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Abstract 

In this document, we present a formalism for 
natural language processing which associates type 
construction principles to constraint logic 
programming. We show that it provides more 
uniform, expressive and efficient tools for parsing 
and generating language. Next, we present two 
abstract machines which enable us to design, in a 
symmetric way, a parser and a generator from that 
formalism. This abstract machinery is then 
exemplified by a detailed study of secondary 
predication within the framework of a principled- 
based description of language: Government and 
Binding theory. 

Introduction 

Lexical as well as grammatical and discursive 
knowledge required to understand or to produce 
natural language utterances is usually a description 
which is independent of the sentence production or 
comprehension 'algorithms'. It comes naturally into 
mind to have a common, shared knowledge base of 
what language is, independently of its potential uses. 
Besides well-known advantages of uniformity and 
transparency, this point of view is very convenient 
for the computer scientist who does not have to 
integrate into his parsers or generators the 
unavoidable updafings required by grammar 
development. The linguistic knowledge is thus 
specified in a declarative way in different modules 
(lexical, grammatical, discursive . . . .  ) and different 
strategies are applied which refer to these data 
(directly for interpreters or via the production of a 
compiled code for compilers). This approach can 
however be realiTed more or less easily depending on 
the formalisms used to describe language 
phenomena. 

In this document we introduce new advanced 
tools of the Logic Programming framework and 
show that they contribute to meeting the 
requirements imposed by the manipulation and the 
control of large amounts of data required by both the 
parsing and the generation procedure. We first 
consider logical types which are a declarative and 
easy-to-use tool and formalism which permit a 
grammar writer to encode knowledge in a very 
flexible and principled-based way. 

In addition to types, we introduce new active 
constraints of the Constraint Logic Programming 
(CLP) framework which allow us to treat and to 
check for consistency of constraints throughout the 
whole generation procedure and not to only evaluate 
them when they are given in the programme or 
grammar. These active constraints are fully 
declarative and can be used by any type of 
parsing/generation process. 

CLP introduces a greater expressive power 
together with a higher efficiency since the resolution 
of constraints is postponed till they can be properly 
evaluated and since constraints have to be always 
true and consistent with each other. Finally, a feature 
of active constraints is that they are usually 
independent of the way they are processed, they are 
thus strategy independent and can equivalently be 
used for parsing and for generation. 

To make reversibility concrete in our system, 
we develop in this document two different abstract 
machines based on type construction and constraint 
satisfaction which give the foundations of a parser 
and a generator using the same source of declarative 
linguistic knowledge. The differences between these 
machines exemplifies the 'technical' differences one 
may have between parsing and generation processes. 
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1. A type based description language 

Three major types of operations are at the basis 
of the typed-based language we have designed for 
language processing, namely: 

- the expression of type construction to generate 
phrase structures, 

- the expression of dependencies (either local or 
long-distance) between types, 

- the expression of well-formedness constraints 
on types. 

Types here refers to the usual data structures in 
computer science. We now informally present the 
syntax of our type-based language. It is directly 
derived from the syntax of Login (Ait-Ka~i and Nasr 
86). The syntactic representation of a structured term 
is called a V-term. It consists of: 

(1) a root symbol, which is a type constructor 
and denotes a class o f  entities, 

(2) attribute ~labels, which are record field 
symbols. Each attribute denotes a function in 
extenso, from the root to the attribute value. The 
attribute value can itself be a reference to a type. 

(3) coreference constraints among paths of 
labels, which indicate that the corresponding 
attributes denote the same function. They are 
indicated by variabies. Here is an example: 

person( id => name(first => string, 
last => X: string), 

born => date(day => integer, 
month => monthname, 

year => integer), 
father => person( id => 

name(last => X ))). 

The root symbol is person; id, born and 
father are three Sub-V-terms which have either 
constants or type s as values. X indicates a 
coreference. All different type structures are tagged 
by different symbols. Notice also that in the latter 
field only relevant information about person is 
mentioned. Infinite structures can also be specified 
by coreference links. Variables are in capital letters, 
constants in small letters. 

2. Dealing with constraints 

We have extended the type description 
framework with active constraints and have given 
them a Constraint Logic Programming (Colmeraner 
90, Jaffar and Lassez 87) interpretation, permitting 
us to have a more principled-based description of 

language. The general form of a type is : 
Type :- Constraints.  

We view constraints as part of the type: 
(Type :- Constraints) 

is itself a type, subsumed by Type. 

The simplest constraint is the precedence 
constraint: 

preeede(X,Y), 
where X and Y are of type string. This 

constraint imposes that the string X precedes of the 
string Y. When processing a sentence, precedence 
constraints on constituents are stated in the grammar 
rules and possibly at the lexical level. At each stage 
i of the processing, there is a partial order Pl(i) on 
the words and structures already processed. At the end 
of the process, precedence constraints give all the 
possible word orderings which meet the constraints 
of the grammar. In the case of parsing, constraints 
imposed by the order of words in the input string 
must be coherent with the precedence results of the 
parse. 

The next constraaint imposes the presence of an 
attribute in a type: 

has(Attribute, Type) 
where Attr ibute is either an attribute label or a 

full pair attribute-value and Type is a reference to a 
given type. This constraint imposes that at some 
stage there is an attribute in Type which is 
subsumed by or equal to Attr ibute.  Informally, (1) 
when incoherence with Attr ibute is detected or (2) 
when Type is fully constructed, the non-satisfaction 
of has(Attr ibute,Type) will provoque 
backtracking. This constraint permits us to encode 
thematic role assignment and focus management, and 
also to encode the inclusion of a set of values into 
another. 

The last class of constraint is mainly related to 
the expression of long-distance relations between 
sentence constituents. Within the framework of 
types, the notion of long-distance is somewhat 
obsolete since there is no ordering relation on 
subtypes in a type (attributes may be written in any 
order). Thus, the notion of long-distance dependency 
will be here formulated as a sub-type co-occurence 
constraint. This constraint emerged from Dislog 
(Saint-Dizier 87, 89). Very briefly, the co-occurence 
of two or more subtypes in a larger type is expressed 
by the constraint: ponding(A,B) where A is a 
type specification and B is a list of type 
specifications. Informally, this constraint means that 



A originates the pending of the sub-types in B, in 
other terms that A can be used if, somewhere else in 
the main type (corresponding for example to a full 
sentence), all the sub-types in B are used with 
identical substitutions applied to identical variables. 

3 .  P r o c e s s i n g  L a n g u a g e  with  types  
a n d  c o n s t r a i n t s  

We will mainly present here simple, 
motivational examples. A more abstract syntactic 
description will be given in section 6 which will 
more fully motivate our approach. The examples 
given in this text show that our description language 
can accomodate principled-based descriptions of 
language like Government and Binding theory as 
well as lexicaUy and head driven descriptions like in 
the HPSG framework. 

In the following simple examples, we only 
have two main type constructors: 

- x0 corresponding to lexical entries, 
- xp corresponding to phrase structures. 
Here is the description of the lexical entry 

corresponding to the verb to give: 
xO( cat => v, string => [give] ) :- 

pending(xO(cat => v), 
[xp( cat => n, string => $1, role => patient ), 

xp( cat => p, string => $2, 
role => recipient) ] ), 

precede([give],S1), precede(S1, $2). 

This entry says that give is a verb which 
subcategorizes for an np with role patient and a pp 
with role recipient; np and pp are left pending. The 
string S 1 generated from the np has to precede the 
string $2 generated from the pp. These constraints 
will be treated at the level of the type describing the 
structure of a vp. The whole description xO 
construction and related constraints is the type of 
the verb to give, Let us now consider the 
construction of a vp with an np and a pp 
complements. To the construction of a vp type 
corresponds the generation of a (set of) string(s) 
corresponding to a via, this is stored in S. We then 
have the following construction: 

xp( cat => v, string => S, 
const l  => xO(cat => v ), 
const2 => X : xp(cat => n), 
const3 => Y : xp( cat => p) ) :- 

has(role, X), has(case, X), 
has(role, Y), has(case, Y). 

The constraints has(role,X) and has(role,Y) 
impose that the constituents const2 and const3 have 
a role assigned at some level of the type construction 
process. The same situation holds for case. This is a 
simple expression, for example, of the case filter in 
GB theory. Notice that most pending situations are 
satisfied locally, which limits complexity. 

4. An abstract  machine  for type 
construction in a parsing process 

Parsing a sentence is constructing a well-formed 
type describing the sentence structure. We present in 
this section an abstract machine which describes how 
types are constructed. This machine is based on the 
procedural semantics of Prolog but it resembles a 
push-down tree automaton whose stack is updated 
each dine a subtype is modified. 

There are two kinds of type constructors: those 
corresponding to non-terminal structures (such as xp 
and x 1 in our examples) and those corresponding to 
terminal structures (e.g. x0). We now present a step 
in the construction of a type. It can be decomposed 
into 3 levels: 

(1) current state o i : 

cO( a 1 => t 1, a 2 => t 2 . . . . .  a n => tn), 

(2) selection in the current programme P of a 
type construction specification: 

c l ( b  1 => t' 1 . . . . .  b m =>t '  m )  
such that t 1 subsumes it or unifies with it 

modulo the mgn 0 i. 

