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A B S T R A C T  

This paper a t tempts  to clarify two distinct notions 
of "reversibility": (i) Uniformity of implementa- 
tion of parsing and generation, and (it) reversibil- 
ity as an inherent (or intrinsic) property of gram- 
mars. On the one hand, we explain why gram- 
mars specified as definite programs (or the vari- 
ous related "unification grammars")  lead to uni- 
formity of implementation. On the other hand, we 
define different intrinsic reversibility properties for 
such g rammars - - the  most important  being finite 
reversibility, which says that  both parsing and gen- 
eration are finitely enumerable (see t e x t ) - -  and give 
examples and counter-examples of grammars which 
possess or do not possess these intrinsic properties. 
We also show that ,  under a certain "moderation" 
condition on linguistic description, finite enumer- 
ability of parsing is equivalent to finite enumerabil- 
ity of generation. 

1 I n t r o d u c t i o n  

From the linguist's point of view, a grammar is a 
formal device which defines a recursively enumer- 
able set of well-formed linguistic structures, each 
having, among other aspects, a phonological con- 
tent (or, when dealing with writ ten text,  a string 
content) and a semantic content. Such a device is 
completely neutral  as regards its uses for parsing 
(recovering semantic content from string content) 
or generation (recovering string content from se- 
mantic content).  

From the computat ional  linguist's point of view, 
on the other hand, the problem is how to imple- 
ment such a grammar both  as a parsing program 
and as a generation program, in such a way that  
these programs exactly reflect the content of the 
grammar.  This we will call the reversibility prob- 
lem. 

Let us assume, for specificity, tha t  the grammar 
has been presented as a definite program (a Prolog 
program)J  Then  the reversibility problem has a 
simple solution: use a complete interpreter for defi- 
nite programs--for  instance a top-down interpreter 
having a breadth-first  search procedure2--and di- 
rectly use the grammar as the program both for 
parsing and for generation. In the parsing mode, 
for any given string x, the program will enumerate  
all semantics Yl,Y2, . . .  assigned to it by the gram- 
mar, and similarly, in the generation mode, for any 
given semantics y, the program will enumerate  all 
semantics xl ,  x 2 , . . ,  assigned to it by the grammar.  
This is a striking property of definite programs: 
they are reversible in the sense that  they naturally 
lead to uniformity of implementation of the parsing 
and generation modes (see §4). 

So the reversibility problem is solved, and we can 
spend the next few years skimming through Fodor's 
(not Jerry 's)  guides in travel bookstores? 

Not quite. First, the s tandard depth-first inter- 
preter for definite programs is an incomplete one, 
and this problem must be circumvented in some 
way. Second, and more crucially, even when us- 
ing a complete interpreter,  parsing (and similarly 
generation) does not in general terminate:  the pro- 
gram may well enumerate Yl,Y2, . . .  ad infinitum. 
This is even true if, in fact, there are only a finite 
number of solutions Yl ,Y2, . . . ,  Yk, or even, in the 
extreme case, no solution at all: the program may 
not be "aware" that  it has at some point already 
exhausted all the solutions that  it will eventually 

1We could have made s o m e  o t h e r  choice, for instance 
s o m e  unification grammar formalism. The advantage of us- 
ing definite programs in t h e  p r e s e n t  discussion is that they 
embody the whole unification paradigm in its purest form, 
that unification of terms is conceptually simpler (and less 
p r o n e  to  misunderstandings) than unification of DAGs, and 
that the denotational and operational semantics of definite 
programs have been thoroughly studied. 

2See e.g. [7, p. 59] and section §2.1.3. See also [19] in this 
volume for a related approach. 
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find, and go on eternally looking for new solutions. 

The source of this problem can be more or less 
severe: I t  may simply be due to the grarnmar 's  
implementat ion as,a certain program,  or it may be 
intrinsic to the grammar .  

If  it is not intrinsic to the grammar ,  one may 
a t t empt  some kind of p rogram transformation on 
the g r a m m a r - - f o r  qnstance a local t ransformation 
as goal reordering in clause bodies [4, 16], or a 
global t ransformation as left-recursion elimination 
[5, 3] 3 - - i n  order 'to get a parsing program which 
displays a finite behavior. 4 I f  such a t ransforma- 
tion is possible in principle, we say that ,  intrinsi- 
cally, the g rammar  has a finitely enumerable pars- 
ing problem. 5 One.example  of a class of g rammars  
which respect this crucial condition is provided by 
offline-parsable DCGs,  once compiled as definite 
programs (see [9]). 6 

We have limited the former discussion to the case 
of parsing. The  case of generation is t reated in a 
parallel fashion, and one can similarly define the 
conditions in which a g r am m ar  is said to have an in- 
trinsically finitely enumerable generation problem. 
When a g rammar  is such tha t  it has a finitely enu- 
merable parsing problem and a finitely enumerable 
generation problem, we call the g rammar  inherently 
finitely reversible. 

When this is the; case, it is by definition possible 
to find a program Pp for parsing and a (not nec- 
essarily identical) program Pa for generation such 
that ,  for any string z, Pp enumerates  all associated 
semantics y and terminates,  and, for any seman- 
tics y, Pg enumerates all associated strings z and 
terminates.  

Inherent finite reversibility is the concept which, 
in my opinion, permit  us to capture formally the 
intuitive notion tha t  a certain g rammar  is, or is 
not, "reversible". 

3Or more  generally, any t r ans fo rmat ion  exploi t ing the- 
orerns provable of  the: g rammar .  Ano the r  ins tance  of this 
technique is provided by the  addi t ion  of conservative guides 
in [5], which "s t reng then"  the  g r a m m a r  on the  basis of  prop- 
ert ies  inferable f rom " ' i ts form. 

4 Anothe r  popula r  approach  is to use a specia l -purpose  
in terpre ter ,  exploiting[ proper t ies  of the g r a m m a r  known a 
priori. [18] and [14] use this  approach  in the  case of  gener- 
a t ion  (see below).  : 

5The  descr ip t ion  is simplified; see §3 for the exact  
definition. 

°See  also [17] for a discussion of  oifttine-parsability in the  
context  of  generat ion.  

2 D e f i n i t e  p r o g r a m s  a n d  

c o m p u t a t i o n  

2.1 Denotat ional  and operational  se- 
mantics of a definite program; 
complete  and incomplete  inter- 
preters 

A definite p rogram P is a finite set of clauses of the 
form (non-unit clauses): 

p(T1, . . . ,  T,)  

px(Tlx , . . .  ,Tin,) '" "pro(Tin1,... ,Tmn.)  

or of the form (unit clauses): 

p(Tx, . . . ,  Tn) 

where the the P,Pi are predicate symbols and the 
Ti, T/j are terms over a certain Herbrand universe 
of ground terms H .  

We will suppose that ,  among the predicates p 
defined by P ,  one, r ,  is privileged and plays the 
role of the "main predicate" in the program.  We 
will assume tha t  r is of ari ty one. 7 

2 . 1 . 1  D e n o t a t i o n a l  s e m a n t i c s  

The denotational,  or declarative, semantics of pro- 
g ram P can be defined as the least fixed point  of a 
certain opera tor  on Herbrand interpretat ions which 
we will not describe here (see [7]). Informally, the 
denotat ions of the predicate symbols p are defined 
as n-ary relations p(zx, . . . ,  Xn) over H,  built  as the 
limit of a bo t tom-up  process which s tar ts  from the 
unit clauses and uses the non-unit  clauses to add 
new instances to each relation. 

In particular,  this process defines the unary  rela- 
tion r(x) on H,  which we shall call the denotational 
semantics of the main predicate r relative to pro- 
gram P. 

Let T be a te rm over H;  We define the special- 
ization of r(X) on T as the relation rT(x)  on H 
defined by: 

def 
rT(~) =-- r(~) ^ x E Z 

where ff is the relation of subsumption.  In case the 
te rm T is a variable X ,  we say tha t  X is the trivial 
specialization, and we note tha t  the relation r x ( z )  
is identical to the relation r (z) .  

7This a s sumpt ion  pe rmi t s  to  simplify tile exposi t ion,  bu t  
is no t  o therwise  necessary.  
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2.1.2 O p e r a t i o n a l  s e m a n t i c s  

While the denotat ional  semantics of P is an in- 
trinsic proper ty  of P,  its operat ional  semantics is 
defined relative to some interpreter.  

For our purposes, we will informally define an 
interpreter as a computat ional  mechanism: 

i n tpr (  P, r ( T )  ) 

which is input  a definite p rogram P,  as well as a 
query ? r ( T ) - - w h e r e  r is P ' s  main predicate and 
T a t e rm over H - - a n d  which outputs  a f ini te  or 
infinite "list of  answers": 

T 1 , T 2 , . . . , T k  . . . .  

The  Tk's are terms over H ,  ground or not, whose 
ground instances provide the "solutions" to query 
? r (T) .  I f  the list of answers is infinite, the inter- 
preter  will not stop; I f  it is finite the interpreter  
may or may not stop: if it does, we will say tha t  
the interpreter  t e rmina tes  on query ? r (T) .  

Consider now the relation r~ on H defined by: 

r~(x)  def 
_= x E T 1 V z ~ T 2 V . . . V x E T k  V . . .  

We say tha t  r~r is the operational semant ics  of the 
main predicate r of P ,  for specialization T ,  relative 
to interpreter in tpr .  

Keeping the same notat ions as above, consider 
now the denotat ional  semantics r (x)  of r relative 
to P,  and consider its specialization rT(x).  

In terpreter  i n tp r  is said to be sound iff one has, 
for any P,  r ,  T: 

w e H r (x) rr(x); 

and to be complete iff: 

Vx • H r r ( x )  ~ r~(x) .  

Soundness is a minimal  requirement for an in- 
terpreter ,  and we will always assume it, but  com- 
pleteness is a requirement which is not always met  
in practice. 

2 .1.3 C o m p l e t e  a n d  i n c o m p l e t e  i n t e r -  
p r e t e r s  

The  "s tandard" interpreter  for definite programs 
uses a top-down, depth-first  search algorithm. It  
is sound bu t  not complete.  I ts  non-completeness is 
due to the fact tha t  it is depth-first:  if its search- 
tree contains infinite branches, the interpreter  will 
be "caught" in the first one and will never explore 

the b r anches - -maybe  leading to success - - to  the 
right of this branch in the search-tree [7, pp. 59-60]. 

By contrast,  a top-down, breadth-first  inter- 
preter,  i.e. one which explores nondeterminist ic 
choices (between the different clauses compet ing for 
resolution of the same atomic goal) in parallel s is 
complete [7, pp. 59]. 

The  nffive bo t tom-up  interpreter ,  which in 
essence directly calculates the denotat ional  seman- 
tics of P ,  and filters a posteriori the semantics r (x)  
through the constraint  tha t  the solutions unify with 
T, is also a complete algorithm. 

2.2 C o m p u t a t i o n a l  b e h a v i o r  of  a 
de f in i t e  p r o g r a m  re la t ive  to  an 
interpreter 

We now consider a program P,  having r as main 
predicate,  the denotat ion of r relative to P being 
the relation r ( x )  on H.  We also consider a special- 
ization T, i.e. a t e rm on H .  

We will compare  the denotat ional  content of P 
to its computat ional  behavior,  and describe three 
possibilities: (i) P enumera tes  r on T ,  (it) P dis- 
covers r on T ,  and (iii) P f ini te ly  enumera tes  r on 
T. The  interpreter  is supposed to be fixed before- 
hand. 

We say that:  

• P enumera tes  r on specialization T i f f :  

Vx e H r ~ ( x )  ~ rT(x) ,  

in other words, iff its list of answers: 

T1,T~,...Tk,... 

exactly "covers" the denotat ional  semantics 
r T  .9 

• P discovers r on specialization T i f f :  

1. P enumerates  r on T; 

2. If  r T is the uniformly false relation on H,  
then P terminates  on T.  l° 

• P f ini tely  enumera tes  r on specialization Ti f f :  

1. P enumerates  r on T; 

s Or, alternatively, uses a .fair search rule, i.e. one which 
"shares its  attention" among all paths in the  search-tree.  

9This will always he the  case if the  interpreter is sound  
and complete ,  as seen  in §2.1.2.  

10 Therefore, when rT is tmifornaly false, the list of answers 
is empty, and the  program is "aware" of this fact (i.e. it 
terminates ) .  
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2. P terminates  on T J  1 

We simply say tha t  P enumerates (discovers, 
finitely enumerates) r iff P enumerates  (discovers, 
finitely enumerates)  r on the trivial specialization 
X.  

We have the obvious entailments: 

P finitely enumerates r on T ~ P discovers (1) 
r on T ~ P enumerates r on T.  

I t  is often the case that  one is interested in the 
computat ional  properties of a given definite pro- 
g ram relative to a certain class of specializations. 
For instance, when using a g r am m ar - -g i ven  as a 
definite p rog ram- - fo r  parsing, one will consider all 
queries where some' of the variables are ground (the 
string to parse) and others (the semantic form) are 
not, and one will want to consider the computa-  
tional propert ies Of the program relative to this 
class of specializations. When using the definite 
program for generation, one will be interested in 
another class of specializations, and will want to 
consider the computat ional  properties of the pro- 
g ram relative to that class of specializations. 

Let S = {T} be a set of (not necessarily ground) 
terms on H,  inde£ed by a finite or infinite set I .  
We call S a class of specializations. We say that:  

• P enumerates r on S iff, for all T E S, P 
enumerates  r on T; 

• P discovers r On S iff, for all T E S, P discov- 
ers r on T; 

• P finitely enumerates r on S iff, for all T E S, 
P finitely enumerates  r on T. 

The  mutual  entailments between these proper- 
ties are similar to the ones given in (1). 

2 . 3  I n t r i n s i c  : c o m p u t a t i o n a l  p r o p e r -  
t i e s  o f  a defini te  p rog ram 

Let S be a class of specializations, and let r (z )  
be an arbi t rary  unary relation on H .  We suppose 
here tha t  programs are evaluated with respect to 
a sound and compiete interpreter,  which has been 
fixed once and for/all, and we say that:  

• r is enumerable on S iff there exists a definite 
program P which enumerates  r on S. 

• r is discoverab!e on S iff there exists a definite 
program P which discovers r on S. 

llXn part icular ,  the relat ion r T is, loosely speaking, 
"finitely representable  as a union  of t e rms  T1, T 2 , . . .  Tk" and 
t h e  p r o g r a m  is "aware",  at  a certain point ,  tha t  it has  e x -  
h a u s t e d  the possible answers.  

• r is finitely enumerable on Sq iff there exists a 
definite p rogram P which finitely enumerates  
t o n  S. 

These three notions, taken together,  const i tute a 
"computability hierarchy" where enumerabil i ty is 
the weakest condition, discoverability is an inter- 
mediary condition, and finite enumerabil i ty  is the 
strongest  condition. These computabi l i ty  condi- 
tions can be described more intuitively in the fol- 
lowing way: 12 

• r is enumerable on S if there exists a program 
P such that ,  for any T E S,  P is able, given 
infinite time, to find terms T1, T2, • • • such that:  

Vz e H r ( z )  ^ z E T 

z E T l V z  E T 2 V - . .  

• r is discoverable on S if there exists a program 
P which is fur thermore  able to decide in finite 
time, for any T E S, if there actually exists an 
z such that:  

r(x) ^ z E T 

• r is finitely enumerable on S if there exists a 
program P which is fur thermore able to find in 
finite time, for any T E S, terms T i , T 2 , ' . .  ,Tk 
such that:  

VxE H r(z) A x E T  
x E T~ V x E T2 . . .  v x E Tk 

Let {X} be the set having for only element the 
trivial specialization X;  {X} is called the trivial 
class of specializations. We will simply say tha t  r 
is ennmerable (resp. discoverable, finitely enumer- 
able) iff r is enumerable (resp. discoverable, finitely 
enumerable) on the trivial class {X}. 

Let ~ = H be the set of all ground terms of H .  
is called the class of ground specializations. The fol- 
lowing proper t ies - -which  we will not prove h e r e - -  
establish links between the notions tha t  we have 
just  defined and the classica} notions of  recursively 
enumerable relations and recursive relations: 

r is a recursively enumerable relation on H 
iff  r is enumerable on the trivial class of 
specializations { X } ;  i f  thiS is the case, then (2) 
for  any class of specializations S,  r is enu- 
merable on S .  

12Note tha t  these definitions critically depend on the rel- 
ative scopes of quantifiers 3 P  VT E S . . .  : it is essenti~d 
tha t  p rog ram P be the same for all specializations T in S .  
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r is a recursive relation on H iff r is discov- 
erable on the class of ground specializations 
G iff r is finitely enumerable on the class of 
ground specializations G. 

(3) 

3 G r a m m a r s  a n d  t h e i r  c o m -  

p u t a t i o n a l  u s e s  

Let X # Y  denote, in infix notation, the term 
# ( X , Y ) .  In the context of this paper, we take 
a grammar to be a definite program G having as 
its main predicate the unary predicate r, and we 
will assume that  the clauses defining r are of the 
form: 

r(X#Y) . . .  

X will be called the "p-parameter" ,  Y the "g- 
parameter".  Generally, the p-parameter  will rep- 
resent a character string, and the g-parameter a 
semantic form. 13 

3 . 1  S i x  c o m p u t a t i o n a l  p r o b l e m s  

A grammar can be used either to enumerate well- 
formed structures or to check whether certain fully 
instantiated values of the parameters can be ac- 
cepted. We distinguish six computational  prob- 
lems (grouped into four types) which can be solved 
with a grammar: p-enumeration, p-acceptation, 
g-enumeration, g-acceptation, bi-enumeration, bi- 
acceptation. These problems are defined, together 
with comments on their computational proper- 
ties, using the terminology of §2.3. This per- 
mits us to characterize the different positions a 
given grammar can occupy on the "computabili ty 
hierarchy" ---enumerability/discover ability/finite 
enumerabil i ty--relat ively to each of these prob- 
lems. 

3.1.1 p - e n u m e r a t l o n  a n d  p - a c c e p t a t l o n  

The p-enumeration problem or parsing problem is 
the problem of enumerating, for any fixed ground 
term x, all ground terms y such that  r(x#y) .  The 
p-acceptation problem or decision problem for pars- 
ing is the problem of checking, for any fixed ground 
term z, whether there exists a ground term y such 
that  r ( z # y )  is true. 

The  same specialization class is associated with 
both these problems, namely the class ~C'P = 
{ z#Y}~eH consisting in all the terms ~ # Y  where 

13We thus take r to be  a unary  relat ion which "encodes" 
a binary relation. This  is unessential,  bu t  permits  us to use 
the concepts of the  previous section, developed for unary re- 
lations, wi thout  having to generalize them to n-ary relations. 

is any ground term, and Y is a certain variable 
(whose name is indifferent). 

Let's consider in turn, with respect to G~P, the 
different positions the g rammar - -o r  equivalently, 
its denotational semantics r - - c a n  occupy on the 
computational hierarchy, from strongest to weak- 
est: 

F i n i t e  e n u m e r a b i l i t y  When r is finitely enu- 
merable on G7 ~, it is in theory possible to find 
a program P such that ,  for any given (ground) 
value x of the p-parameter  (the string), the pro- 
gram enumerates all the solutions to the parsing 
problem and terminates.  These solutions are given 
implicitly as a finite list of answers TY1, . . . ,  TYk: 
the TYi's are terms whose ground instances y are 
the looked-for values of the g-parameter (the se- 
mantics associated with string z by the grammar) .  
We also say that ,  with the grammar at hand, p- 
enumeration is finitely enumerable, or simply, that  
parsing is finitely enumerable. This is an inher- 
ent property of the grammar,  and, ill practice, this 
property does not necessarily entail that  finding a 
program P to exploit will be obvious. 14 For in- 
stance, offiine-parsable grammars [9] can be shown 
to possess a finitely enumerable parsing problem, 
but  algorithms which are able to make use of this 
property are by no means trivial [9, 13, 3]. 15 

D i s c o v e r a b i l i t y  If r is not finitely enumerable 
on GP,  it may still be discoverable on G79. By 
definition, this means that  it is possible to find a 
program P such that ,  for any given (ground) value 
z of the p-parameter,  if there is no value y of the 
g-parameter corresponding to z, then the program 
will "recognize" this fact in finite time and termi- 
nate with an empty list of answers; if, on the other 
hand, there are solutions y corresponding to x, then 
the program will enumerate them, but  maybe not 
terminate.  If this property holds, we also say that  
with the grammar at hand, p-enumeration is dis- 
coverable, or, simply, parsing is discoverable. One 
can easily prove (although we will not do it here) 
tha t  this property is equivalent to the decidability 
(in the classical sense) of the p-acceptation prob- 
lem. In other words: 

14See footnote 177. 
15These papers  do not  use the  concept (or, a for t ior i ,  the 

terminology) "finite enumerabil l ty of parsing",  which, to my 
knowledge, appears here for the  first t ime (see however [6], 
for the related not ion of "Universal Parsing Problem" ). 
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p-enumeration is discoverable if and only 
if p-acceptation is decidable. 16 

E n u m e r a b i l l t y  By the definition of a gram- 
mar as being a recursively enumerable mechanism, 
and by property (2), r is enumerable on any spe- 
cialization class, and in particular on G'P. 

3.1.2 g - e n u m e r a t i o n  a n d  g - a c c e p t a t i o n  

The g-enumeration 'problem or generation problem 
is the problem of enu~ merating, for any fixed ground 
term y, all ground terms x such that  r(x#y). The 
g-acceptation problem or decision problem for gen- 
eration is the problem of checking, for any fixed 
ground term y, whether there exists a ground term 
x such that  r(x#y)its true. 

The specialization class is associated with both 
these problems is the class G~ = {X#Y}ueH con- 
sisting in all the terms X # y  where y is any ground 
term, and X is a certain variable (whose name is 
indifferent). 

The  situation is e.xactly symmetrical to the case 
of p-enumeration and p-acceptation, and we can 
define, in the same way, the notions: "generation 
is finitely enumerabie" and "generation is discover- 
able" (which is equivalent to "g-acceptation is de- 
cidable'). 

3.1.3 b i - e n u m e r a t i o n  

The hi-enumeration,problem is the problem of enu- 
merating all ground i terms x, y such that  r ( x # y ) .  

The specialization class associated with this 
problem is the class' 7rRZP = { X # Y }  which con- 
tains the single term X # Y .  

For non-degenerate grammars, it is not the case 
that  r is finitely enumerable on T R I P ,  for this 
would entail in particular that  any string recog- 
nized by the grarnrnar is subsumed under one of 
the terms in a fixed finite set of terms T 1 , . . . ,  Tk. 
This is a slightly weaker property than saying that  
there are finitely many strings recognized by the 
grammar, but  is stil! a very unlikely property for a 
grammar. 

On the other hand, by definition, r is enumerable 
on TRZP.  It can be shown easily that  it is also 
discoverable o n  'TRT- 'P .  17 

16An i m m e d i a t e  cons,~luenee of  th is  p rope r ty  ( l inking the  
p - e n u m e r a t i o n  problem,  wi th  t he  p -accep ta t i on  p rob lem)  is 
the fact  t h a t  a g r a m m m r  which  is f ini tely e n u m e r a b l e  for 
pa r s ing  ha s  a dec idable  p - accep t a t i on  p rob lem.  T h e  con- 
verse is clearly false (see §6 for a coun te r - example ) .  

l r  Th i s  is b e c a u s e :  (i) In  case  the  g r a m m a r  gener-  
a tes  nothing, there is a t r ivial  p r o g r a m  which,  on query  

3.1.4 b i - a c c e p t a t i o n  

The bi-aceeptation problem is the problem of check- 
ing, for any fixed ground terms x and y, whether 
r (z#y)  is t rue.  

The specialization class associated with this 
problem is the set ~ = {x#Y}~,v~n of ground spe- 
cializations. 

It can be shown that  r is finitely enumerable on 
G iff it is discoverable on ~ iff the relation r on H 
is recursive in the classical sense. When this is the 
case, one says that  bi-acceptation is decidable. 

Again, by property (2), r is enumerable on any 
specialization class, and in particular on G. 

REMARK. Suppose that  parsing is finitely enu- 
merable, that  is, r is finitely enumerable on ~P .  
This obviously implies tha t  r is also finitely enu- 
merable on ~. Therefore, one has: 

parsing is finitely enumerable ::~ bi- 
acceptation is decidable; 

and, by the same reasoning: 

generation is finitely enumerable =V bi- 
acceptation is decidable. 

On the other hand, the weaker property that  
p-acceptation is decidable (or similarly, tha t  g- 
acceptation is decidable) does not seem to entail 
that  bi-acceptation is decidable. 

4 Definite programs,  unifor- 
mity of  i m p l e m e n t a t i o n ,  
and reversibility 

It is sometimes stated that  various grammatical 
formalisms, based on a variant or another of uni- 
fication, are "reversible". It should more properly 
be said that  they are "well-adapted" to reversible 
grammar implementations. The  paradigmatic case 
of a grammar given as a definite program G makes 
this especially clear. 

We know, from the discussion of §3.1.1 and 
§3.1.2, that  we always have: (i) r is enumerable 

?r(X#Y) ,  p roduces  a n  e m p t y  l is t  of  answers  a n d  te rmi-  
n a t e s  a n d  (it) if th is  is no t  t he  case,  t h e n  the  g r a m m a r  
i tself  m a y  serve  as  an  e n u m e r a t i n g  p r o g r a m  ( p e r h a p s  a 
n o n - t e r m i n a t i n g  one) .  Note  t h a t  th i s  does  not enta i l  t h a t  
by looking a t  t he  g r a m m a r ,  one  is ac tua l ly  a b l e - - e v e n  in 
pr inciple-- - to  decide which  of  t hese  two s i t u a t i o n s  ac tua l ly  
holds!  T h i s  is a n  e x t r e m e  i n s t a n c e  of the  r e m a r k  m a d e  above  
(in t he  d i scuss ion  of f ini te  e n u m e r a b i l i t y  of  pa r s ing )  t h a t  t he  
existence in pr inc ip le  of  a p r o g r a m  m e e t i n g  ce r t a in  cr i te r ia  
does  no t  imp ly  t h a t  it  is obvious ,  o r  i ndeed  possible ,  to  f ind 
such  a p r o g r a m .  

25 



on 6 P  and (ii) r is enumerable on 66 ;  we therefore 
know that  there exist programs Pp and Pg which 
enumerate r respectively on ~ P  and ~G. But in 
fact we have more: if we use a sound and complete 
interpreter,  we can simply take Pp = Pg = G. This 
follows from the fact that ,  by definition, relatively 
to  such an interpreter, G enumerates rT, for any 
specialization T (see §2.1.1): 

* G enumerates r on GP;  

• G enumerates r on GG. 

To be more concrete, suppose that  we use a com- 
plete top-down interpreter;  Its behavior will be 
along the following lines: 

1. On query ? r ( X # Y ) ,  the interpreter returns 
the (generally infinite) list of answers 

T ~ , T 2 , . . . , T k , . . .  

where each ~ is a term of the form Ai~Bi;  
The  (generally infinite) "union" of these terms 
"exactly covers" the query; 

2. On a query of the form ? r ( z # Y ) ,  where x is 
a ground term, the interpreter returns the list 
of answers 

TtU(x#Y) ,  T 2 U ( x # Y ) , . . . ,  Tk U ( z # Y ) , . . .  

where I._1 is the operator  of term unification, 
and where, with some abuse of notation, only 
the terms TitA(x#Y) for which unification is 
possible actually appear in the list; 

3. On a query of the form ?r(X~y) ,  where y is 
a ground term, the interpreter returns the list 
of  a n s w e r s  

T,  u (  X # y ) ,  T~u(  X # y ) ,  . . . , TkU( X # y )  . . . .  

(with the same abuse of notation as above). 

This is a rather  striking property of definite 
programs: different "input modes" can be imple- 
mented using one  and  the same interpreter and 
one and the same program. (This property strongly 
contrasts with other programming paradigms, for 
instance functional or imperative ones. Programs 
of these types typically map an input x to an out- 
put  y, and, while it is indeed true that ,  for a given 
y, the set of ~i which can serve as its input is recur- 
sively enumerable, the interpreter that  could imple- 
ment the (nondeterministic) mapping y ~ x would 
have to be widely different from the "normal" in- 
terpreter  for the language at hand.) 

However, "reversibility" in this sense only means 
uniformity of implementation for different modes 
of use of a grammar.  Intrinsic finite reversibility 
which is defined in the next  section, gives a much 
stronger criterion of grammar reversibility. 

5 I n h e r e n t l y  r e v e r s i b l e  g r a m -  
m a r s  

We say that  a grammar G is (inherently) finitely 
reversible iff, in the terminology of §3.1.1 and 
§3.1.2, G is such that:  

1. parsing is finitely enumerable; 

2. generation is finitely enumerable. 

In other words, G is finitely reversible iff there 
exists a program Pp for parsing and a (not necessar- 
ily identical) program P9 for generation such that ,  
relative to some sound and complete interpreter:  is 

1. On a query of the form ? r ( x # Y ) ,  where x is 
any ground term, Pp returns a finite list of 
answers 

x#T1, x#T2,..., z#Tk 

and stops. 

2. On a query of the form ? r ( X # y ) ,  where y is 
any ground term, Pg returns a finite list of 
answers 

TI # y ,  T ~ # y ,  . . . , T /  # y  

and stops. 

In order to guarantee that  a grammar is finitely 
reversible, some strong assumptions must be made 
on its form. An example of such assumptions is pro- 
vided by the class of Lezical Grammars described 
in [5]. 19 

Lexical grammars are presented as definite pro- 
grams. They  all share the same core of rules, 
which describe basic compositionality assumptions 
(string compositionality, syntactic compositional- 
ity, semantic compositionality),  but  may have dif- 
ferent lexicons, which contain all the more specific 
linguistic knowledge. 

lSIn fact, one can also take here an incomplete interpreter 
such as the standard Prolog interpreter stintpr. Obviously, 
if programs Pp and Pg exist for a sound and complete in- 
terpreter intpr, one can also find such programs P~ and P~ 
relative to stintpr, by simulating intpr inside stintpr. 

19See also [10] for a related approach. 
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Figure 1: Computational problems associated with a grammar. 

The hypotheses made on string compositionality 
in Lexical Grammars are simply that sister con- 
stituents concatenate their strings; they entail that 
parsing is finitely e~numerable. The hypotheses on 
semantic compositignality are related to functional 
application and composition in categorial gram- 
mars (see e.g. [15]). They entail that generation 
is finitely enumerable. 

A lexical grammar G is therefore finitely re- 
versible. This does not imply that it can be used 
directly for parsing and for generation, but only, 
as seen previously, that there exist two programs 
Pp and P9 implementing G respectively for pars- 
ing and for generation. These programs are each 
obtained by a technique of adding to the grammar 
some redundant knowledge--respectively a conser- 
vative guide for parsing and aconservative guide for 
generation--and by applying a left-recursion elim- 
ination transformation (see [5]). 

6 S o m e  c o u n t e r - e x a m p l e s  to 
f inite revers ib i l i ty  and a 
" m o d e r a t i o n "  c o n d i t i o n  on 
l inguist ic  descr ip t ion  

Fig.1 sums up graphically some of tile relations 
which have been est,ablished in §3 between tile com- 
putational problems associated with a grammar. 
The full arrows indicate entailments which have 
been established. The dotted arrows relate to a 
rather obvious question: What are the connections 
between the computational properties of parsing 
and those of generation? For instance, does the 
finite enumerability of parsing entail the finite enu- 
merability of generation? If not, does it at least 
entail that g-acceptation is decidable? (The same 
questions can be asked in the reverse direction.) 
The answer is that, if no further assumptions are 

made (see below §6.3), then there are no connec- 
tions. To show this, we now sketch one example 
which shows that finite enumerability of parsing 
does not even entail that g-acceptation is decid- 
able. 

6 .1  A " g r a m m a r "  r e l a t e d  t o  M a t i y a -  
s e v i c h ' s  t h e o r e m  

Matiyasevich's theorem [2, p. 116] provides-- 
among other things--a negative solution to 
Hilbert's tenth problem: "Does there exist an al- 
gorithm capable of solving all diophantine equa- 
tions?", a diophantine equation being a multivari- 
able polynomial in integer coefficients and whose 
variables range over N. 2° 

Let K be a recursively enumerable, but non- 
recursive, subset of N. One corollary of Matiya- 
sevich's theorem is the following proPerty [2, p. 
127-28]: 

There exists a polynomial q(zx , . . . ,  zn) in 
integer coefficients such that K is the set 
of values taken by q, for z l , . . . ,  z,~ ranging 
over all integers. 

This corollary can be exploited to give an exam- 
ple of a "grammar" which has a finitely enumerable 
parsing problem, but such that its g-acceptation 
problem is not decidable. 

Consider the relation r(x#y)  which is true 
iff: (i) x is a string encoding any instance (for 
Zl , . . . ,  zn ranging over the integers) of the expres- 
sion q(z l , . . . ,  zn), using the symbols 0 , . . . ,  9, '+' ,  
'*', '(', ')', etc., and (ii) y is a term encoding the in- 
teger resulting from the arithmetical evaluation of 
q(z l , . . . ,  zn). This relation can easily be described 

2°The actual statement of Matiyasevich's theorem is 
stronger: "Every partially decidable predicate is diophan- 
tine" [2, p. 116]. 
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by a "grammar" G: This grammar checks the welb 
formedness of string x, and calculates its "seman- 
tics" y.~l G has the following properties: 

• parsing is finitely enumerable: there is a pro- 
gram (namely G itself) finitely enumerating r 
on GP. In effect, for any string x, this pro- 
grams checks z for well-formedness and calcu- 
lates the (single) "semantics" y resulting from 
the evaluation of x. 

• g-acceptation is not decidable. Indeed, the 
problem of g-acceptation is the problem of de- 
ciding, for any given integer y, whether y is in 
the image of polynomial q, that  is, whether y 
belongs to K.  But  K is a non-recursive set, 
hence the conclusion. 

6.2 A "grammar" related to the  un- 
decidabil i ty of f i rs t -order  logic 

I will only very broadly sketch this example, which 
I think may provide useful insights on the impor- 
tance of constraining "string compositionality" in 
a grammar.  

Consider ordered pairs (x ,y )  of (ground) terms 
where x is a string encoding a certain first-order 
logic tautology, and y (the "semantics") is a deriva- 
tion of x using a certain fixed set of axiom schemata 
and rules of inference for a complete system of first- 
order logic. Let 's assume for simplicity that  the 
given rules of inference always have two premises 
and one conclusion. 22 

A grammar G can be defined along the follow- 
ing general lines. The  clauses of G correspond to 
the system's axiom schemata and rules of inference. 
Each clause corresponding to an axiom schema of 
name as defines "terminal constituents" (x, as(x)), 
where string z is any instance of schema as; each 
clause corresponding to an inference rule of name 
ir takes two "constituents" (xx ,y l )  and (x2,y2), 
and, if applicable (which is checked on the basis of 
strings Xl and x2), builds a new constituent (x, y), 
where x is the string obtained from xl and x2 ac- 
cording to i t ,  and where y is a new derivation tree 
ir(x,yx, y2). We have the following properties: 

• generation is finitely enumerable: The genera- 
tion problem is the problem, given a derivation 

~1 This requires defining addition and multiplication of in- 
tegers inside G, which presents no special problem. 

22See for instance [8, p. 43---44] which describes a system 
having the two rules of in_ference p I pDqq and ~ (where 
x is free in p). The second rule has one premise, but can 
easily be viewed as having two, if the premise True is added 
t o  i t s  original premise. 

tree y, of enumerating all formulas x that  are 
associated with it. But y contains an explicit 
representation of x, so that  generation is triv- 
ially finitely enumerable. 

p-acceptation is not decidable: The p-acceptation 
problem is the problem of checking if a string 
x can be derived from the axioms and the in- 
ference rules of the system. Tha t  is, it is the 
problem of checking if x is a tautology of first- 
order logic. By Church's undecidability result, 
this problem is undecidable. 

6.3 Under  a "moderation" condit ion 
on l inguistic description,  parsing 
is f initely enumerable  iff genera- 
t ion is 

The two counter-examples that  we have just  given 
have one property in common: the p-parameter  can 
stay "small", while the g-parameter grows indef- 
initely "large", or conversely the g-parameter can 
stay small while the p-parameter  grows indefinitely 
large. For instance, in the first counter-example, 
for a given value of y, there is no way to bound 
a priori the sizes of the integers z l , . . . , z n  tha t  
may produce this y; in the second counter-example, 
there is similarly no way to bound a priori the sizes 
of proofs y for a given formula x. 

In order to characterize this phenomenon for- 
mally, we will define a notion of "moderat ion" for a 
grammar G, defined as a definite program over the 
Herbrand universe H.  As previously r is the unary 
relation representing the denotational  semantics of 
G. 

If a is a ground te rm in H,  let us call size of 
this term, and denote by size(a), the number of 
nodes in a. Grammar  G will be called moderate iff 
there exist total  recursive functions f : N ~ N,  
and g : N ~ N, such that:  

Vx, y E H r(x, y) :.~ size(y) _< f(s ize(x))  

^ size(x) < g(size(y)). 

We have the following property: 

If  G is moderate, then, relative to G, pars- 
ing is finitely enumerable iff generation is (4) 
finitely enumerable. 

Let us briefly sketch the proof: Suppose that  pars- 
ing is finitely enumerable, then we know (see §3.1.4) 
tha t  bi-acceptation is decidable. On the other hand, 
for any fixed ground term y, there are only finitely 
many ground terms z in H such that  size(x) < 
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g(size(y)). Therefore, we can finitely enumerate 
all these z's, and for each of them, decide whether 
r(x, y) holds. This shows that  generation is finitely 
enumerable. The converse is proven in ,the same 
way. 

Moderation might be claimed to be a "natural" 
constraint to impose on grammars used for "legit- 
imate" linguistic purposes: One might want to ar- 
gue that ,  in natural  language, complexity of ex- 
pression is a rather direct reflection of complexity 
of meaning. For example, semantic rules which re- 
duced "you love htm or you don't" to ' true' ,  or 

• J 7 "  "how much is 6 times 7 . to '?x.(x = 42)' would 
seem to be ruled out as valid linguistic descriptions. 
But we will not ffirther pursue these tricky ques- 
tions here. 
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Appendix 

E x a m p l e s  o f  f i n i t e l y  r e v e r s i b l e  g r a m -  

m a r s  t h a t  a r e  i n h e r e n t l y  d i f f i c u l t  t o  

r e v e r s e  

In this appendix, we give two examples of gram- 
mars that ,  although they are finitely reversible, are 
such that  one mod~ is easy, while the reverse mode 
has a high degree o f  complexity. These examples 
are closely parallel, in the context of complexity, 
to the examples o f  section 6, which were concerned 
with computability. 

N u m b e r  p r o d u c i s ,  c r y p t o g r a p h y  a n d  r eve r s ib i l -  
i ty  

Consider the binary relation r(x#y) which is true 
iff x is a string of the form: 

N * M  

where N and M are strings, interpreted as integers, 
of O's and l 's  a n d ' . '  is interpreted as multiplica- 
tion, and where y is an integer equal to tile product  

of M and N. 23 We impose a priori tha t  integers 
M and N be strictly greater than 1. 

This relation can be defined by a "grammar" 
G: this essentially simply involves constraining the 
"syntax" of z and defining multiplication by a set 
of definite clauses. 

Implementing r in p-enumeration mode is easy: 
it involves verifying that  x is well-formed, and com- 
puting its product  according to specification G; In 
fact, G itself can be used for tha t  purpose, using a 
standard interpreter.  

On the other hand, efficiently implementing r in 
g-enumeration mode is extremely difficult, what- 
ever the interpreter,  program transformations,  math-  
ematical properties of prime factorization, ..., which 
are brought to the task. The  fact tha t  it is so dif- 
ficult is the basis of the best known "public key 
cryptography" algorithm, RSA [11]. 

N P - c o m p l e t e  p r o b l e m s  a n d  r e v e r s i b i l i t y  

A NP-complete problem is, informally, a problem 
for which solutions can be checked in polynomial 
time (relative to the length of the problem), but  
which requires more than polynomial time for the 
discovery of a solution [1].24 

For specificity, let us focus on one NP-complete 
problem, namely the "3-colorability problem" which 
consists, given a certain graph x, in finding a color- 
ing y for x using blue, green and red, in such a way 
that  vertices sharing a common arc have different 
colors. 

It is possible to state the problem as a definite 
program G, whose main relation is of the form 
r(x#y), x and y being suitable term encodings for 
the graph z and for the solution y. The solution 
y can be considered as implicitely containing a de- 
scription of graph x. 

It is obvious that  g-acceptation is computation- 
ally easy (polynomial): it consists in verifying that  
the coloring y respects the coloring condition. On 
the other hand, p-acceptation is computationally 
costly: it consists in checking whether graph x has 
a solution, a problem which is at the present time 
believed to require exponential time. 

23The string N*M and the integer y are suitably encoded 
as ground terms on H. 

24More exactly, which is believed to require more than 
polynomial t ime.  This belief constitutes the content of the 
famous P~NP conjecture. 
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