
System Architecture and Control in the Multra System
B jö r n  B e s k o w  

U p p sa la

A b stra c t
This paper discuses the system architecture and control in the Multra system. The Multra 
system is briefly described, and its modular architecture is discussed. The control in the 
system is divided into global and module-internal control. In the inter-modular control, a 
blackboard architecture is introduced to control the interaction and synchronization of the 
modules. The blackboard architecture is also shown to enable parallel solutions. In the 
intra-modular control, the specificity principle is introduced. Its relation to subsumption 
is discussed, and the principle is shown to provide a declarative way to control 
interaction between linguistic rules. Finally, the preference formalism is presented, used 
to express preferences between analysis results.

In tr o d u c tio n
T he M U L T R A  system
The MULTRA system is a prototype of a multilingual computer support 
for translation and writing, and has been developed within the project 
Multilingual Support for Translation and Writing at Uppsala University 
(see Sågvall Hein (1993)). One of the functionalities of the Multra system 
is machine translation. The user, working in an interactive document 
processing environment can mark a region of the document and have it 
translated on the fly. The region can, in principle, range from a single 
word to the whole document.
The Multra machine translation component is transfer-based. Translation 
is performed on a sentence level, but exploiting the type information 
provided by the document representation format. The translation is 
performed by four independent modules (see figure 1), responsible for 
analysis of the source language, preference ordering of the analysis 
results, transfer, and synthesis of the target language. An attribute-value 
logic is the common representation formalism for all the modules.
The different modules are implemented as separate Unix processes, 
communicating through TCP/IP sockets. The processes can thus execute 
on different machines or on different processors on the same machine.
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L o g ic  a n d  C on tro l
The four main modules implement the global logic of the system. A set of 
rules implements the module internal logic for each module. 1 The task of 
control is to specify the interaction between the parts, both on a global 
and a module-internal level. The logic of the Multra system has been 
described elsewhere.2 In the following sections, we will discuss the intra- 
modular and inter-modular control in the Multra system.

In te r -M o d u la r  C o n tro l
As we have seen, the modules in the Multra system are fully autonomous. 
However, the result of a module may form input to another module, 
resulting in a sequential information flow through the system. Because of 
the modules being fully autonomous, they may however very well 
execute in parallel. For instance, the parser starts by parsing the first 
segment. When ready, the parser output constitute input to the preference 
machine. The parser may however start parsing the next segment without 
having to wait for the other modules to process the first segment. The 
same holds for all modules.
The inter-modular control must therefore enable the sequential flow of 
information through the system by providing a communication channel 
between the modules, and by synchronizing the work of the modules. 
This control is achieved by using a Blackboard.^ The blackboard is a 
common data area accessible by all modules.

^The set of rules within a module is conceptually divided into general and domain 
specific rules.
^See e.g. Beskow (1992; 1993a; 1993b) and Sågvall Hein (1987; 1993a; 1993b). 
^Blackboard systems have mainly been used to provide data-driven processing, to 
integrate information from many different sources and to have several competing threads 
working on the same problem. A blackboard architecture is however also very suitable 
for controlling interactions between modules, to synchronize modules and to exploit 
parallellism. See Linda (1988) for a discussion of Blackboard systems.
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In the Multra system, each module can read or write first order terms on 
the blackboard. A module is triggered by its own special term providing 
its input. When the module has completed its processing, it writes its own 
special result term back on the blackboard and then waits for the next 
input term. This situation is illustrated in figure 2 below.

Fig . 2 : Blackboard

The parser reads terms of the form input(N,Type,String), and writes 
terms of the form parsed(N,Type,ParseSet). The preference machine 
reads terms of the form parsed(N,Type,ParseSet) and writes terms of the 
form preferred(N,Type,ParseList). Each term has as its first argument 
the segment number of the processed segment. This enables a sequential 
flow of information through the system, in spite of the parallel nature or 
the processing. The synchronization of the modules is automatically 
achieved through the Blackboard system.
Since the modules are fully autonomous, only communicating via the 
blackboard, multiple instances of a module may very well exist and 
execute in parallel. Hence it is possible to use several instances of a 
module to perform a computationally heavy task. This situation is 
illustrated in figure 3.
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Fig . 3 : Multiple instances of modules
In fact, it is even possible to dynamically assign resources to tasks, within 
a Processor Farm model. The global controller can act as a 'farmer', 
having a number of processors or 'workers' under his command. The 
relative number of pending input terms on the blackboard for a certain 
module constitutes a work load measurement, measuring how heavy a 
certain task is. The farmer may dynamically assign more workers to a 
heavy task to maximize the efficiency. Labour division orders are just 
special control terms, written on the blackboard by the farmer.