(3) New state ° i+ l  : t l  is replaced by : 

e l (  b 1 => t' 1 . . . . .  b m => t' m ), 
with, as a result, the following type: 

co(a  1 => c l ( b  1 => t' 1 . . . . .  b m => t' m ) ,  
a 2 => t 2 . . . . .  a n => t n) 0 i 

The process goes on and processes t' 1" The type 
construction strategy is here similar to Prolog's 
strategy and computation rule : depth-first and from 
left to right. The main difference at this level with 
SLD-resolution is that only types corresponding to 
non-terminal structures are expanded. Informally, 
when a type tj corresponds to a terminal structure, an 
attempt is made to find a terminal type description 
t'j in the programme which is subsumed by or 
unifies with t.j and, if so, a replacement, occurs, t'j is 
said to be in a final state. If t j does not exist, 
backtracking occurs. The next type description 
immediately to the right of t'j is then treated in the 



same manner. The type construction process 
successfully ends when all subtypes corresponding to 
terminal symbols are in a final state and it fails ff a 
terminal type description tp cannot reach a final 
state. The initial state: is : 
xp( cat => sentence i 

string => [ string,to,parse] ). 

4.2.  E x t e n s i o n  o f  the  a b s t r a c t  
m a c h i n e  to c o n s t r a i n t s  

The above abstract machine can be extended in a 
simple way to deal with constraints. Constraint 
resolution mechanisms are similar to usual 
constraint logic programming systems like Prolog 
IH. The three above le~,els become: 

(1) current state ° i  represented by the couple: 

< c0(a  l = > t  1, a 2 = > t  2 . . . . .  a n = > t n ) , S  > 
where S is the set of current constraints, 

(2) selection in the current programme P of a 
type construction specification: 

c l ( b  1 => t ' l ,  ...; b m => t' m ) :- R. 
where R is the set of constraints associated to 

cl,  and t 1 subsumes Or unifies with t' 1 modulo the 
mgu 0 i. 

(3) New state o i+ 1 characterized by the 
following couple: 

< c0(a 1 = > c l ( b  1 => t' 1 . . . . .  b m => t' m ) ,  
a 2 => t 2, .... a n => t n) 0 i , 

S u R u subsume(tl,Cl( b 1 => t' 1 . . . . .  

bm =>i t 'm ) ) > 

with the condition that the new set of 
constraints must be satisfiable with respect to the 
constraint resolution axioms defined for each type of 
constraint and, if not,:a backtracking occurs. At this 
level constraints simplifications may also occur. 

The output of the parsing process may be 
simply a syntactic tree, but it may also be a logical 
formula, similar to the one used and presented in 
section 5. We however think that both processes, 
parsing and generating, need not necessarily 
respectively produce and start from the same abstract 
internal representation. 

5. An Abst:ract M a c h i n e  for  
L a n g u a g e  G e n e r a t i o n  

From the above declarative descriptions of 
language construction, an abstract machine for 

language generation can also be defined. At the level 
of type construction, generation proceeds by 
monotone increasing restrictions: a phrase structure 

z 

is described by a type constructor linking a set of 
subtypes. This operation introduces a restriction on 
the possible left and right contexts that each of the 
subtypes could potentially have if they were 
independent from each other. The degree of generality 
of the selected type constructor linking those 
subtypes can be subject to various interpretations. 
Finally, generation is guided by the semantic 
representation from which a sentence is uttered. As 
shall be seen, the semantic representation will 
determine the computation rule and the subgoal 
selection procedure. It is thus much more 
deterministic than its parsing process counterpart. 

Let us now briefly consider the abstract machine 
for language generation. The general technique, that 
we have already exemplified in (Saint-Dizier 89), 
consists in: 

- (1) writing a formal grammar of the semantic 
representation from which the generation process 
starts, 

- (2) identifying the phrasal units and the lexical 
units (and intermediate units if necessary) which can 
be associated to the symbols of that formal 
grammar, 

- (3) associating generation points to these 
symbols (terminal and non-terminal) which will 
generate natural language ffi-agrnents based on a 
consultation of the grammatical and the lexicai 
system (these generation points could be added 
automatically). 

For example, if the formal grammar of the 
semantic representation of quantified noun phrases 
is: 
Quant_np--> det([Quant, Var], Np, 

Rest of sentence). 
Np --> and( Noun, Modifiers ). 

We then have, for example, and informally, the 
following generation points, where the call 
p(formula, string, corresponding syntactic category) 
is used to process the semantic representation: 

p(det([Quant,Var],Np,Rest of sent), 
Type ) :- 

p(Quant, Type1), p(Np, Type2), 
generation_point(Type1, Type2, Type3), 

p(Rest_of_sentence, Type4), 
generation_point(Type3, