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ABSTRACT 

We present a new architecture for reversible NLP. 
Separate parsing and generation grammars are 
constructed from the underlying application's 
semantic model and knowledge base. By having two 
grammars we are free to use process-specific 
representations and control techniques, thereby 
permitting highly efficient processing. The single 
semantic source ensures the parsimony of 
development and matched competence that make 
reversible NLP attractive. 

INTRODUCTION 

Most natural language processing systems are 
initially built in a single direction only; most are 
parsers (understanding systems), a few are generators. 
These systems are often then embedded in full, bi- 
directional interfaces, whereupon a new, almost non- 
technical kind of problem arises if differences in the 
two uni-directional subsystems are not controlled. 
The full system may not understand the same wording 
or syntactic constructions that it can generate; or 
generation and parsing development teams may both 
have to work on extensions and modifications to their 
grammars, with the likely result that still further 
differences will be introduced. 

These practical problems bolster an intuition 
that many have that knowledge of parsing and 
generation is the same knowledge in a person's mind, 
or at least that the two faculties draw on a single 
representation of their language even if it is engaged 
in different ways. This has led to the goal of 
reversible NLP systems. The common approach has 
been to take the computational artifact constructed by 
one of the single-direction projects, typically its 
grammar, and to aSapt it for use in the other direction. 

At ISI, for example, their massive systemic 
grammar for generation, NIGEL, (Mann & 
Matthiessen 1985) has since been adapted for use as a 

parser (Casper 1989). With the conceptual basis of 
the transformation in place, the development of 
further extensions and modifications is done on the 
generation grammar, and then that grammar is re- 
transformed to yield the new parsing grammar. 

The other well-known approach to reversible 
NLP is of course to use the very same computational 
artifact in both processing dkections. Thus far this 
artifact has invariably been a grammar, typically 
some kind of specification of the text-stream -- 
logical form relation that can be used as a transducer 
or can supply the data for it. 

Parsers and generators draw on their grammars 
as their predominant knowledge source. The grammar 
thus becomes a bottleneck for the processing if it is 
not designed with efficiency of processing in mind. 
When virtually the same computational representation 
of the grammar is used in both processes and it is 
given an active role, e.g. when the grammar is 
couched in a unification formalism, this bottleneck 
can be substantial since the "common denominator" 
processing architecture that must be employed in 
order for the grammar to be literally usable by both 
processes will be markedly less efficient than 
architectures that work from single-direction 
representations of the grammar. 

By their nature as information processing 
systems, language understanding and generation are 
quite different kinds of processes. Understanding 
proceeds from texts to intentions. The "known" is 
the wording of the text and its intonation. From 
these, the understanding process constructs and 
deduces the propositional content conveyed by the 
text and the probable intentions of the speaker in 
producing it. Its primary effort is to scan the words 
of the text in sequence, during which the form of the 
text gradually unfolds. This requirement to scan 
forces the adoption of algorithms based on the 
management of multiple hypotheses and predictions 
that feed a representation that must be expanded 
dynamically. Major problems are caused by 
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ambiguity and under-specification (i.e. the audience 
typically receives more information from 
situationally motivated inferences than is conveyed by 
the actual text). 

In generation, information flows in the opposite 
direction from understanding. Generation proceeds 
from content to iform, from intentions and 
perspectives to linearly arrayed words and syntactic 
markers. A generator's "known" is its awareness of 
its intentions, its plgns, and the text it has already 
produced. Coupled with a model of the audience, the 
situation, and the discourse, this provides the basis 
for making choices among the alternative wordings 
and constructions that the language provides---the 
principal activity iff generation. Most generation 
systems do produce ;texts sequentially from left to 
right---just like an understanding system would scan 
it; but they do this only after having made decisions 
about the content and form of the text as a whole. 
Ambiguity in a generator's knowledge is not possible 
(indeed one of its problems is to notice that it has 
inadvertently introduced an ambiguity into the text). 
And rather than under-specification, a generator's 
problem is to choose from its over-supply of 
information what to include and what to omit so as to 
adequately signal its intended inferences to the 
audience. 