In tr a -M o d u la r  C o n tro l
Now we shall turn our attention to the module-internal control in the 
Multra system. The key concept here is the notion of specificity. The 
general idea is that more specific solutions should block or precede other 
more general solutions. A more specific translation should be preferred 
before a more general translation.
In terms of attribute-value logic, the subsumption relation forms a partial 
information ordering on attribute-value structures. Since the rule 
formalisms in all the modules are based on attribute-value logic, 
subsumption can be used to define specificity orders on rule sets. In a 
logical framework, the specificity principle may then be defined in terms 
of specificity between rules: Prefer a (constructive) translation proof 
based on more specific rules before a translation proof based on more 
general rules.
Let us look at an example. A transfer rule in the Multra formalism 
consists of two feature structures describing the source and target 
structures, and a (possibly empty) set of recursive transfer equations on
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subparts of the source and target structures. ̂  Consider the two transfer 
rules in figures 4 and 5 below, describing transfer relations between 
Swedish and German:

Label NOUN.OBJ 
Source
<* NOUN.OBJ> = 7NOUN.OBJ1 

Target
<* NOUN.OBJ> = 7NOUN.OBJ2 

Transfer
7NOUN.OBJ1 <=> 7NOUN.OBJ2 

Fig . 4 : Transfer rule 1

Label NOUN.OBJ_PP-NP 
Source
<* NOUN.OBJ PHR.CAT> = PP 
<* NOUN.OBJ PREP LEX> = AVI.PP.4 
<* NOUN.OBJ RECT> = 7RECT1 

Target
<* NOUN.OBJ> = 7NOUN.OBJ2 
<* NOUN.OBJ CASE> = GENITIVE 

Transfer
7RECT1 <=> 7NOUN.OBJ2 

Fig . 5 : Transfer rule 2
Rule 1 is a general rule, saying that in general, a noun object should be 
translated compositionally. Rule 2 is more specific, saying that a noun 
object that is a preposition phrase with the Swedish preposition 'av' 
should be translated into a genitive construction in German. The source 
attribute-value structure of rule 1 subsumes the source attribute-value 
structure of rule 2, hence rule 2 is considered more specific than rule 1. 
A translation based on rule 2 should be preferred before a translation 
based on rule 1.

ISee Beskow (1993a) for a description of the Multra transfer formalism. Examples of 
complex transfer relations described in the formalism can be found in Sågvall Hein 
(1993b) and in Wikholm (1992).
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T h e  P re feren ce  M a ch in e
The preference machine in the Multra system takes as input a set of 
attribute-value structures. This set represents the different analyses for a 
sentence produced by the parser.! jf the set contains more than one 
element, the sentence is ambiguous. The task of the preference machinery 
is to compute a preference ordering on this set, returning a list with the 
attribute-value structures partially sorted.
The Multra preferences are defined by a set of preference rules. A 
preference rule defines a binary preference relation between two 
attribute-value structures. The set of preference rules thus defines a weak 
order on the set of attribute-value structures.^ A preference rule consists 
of two attribute-value structures Minor and Major, representing the 
preferred and the dispreferred analysis result.
Figure 6 below is a simple example of a preference rule. It defines the 
preference relation between two attribute-value structures having 
different values for the attribute-value 'NUMB'. It says that the structure 
with value 'SING' is preferred before the structure with value 'NUMB'.

Preference SING-PLUR 
<* NUMB> = SING 

precedes
<* NUMB> = PLUR 

Fig . 6 : Preference rule 1

Figure 7 below is an example of a preference rule that defines the 
preference relation between two attribute-value structures both having 
the value NP for the attribute-value 'PHR.CAT', but only the first one 
has the attribute-value 'POST.ATTR' defined.

Preference POST.ATTR 
<* PHR.CAT> = NP 
<* POST.ATTR> = ANY 

precedes
<* PHR.CAT> = NP

Fig . 7 : Preference rule 2

Ipor a description of the Multra parser, see Sågvall Hein (1987).
^The preference order is indeed a partial order of equivalence classes of feature 
structures, which correspond to a weak order (see e.g. Berge (1962) or Ore (1963)).
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As all rules in the Multra system, the preference rules are themselves 
ordered by the specificity principle. A preference rule r is more specific 
than another rule r', written r <prefrule r'. if and only if Minor(r') 
subsumes Minor(r).
The preference relation has the following semantics:
Let (]) and \|/ be two attribute-value structures, P a set of preference rules, 
and '<pref the preference ordering symbol, (j) is preferred before y , 
written (|) <pref y. if and only if
* there exists a preference rule r such that

- Minor(r) subsumes ([) and
- Major(r) subsumes y  and
- for all r':

if Major(r') subsumes (]) and Minor(r') subsumes (|) then 
r <prefrule r', 

or
* there exists a path p in both ([) and y  such that

- 5(p,())) = (j)' and
- 5(p,y) = y' and
- <t>' %ref y'

Consider the set of attribute-value structures in figure 8 below:
'CATiNP
NUM-.SING

a = DEF-.INDEF
HEAD: LEXiVÅXELLADSHUS

WORDiCATiNOUN< ' CATiNP d >
NUMiPLUR

b = DEFiINDEF
HEAD: LEXiVÅXELLADSHUS

WORDiCATiNOUN
Fig . 8 : Singular/plural ambiguity

The two attribute-value structures represent the two possible readings for 
the Swedish noun 'vaxelladshus': one singular and one plural reading. If 
we take as our set of preference rules to be the rules in figure 6 and 7, 
we can see how they define a weak order on the attribute-value structures 
in figure 8. We can see that a <pref b holds, because of rule 1 whose 
Minor structure subsumes a, and whose Major structure subsumes b.

47



D ig r e ss io n :  N o n -e x is te n c e  o f  a ttr ib u te -v a lu es
The preference formalism presented above has an interesting property: it 
allows for implicit non-existence conditions of attribute-values. Identity 
equation constraints used for describing attribute-value structures can 
only express positive constraints on the attribute-value structure being 
described. It is not possible in an identity equation to say that a certain 
attribute-value must not be defined, or must not have a certain value. It 
has been much discussed whether negative values are necessary to gain 
enough expressive power. 1
The Multra preference formalism allows for an implicit way of stating 
negative attribute-value conditions. We have already seen a rule (in 
figure 7 above) which exploits this property. Consider the general 
reformulation of such a rule below:

Preference Non-existence 
<* F> = ANY 

precedes
<*> = ANY

Fig . 9 : Non-existence condition rule example 

Consider further the two attribute-value structure pairs below:
a
b
a'
b'

= [F.A]
= []
=  [F .A ]
=  [F:B]

Fig . 10 : Non-existence condition structures example

We can see that a <pref b must hold because of the preference rule in 
figure 9. We can also see that a' <pref b' holds, by virtue of the same 
rule. However, we also find that b' <pref a' using the same rule. Since a 
partial order is asymmetric, it follows that a' = b', that is, they belong to 
the same equivalence class according to the preference ordering.
The example above shows how a preference rule implicitly can express a 
negative attribute-value condition. The rule in figure 9 above says that a 
attribute-value structure with the attribute F defined precedes a structure 
that does not have the attribute F defined.

ISee for example Eisele & Dorre (1988).
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S u m m ary  and co n c lu sio n s
In this paper, the system architecture and control in the Multra system 
have been discussed. We have seen how a strictly modular system design 
enables the exploitation of parallelism. A blackboard architecture may be 
used to control both the global interaction between modules and the 
synchronization of parallel threads. The module-internal control has also 
been discussed. The notion of specificity has been introduced, and its 
relation to subsumption shown. The preference machine has also been 
presented. We have seen that the intra-modular control in multra is based 
on declarative notions and formalisms within the unification-based 
paradigm. The control defines and computes partial orders on attribute- 
value structures and on rule sets. I hope to have shown that the control 
mechanism of the Multra system provides a both elegant and efficient 
way of handling interaction on different levels.
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