e m e n t a r y  t r e e s  o f  L T A G  
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Figure 2: S t r u c t u r e s  o f  L T A G  

E x a m p l e  o f  S u p e r t a g g i n g  

As a result of localization in LTAG, a lexical item may 
be associated with more than one supertag. The ex- 

ample in Figure 3 illustrates the initial set of supertags 

a.,~sigm~d to each word of the sentence John  s aw  a m a n  

with the telescope. The order of the supertags for each 

h'xi~'al item in tile example is completely irrelevant. 

I"iglire 3 also shows the final supertag sequence assigned 

I,y the s.pertagger,  which picks the best supertag se- 

q.,,mlce .sing statistical information (described in the 

v.,,x! s,,cl.i(m) ahout individual supertags and their de- 

p,'mh'm:i~s on other supertags. The chosen supertags 

axe combined to derive a parse, as explained in the pre- 

vious section. 

The parser without the supertagger would have to pro- 

cess combinations of the entire set of 28 trees; the parser 

with it need only process combinations of 7 trees. 

Dependency model of Supertagging 
One might think that a n-gram model of standard POS 

tagging would be applicable to supertagging as well. 

However, in the n-gram model for standard POS tag- 

ging, dependencies between parts-of-speech of words 
that appear beyond the n-word window cannot be incor- 

porated into the model. This limitation does not have 
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Sentence: 

Initial Supertag set: 

Final Assignment: 

John  saw a, man  with the  telescope. 

~2 a7 ~3 ~4 ~S & fir 

~8 if9 fflO ~11 flS ff12 ~i3 

~8 ~2 ~3 ~4 ~8 ~5 06 

Figure 3: Supertag Ass ignment  for John saw a man with the telescope 

a significant effect on the performance of a standard 
trigram POS tagger, since it is rare for dependencies 
to occur between POS tags beyond a three-word win- 
dow. However, since dependencies between supertags 
do not occur in a fixed sized window, the n-gram model 
is unsuitable for supertagging. This limitation can be 
overcome if no a priori bound is set on the size of the 
window, but instead a probability distribution of the 
distances of the dependent supertags for each supertag 

is maintained. A supertag is dependent  on another 
supertag if the former substitutes or adjoins into the 
later. 

E x p e r i m e n t s . a n d  R e s u l t s  

Table (1) shows the data  required for the dependency 

model of supertag disambiguation. Ideally each entry 

would be indexed by a (word, supertag) pair but, due 

to sparseness of data, we have backed-off to a (POS, 

supertag) pair. Each entry contains the following infor- 

mation. 

• POS and Supertag pair. 

• List of + and - ,  representing the direction of the 

dependent supertags with respect to the indexed su- 

pertag. (Size of this list indicates the total number 

of dependent supertags required.) 

• Dependent supertag. 

• Signed number representing the direction and the or- 

dinal position of the particular dependent supertag 

mentioned in the entry from the position of the in- 

dexed supertag. 

• A probability of occurrence of such a dependency. 

The sum probability over all the dependent supcrt:ags 

at all ordinal positions in the same direction is one. 

For example, the fourth entry in the Table 1 reads 

that the tree a2, anchored by a verb (V), has a left, 

and a right dependent ( - ,  +)  and the first word to 

the left ( - 1 )  with the tree as  serves as a dependent of 

the current word. The strength of this association is 

represented by the probabilit3/0.300. 

The dependency model of disambiguation works as 

follows. Suppose a2 is a member of the set of supertags 

associated with a word at position n in the sentence. 

The algorithm proceeds to satis|~ the dependency re- 

quirement of a2 by picking up the dependency entries 

for each of the directions. It picks a dependency data 

entry (fourth entry, say) from the database that is in- 

dexed by a2 and proceeds to sct up a path with the 

first word to the left that  has the dependent supertag 

(as) as a member of its set of supertags. If the first. 

word that has as  as a member of its set of supertags 

is at position m, then an arc is set up between c~ and 

as.. Also, the arc is verified so that it does not kite- 

string-tangle s with any other arcs in the path up to 

a2. The path probability up to a2 is incremcntcd by 

log0.300 to reflect the success of the match. The path 

probability up to as  incorporates the unigram proba- 

bility of as.  On the other hand, if no word is found 

that has as  as a member of its set of supertags then 

the entry is ignored. A successflH supertag sequence is 

one which assigns a supertag to each position such that 

STwo arcs (a,c) and (b,d) kite-string-tangle if a < b < 
c < d o r b < a < d < c .  
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(P.O.S,Supertag) 
(D,as) 

Dire'cti'on of 
Dependent 
Supertag 

() 

Dependent 
Supertag 

Ordinal 
position Prob 

() 
( - )  a3 - 1  0.999 

(- ,  +) - 1  0.300 
(V,o 2) (- ,  +) 1 0.374- 

Table 1: Dependency Data 

,'m'h supertag has all of its dependents and maximizes 

the accumulated path probability. The direction of the 

dcp~mdcmt supertag and the probability information are 

us¢.,d t.o prune the search. A more detailed and formal 
description of this algorithm will appear elsewhere. 

"l'l/t. implementation and testing of this model of su- 

I,,'rl.ag disanlbiguation is underway. Preliminary exper- 
ilm,ld.s oil short fragments show a success rate of 88% 

i.e.a, sequence of correct supertags is assigned. 

Data Collection 

The data needed for disambiguating supertags (Sec- 
t.ion ) have been collected by parsing the Wall Street 

Journal s. IBM-manual and ATIS corpora using the 

wide-cow:rag c English grammar being developed as 

part of the XTAG system (XTAG Tech. Report, 1994). 

The parses generated for these sentences are not sub- 
.iectcd to any kind of filtering or selection. All the 
derivation structures are used in the collection of the 
sta.l.istics. 

XTAG is a large ongoing project to develop a wide- 

cov,.rage grammar for English, based on the LTAG for- 

realism. It also serves as an LTAG grammar devel- 

olnuent system and includes a predictive left-to-right 
parser, a morphological analyzer and a POS tagger. 
The wide-coverage English grammar of the XTAG sys- 
t,.m contains 317,000 inflected items in the morphology 

(21;L000 h~r nouns amt 46,500 for verbs among others) 
and 37,00(I eul.ries in the syntactic lexicon. The syntac- 
tic h,xicon associates words with the trees that  they an- 

,'l,,r. There arc 385 l.rt'cs in all, in the grammar which 

is ,',,,Ul,.scd of 411 dilG'rcut sul~catcgorization frames. 

'~S~.ntuuces of length <_ 15 words. 

Each word in the syntactic lexicon, on the average, de- 

pending on the standard POS of the word, is an anchor 

for about 8 to 40 elementary trees. 

Conclusion 

In this paper we have shown that increasing the com- 

plexity of descriptions of primitive objects, lexical items 

in the linguistic context, enables more complex con- 

straints to be applied locally. However, increasing the 

complexity of descriptions greatly increases the num- 

ber of such descriptions for the primitive object. In a 

lexicalized grammar such as LTAG each lexical item is 

associated with complex descriptions (supertags) on the 

average of 10 descriptions. A parser for LTAG, given 

a sentence, disambiguates a large set of supertags to 

select one supertag for each lexical item before combin- 

ing them to derive a parse of the sentence. We have 

presented a new technique that performs the disam- 

biguation of supertags using local information such as 

lexical preference and local lexical dependencies as an 

illustration of our main theme of the relationship of 

complexity of descriptions of primitives to local statis- 

tical computations. This technique, like POS disam- 

biguation, reduces the disambiguation task that  needs 
to be done by the parser. After the disambiguation, we 

have effectively completed the parse of the sentence and 

the parser needs 'only' to complete the adjunctions and 
substitutions. 
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