Our concern with efficiency---optimizing the 
two processes to fit their differing information 
processing characteristics---has led us to approach 
reversible NLP by al compilation-style route where 
the grammar that the processes use is not one artifact 
but two, each with its own representation that is 
deliberately tailored to the process that uses it. Like 
the system at ISI, our reversible knowledge source is 
grounded in the generation process and then projected, 
via a compiler, to create the representation used by 
the parser. The difference is that while ISI projected 
the grammar that the generator used, i.e. the set of 
system networks that is the model of the linguistic 
resources provided by the language and their 
dependencies, our system is a projection from the 
underlying application's conceptual model. 

In generation °he starts with a set of objects 
representing individuals, relations, propositions, etc. 
that have been selected from the application program 
as its representation of  the information it wants to 
communicate. Accordingly, the kind of knowledge 
that a generator must draw on most frequently is what 
are the options for realizing those objects 
linguistically. In Order to make this look-up 
efficient, one is naturally led to an architecture where 

Is stored directly with the definmons this knowledge " ~ . . . .  
of the objects or their classes, in effect distributing a 
highly lexicalized grammar over the knowledge base. 

A SIMPLE EXAMPLE 

To be concrete, consider the example in Figure 
One below, a simple definition of the object class 
(category) for generic months. This expression says 
that a month is a kind of time stuff that can be 
viewed either as a point or an interval; that it has a 
specific number of days, a position within the year, 
and, especially, that it has a name and abbreviations-- 
the primary options for realizing references to the 
month in natural language. 

(def-category month 
: specializes 

time/interval-or-point 
:slots 

((name (word proper-name 
:may-be-abbreviated) ) 

(number-of-days number) 
(position-in-the-year 

number) ) ) 

Figure One 

In our system, CTI-1, the evaluation of this 
expression causes a number of different things to be 
constructed: the object representing the category, 
indexing and printing functions for objects with that 
category (instances of the class), and a defining form. 
One then uses the form to create objects for the 
twelve months, as shown in Figure Two for 
December. 

(define-month 
:name ~December" 
: abbreviation "Dec" 
:number-of-days 31 
:position-in-the-year 12) 

#<month December 
: name #<word "December"> 
: abbreviation #<word "Dec"> 
:number-of-days #<number 31> 
: position-in-the-year 

#<number 12>> 

Figure Two 

AS a result of evaluating this form, we get the 
object for December (Figure Two). When referring to 
this object in generation we will look it its name 
field and use the word object there, or perhaps the 
abbreviated word. 

When parsing, we will see an instance of the 
word "December" or the phrase "Dec." and want to 
know what object it the application program's model 
it refers to. In CTI-1 this is done by the phrase 
structure rules in Figure Three. These rules were 
written automatically (compiled) as one of the side- 
effects of defining the object for December; the code 
for constructing the rules was incorporated into the 
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Define-month form by following the annotation in 
the expression that defined the category month, the 
same annotation that control where the the generator 
looks when it wants to realize a month object. 

#<context-free-rule 
:print-form Imonth -> "December"l 
:lefthand-side #<category month> 
:righthand-side (#<word ~December">) 
:syntactic-form 

#<category proper-noun> 
:referent #<month December>> 

#<context-free-rule 
:print-form [month -> "Dec."l 
:lefthand-side #<category month> 
:righthand-side ( #<word "Dec"> 

#<word "."> ) 
:syntactic-form 

#<category proper noun> 
:referent #<month December>> 

Figure Three 

These parsing rules are part of CTI-I's semantic 
grammar. They are rewrite rules. When the word 
"December" or the two word phrase "Dec .... ." is 
scanned, the text segment is spanned with an edge of 
the chart (a parse node), and the edge receives a three 
part label: (1) the category "month", which 
participates in the semantic grammar, (2) the "form" 
category "proper-noun", which is available to the 
syntactic grammar, and (3) the referent the edge picks 
out in the application model, i.e. the very object 
#<month December> that was defined by the form in 
Figure Two. 

