
System Architecture and Control in the Multra System
B jö r n B e s k o w

U p p sa la

A b stra c t
This paper discuses the system architecture and control in the Multra system. The Multra
system is briefly described, and its modular architecture is discussed. The control in the
system is divided into global and module-internal control. In the inter-modular control, a
blackboard architecture is introduced to control the interaction and synchronization of the
modules. The blackboard architecture is also shown to enable parallel solutions. In the
intra-modular control, the specificity principle is introduced. Its relation to subsumption
is discussed, and the principle is shown to provide a declarative way to control
interaction between linguistic rules. Finally, the preference formalism is presented, used
to express preferences between analysis results.

In tr o d u c tio n
T he M U L T R A system
The MULTRA system is a prototype of a multilingual computer support
for translation and writing, and has been developed within the project
Multilingual Support for Translation and Writing at Uppsala University
(see Sågvall Hein (1993)). One of the functionalities of the Multra system
is machine translation. The user, working in an interactive document
processing environment can mark a region of the document and have it
translated on the fly. The region can, in principle, range from a single
word to the whole document.
The Multra machine translation component is transfer-based. Translation
is performed on a sentence level, but exploiting the type information
provided by the document representation format. The translation is
performed by four independent modules (see figure 1), responsible for
analysis of the source language, preference ordering of the analysis
results, transfer, and synthesis of the target language. An attribute-value
logic is the common representation formalism for all the modules.
The different modules are implemented as separate Unix processes,
communicating through TCP/IP sockets. The processes can thus execute
on different machines or on different processors on the same machine.

41

Proceedings of NODALIDA 1993, pages 41-49

L o g ic a n d C on tro l
The four main modules implement the global logic of the system. A set of
rules implements the module internal logic for each module. 1 The task of
control is to specify the interaction between the parts, both on a global
and a module-internal level. The logic of the Multra system has been
described elsewhere.2 In the following sections, we will discuss the intra-
modular and inter-modular control in the Multra system.

In te r -M o d u la r C o n tro l
As we have seen, the modules in the Multra system are fully autonomous.
However, the result of a module may form input to another module,
resulting in a sequential information flow through the system. Because of
the modules being fully autonomous, they may however very well
execute in parallel. For instance, the parser starts by parsing the first
segment. When ready, the parser output constitute input to the preference
machine. The parser may however start parsing the next segment without
having to wait for the other modules to process the first segment. The
same holds for all modules.
The inter-modular control must therefore enable the sequential flow of
information through the system by providing a communication channel
between the modules, and by synchronizing the work of the modules.
This control is achieved by using a Blackboard.^ The blackboard is a
common data area accessible by all modules.

^The set of rules within a module is conceptually divided into general and domain
specific rules.
^See e.g. Beskow (1992; 1993a; 1993b) and Sågvall Hein (1987; 1993a; 1993b).
^Blackboard systems have mainly been used to provide data-driven processing, to
integrate information from many different sources and to have several competing threads
working on the same problem. A blackboard architecture is however also very suitable
for controlling interactions between modules, to synchronize modules and to exploit
parallellism. See Linda (1988) for a discussion of Blackboard systems.

42

In the Multra system, each module can read or write first order terms on
the blackboard. A module is triggered by its own special term providing
its input. When the module has completed its processing, it writes its own
special result term back on the blackboard and then waits for the next
input term. This situation is illustrated in figure 2 below.

Fig . 2 : Blackboard

The parser reads terms of the form input(N,Type,String), and writes
terms of the form parsed(N,Type,ParseSet). The preference machine
reads terms of the form parsed(N,Type,ParseSet) and writes terms of the
form preferred(N,Type,ParseList). Each term has as its first argument
the segment number of the processed segment. This enables a sequential
flow of information through the system, in spite of the parallel nature or
the processing. The synchronization of the modules is automatically
achieved through the Blackboard system.
Since the modules are fully autonomous, only communicating via the
blackboard, multiple instances of a module may very well exist and
execute in parallel. Hence it is possible to use several instances of a
module to perform a computationally heavy task. This situation is
illustrated in figure 3.

43

Fig . 3 : Multiple instances of modules
In fact, it is even possible to dynamically assign resources to tasks, within
a Processor Farm model. The global controller can act as a 'farmer',
having a number of processors or 'workers' under his command. The
relative number of pending input terms on the blackboard for a certain
module constitutes a work load measurement, measuring how heavy a
certain task is. The farmer may dynamically assign more workers to a
heavy task to maximize the efficiency. Labour division orders are just
special control terms, written on the blackboard by the farmer.

In tr a -M o d u la r C o n tro l
Now we shall turn our attention to the module-internal control in the
Multra system. The key concept here is the notion of specificity. The
general idea is that more specific solutions should block or precede other
more general solutions. A more specific translation should be preferred
before a more general translation.
In terms of attribute-value logic, the subsumption relation forms a partial
information ordering on attribute-value structures. Since the rule
formalisms in all the modules are based on attribute-value logic,
subsumption can be used to define specificity orders on rule sets. In a
logical framework, the specificity principle may then be defined in terms
of specificity between rules: Prefer a (constructive) translation proof
based on more specific rules before a translation proof based on more
general rules.
Let us look at an example. A transfer rule in the Multra formalism
consists of two feature structures describing the source and target
structures, and a (possibly empty) set of recursive transfer equations on

44

subparts of the source and target structures. ̂ Consider the two transfer
rules in figures 4 and 5 below, describing transfer relations between
Swedish and German:

Label NOUN.OBJ
Source
<* NOUN.OBJ> = 7NOUN.OBJ1

Target
<* NOUN.OBJ> = 7NOUN.OBJ2

Transfer
7NOUN.OBJ1 <=> 7NOUN.OBJ2

Fig . 4 : Transfer rule 1

Label NOUN.OBJ_PP-NP
Source
<* NOUN.OBJ PHR.CAT> = PP
<* NOUN.OBJ PREP LEX> = AVI.PP.4
<* NOUN.OBJ RECT> = 7RECT1

Target
<* NOUN.OBJ> = 7NOUN.OBJ2
<* NOUN.OBJ CASE> = GENITIVE

Transfer
7RECT1 <=> 7NOUN.OBJ2

Fig . 5 : Transfer rule 2
Rule 1 is a general rule, saying that in general, a noun object should be
translated compositionally. Rule 2 is more specific, saying that a noun
object that is a preposition phrase with the Swedish preposition 'av'
should be translated into a genitive construction in German. The source
attribute-value structure of rule 1 subsumes the source attribute-value
structure of rule 2, hence rule 2 is considered more specific than rule 1.
A translation based on rule 2 should be preferred before a translation
based on rule 1.

ISee Beskow (1993a) for a description of the Multra transfer formalism. Examples of
complex transfer relations described in the formalism can be found in Sågvall Hein
(1993b) and in Wikholm (1992).

45

T h e P re feren ce M a ch in e
The preference machine in the Multra system takes as input a set of
attribute-value structures. This set represents the different analyses for a
sentence produced by the parser.! jf the set contains more than one
element, the sentence is ambiguous. The task of the preference machinery
is to compute a preference ordering on this set, returning a list with the
attribute-value structures partially sorted.
The Multra preferences are defined by a set of preference rules. A
preference rule defines a binary preference relation between two
attribute-value structures. The set of preference rules thus defines a weak
order on the set of attribute-value structures.^ A preference rule consists
of two attribute-value structures Minor and Major, representing the
preferred and the dispreferred analysis result.
Figure 6 below is a simple example of a preference rule. It defines the
preference relation between two attribute-value structures having
different values for the attribute-value 'NUMB'. It says that the structure
with value 'SING' is preferred before the structure with value 'NUMB'.

Preference SING-PLUR
<* NUMB> = SING

precedes
<* NUMB> = PLUR

Fig . 6 : Preference rule 1

Figure 7 below is an example of a preference rule that defines the
preference relation between two attribute-value structures both having
the value NP for the attribute-value 'PHR.CAT', but only the first one
has the attribute-value 'POST.ATTR' defined.

Preference POST.ATTR
<* PHR.CAT> = NP
<* POST.ATTR> = ANY

precedes
<* PHR.CAT> = NP

Fig . 7 : Preference rule 2

Ipor a description of the Multra parser, see Sågvall Hein (1987).
^The preference order is indeed a partial order of equivalence classes of feature
structures, which correspond to a weak order (see e.g. Berge (1962) or Ore (1963)).

46

As all rules in the Multra system, the preference rules are themselves
ordered by the specificity principle. A preference rule r is more specific
than another rule r', written r <prefrule r'. if and only if Minor(r')
subsumes Minor(r).
The preference relation has the following semantics:
Let (]) and \|/ be two attribute-value structures, P a set of preference rules,
and '<pref the preference ordering symbol, (j) is preferred before y ,
written (|) <pref y. if and only if
* there exists a preference rule r such that

- Minor(r) subsumes ([) and
- Major(r) subsumes y and
- for all r':

if Major(r') subsumes (]) and Minor(r') subsumes (|) then
r <prefrule r',

or
* there exists a path p in both ([) and y such that

- 5(p,())) = (j)' and
- 5(p,y) = y' and
- <t>' %ref y'

Consider the set of attribute-value structures in figure 8 below:
'CATiNP
NUM-.SING

a = DEF-.INDEF
HEAD: LEXiVÅXELLADSHUS

WORDiCATiNOUN< ' CATiNP d >
NUMiPLUR

b = DEFiINDEF
HEAD: LEXiVÅXELLADSHUS

WORDiCATiNOUN
Fig . 8 : Singular/plural ambiguity

The two attribute-value structures represent the two possible readings for
the Swedish noun 'vaxelladshus': one singular and one plural reading. If
we take as our set of preference rules to be the rules in figure 6 and 7,
we can see how they define a weak order on the attribute-value structures
in figure 8. We can see that a <pref b holds, because of rule 1 whose
Minor structure subsumes a, and whose Major structure subsumes b.

47

D ig r e ss io n : N o n -e x is te n c e o f a ttr ib u te -v a lu es
The preference formalism presented above has an interesting property: it
allows for implicit non-existence conditions of attribute-values. Identity
equation constraints used for describing attribute-value structures can
only express positive constraints on the attribute-value structure being
described. It is not possible in an identity equation to say that a certain
attribute-value must not be defined, or must not have a certain value. It
has been much discussed whether negative values are necessary to gain
enough expressive power. 1
The Multra preference formalism allows for an implicit way of stating
negative attribute-value conditions. We have already seen a rule (in
figure 7 above) which exploits this property. Consider the general
reformulation of such a rule below:

Preference Non-existence
<* F> = ANY

precedes
<*> = ANY

Fig . 9 : Non-existence condition rule example

Consider further the two attribute-value structure pairs below:
a
b
a'
b'

= [F.A]
= []
= [F .A]
= [F:B]

Fig . 10 : Non-existence condition structures example

We can see that a <pref b must hold because of the preference rule in
figure 9. We can also see that a' <pref b' holds, by virtue of the same
rule. However, we also find that b' <pref a' using the same rule. Since a
partial order is asymmetric, it follows that a' = b', that is, they belong to
the same equivalence class according to the preference ordering.
The example above shows how a preference rule implicitly can express a
negative attribute-value condition. The rule in figure 9 above says that a
attribute-value structure with the attribute F defined precedes a structure
that does not have the attribute F defined.

ISee for example Eisele & Dorre (1988).

48

S u m m ary and co n c lu sio n s
In this paper, the system architecture and control in the Multra system
have been discussed. We have seen how a strictly modular system design
enables the exploitation of parallelism. A blackboard architecture may be
used to control both the global interaction between modules and the
synchronization of parallel threads. The module-internal control has also
been discussed. The notion of specificity has been introduced, and its
relation to subsumption shown. The preference machine has also been
presented. We have seen that the intra-modular control in multra is based
on declarative notions and formalisms within the unification-based
paradigm. The control defines and computes partial orders on attribute-
value structures and on rule sets. I hope to have shown that the control
mechanism of the Multra system provides a both elegant and efficient
way of handling interaction on different levels.

R e fe r e n c e s
Berge, C. 1962. The Theory o f Graphs and its Applications. Methuen & Co Ltd.
Beskow, B. 1992. Unifieringsbaserad Transfer. Masters Thesis, Gothenburg University.
Beskow, B. 1993a. Unification-Based Transfer. Multilingual Support for Translation

and writing. Forthcoming. Uppsala University.
Beskow, B. 1993b. Generation in the Multra System. Uppsala University.
Eisele, A. and J. Dörre. 1988. Unification o f Disjunctive Attribute-value Descriptions. In

Proceedings o f the 26th Annual Meeting o f the Association fo r Computational
Linguistics.

Ore, O. 1963. Graphs and their uses. Random House.
Shieber, S. 1986. An Introduction to Unification-based Approaches to Grammar. CSLI

Lecture Notes.
Sågvall Hein, A. 1987. Parsing by Means o f Uppsala Chart Processor. In Bole, L.

(ed.). Natural Language Parsing Systems. Berlin.
Sågvall Hein, A. 1993a. Multilingual Support for translation and Writing. MULTRA.

Project report, NUTEK/HSFR Language Technology Program.
Sågvall Hein, A. 1993b. On The Translation o f Nominal Expressions in a Multilingual

Unification Based Setting. In Hajicova, E. (ed.) Proceedings o f the Functional
Description o f Language. Prague 1993. pp. 209-224.

Wikholm, E. 1992. Schwedish-deutsche lexikalische transferregeln. Nicht-fiektierbare
funktionale Phrasen. Project report. Uppsala University.

49