SUMMARY OF THE APPROACH 

Before going into a more elaborate example we 
can briefly summarize the reversible NIP  architecture 
we have adopted. The grammar is developed on the 
generation side by the linguist/semantic modeler as 
part of defining the classes and individuals that 
comprise the application's domain model. They 
include with the definitions annotations about how 
such objects can be realized in natural language. 

A side-effect of definition is the automatic 
inversion of the generation rules specified by the 
annotation to construct the equivalent set of  parsing 
rules. Parsimony and uniformity of coverage, the 
practical goals of reversible systems, are achieved by 
having the parsing grammar constructed automatically 
from the original forms that the linguist enters rather 
than having them redundantly entered by hand. 

Note that what we are projecting from as we 
invert "the generator's rules" is the generator's 
representation of the form-meaning relationship---its 
rules for mapping from specific objects in the 

underlying application's domain model to their (set 
of) surface linguistic forms by warrant of how the 
model has characterized them semantically. This is 
not the same as a representation of the principles that 
constrain the valid compositional forms of the 
language: the constraints on how individual lexicai 
items and syntactic constructions can be combined, 
what elements are required if others are present, a 
formal vocabulary of linguistic categories, and so on. 
That representation provides the framework in which 
the form-meaning relationship is couched, and it is 
developed by hand. For CTI-1 the design choices as 
to its categories and relations are taken from the 
theory of Tree Adjoining Grammar (Joshi 1985). 

The simplicity and immediacy of the automatic 
inversion is possible because in our approach the task 
of parsing (determining a text's form) has been 
integrated with the task of understanding/semantic 
interpretation (determining the denotations of the text 
and its elements in some model). This integration is 
brought about by using a semantic grammar. A 
semantic grammar brings the categories of analysis 
used by the parser into the same realm as those used 
by the generator, namely the categories of the 
application domain (in the present case personnel 
changes), for example people, companies, dates, ages, 
job titles, relations such as former, new, or has-title, 
and event types such as appoint, succeed, retire, etc. 

If the parser had been intended only to produce 
syntactic structural descriptions of the text, then 
projecting its rules from the generator would have 
been either impossible or trivial. An application 
supports a potentially vast number of categories; the 
syntactic categories of natural languages are fixed and 
relatively small. Collapsing the different kinds of 
things that can be realized as noun phrases down to 
that single category would lose the epistemological 
structure of the application's model and provide only 
minimal information to constrain or define the 
grammar. 

TREES FOR GENERATION, BINARY 
RULES FOR PARSING 

Consider the definition of the event type 
"appoint-to-position, shown in Figure Four. It's 
linguistic annotation amounts to the specification of 
a tree family in a TAG. The features given in the 
annotation are consulted to establish what trees the 
family should contain, building on the basic 
subcategorization frame of a verb that takes a subject 
and two NP complements, e.g. that it includes a 
passivized tree, one in participial form without its 
subject, and so on. 
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(def-category appoint-to-position 
:slots ((person person) 

(company company) 
(position title) ) 

:tree-family 
( (personnel-change 

company !__ ! person ! title 
: verb ~appoinh" 
(subject -> company) 
(objectl -> pgrson) 
(object2 -> position) 
: optional 

( (by-company -> company) 
(by-person -> new-person)) 

: passivizes i 
: forms-participles ) ) ) 

Figure Four 

The annotation is equivalent to binding a 
specific lexeme to the verb position in the trees of the 
family (this is a lexicalized TAG), as well as 
restrictions on the de~otations of the phrases that will 
be substituted for thel other constituents of the clause, 
e.g. that the subjectlpicks out a company, the first 
object a person, etc. 

A tree family plus its bindings is how this 
annotation looks from the generator's perspective. 
For the parser, this same information is represented 
quite differently, i.e. as a set of binary phrase 
structure rules. Such rules are the more appropriate 
representation for parsing (given the algorithm in 
CTI-1) since parsing is a process of serial scanning 
rather than the top-down refinement done in 
generation. During the scan, constituents will 
emerge successively bottom up, and the parser's most 
frequent operation and reason for consulting the 
grammar will be to judge whether two adjacent 
constituents can compose to form a phrase. (The 
rules are binary for efficiency concerns: CTI-1 does 
the multiplication operation for determining whether 
two adjacent constituents form a phrase in constant 
time regardless of the size of the grammar.) 

The tree family defines a set of rules that are 
applicable to any verb and semantic bindings that 
share the same subCategodzation frame, such as 
"name" or "elect". In projecting the annotation on 
the definition of appoint-to-position into parsing 
rules, the compilation! process will create the rules of 
the family if it does ngt already exist, and also create 
a set of unary rules for the immediate non-terminals 
of the verb, one for'k each different morphological 
variant. One of these' rules is shown in Figure Five, 
along with the general rule for the object-promotion 
aspect of passivizafion. 

#<context-free-rule 
:lefthand-side 

#<category 
pc/company! _!person!title> 

:righthand-side 
( #<word ~appointed"> ) 

:form #<category main-verb/-ed> 
:referent 

#<category personnel- 
change/appoint-to-position>> 

# <context- f ree-ru le / form 
: right hand- side 

( #<category "be"> 
#<category main-verb/-ed> ) 

:head :second-constituent 
: revised-mapping 

((object -> subject))) 

Figure Five 

The first phrase structure rule, part of the 
semantic grammar, ties the past participial form of 
the verb into the family of rules. The long category 
name is a convenient mnemonic for the family of 
rules, since it shows by its spelling what semantic 
categories of constituents are expected as sibling 
constituents in the clause as a whole. 

The object promotion rule is a syntactic 
("form") rule that makes reference to the form label 
on an edge rather than theft semantic label. The rule 
for "appointed" has a form label showing that it is a 
main verb in past participle form, which is what the 
syntactic rule is looking for. When a segment like 
"was appointed" is scanned, the label "be" on the edge 
spanning "was" will be checked against the label 
"main-verb/-ed" on the edge over "appointed" and the 
resulting edge will carry the semantic label and 
referent of the phrase's head, i.e. the main verb. 

Figure Six shows some of the other rules in the 
family so that one can get an idea about how the 
parsing of the whole clause will be done. The rules 
are given just by their print forms. 
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I. 

2. 

3. 

4. 

pc/company! !person!title 
-> appointed 

pc/company! [title 
-> pc/company!!person!title 

person 

pc/company! 
-> pc/company! 

title 
! tit le 

personnel-change 
-> company 

pc / company ! 

Figure Six 

STATE OF DEVELOPMENT 
The parsing side of this architecture for 

reversible NLP is implemented and running in an 
operational system, CTI-1. It has a mature domain 
model for personnel changes, and has been running 
the parsing grammar that is projected from that model 
on hundreds of articles from the Wall Street Journal 
("Who's News"). 

The generation side of the architecture is in its 
infancy, waiting on a suitable domain and task where 
the reasons for speaking and the situation models are 
rich enough to motivate subtle nuances in phrasing. 
By the same token, my prior experience with 
generation leads me to believe that the design of the 
linguistic annotations is well-founded for generation, 
and that this side of the reversal will fall out once the 
opportunity for implementation arises. When this 
happens the "raw material" that the mappings 
discussed here will supply will be fed to a text 
planner like Meteer's RAVEL orchestrator in her 
SPOKESMAN system, and then drive a TAG 
realization component along the lines of Mumble-86. 
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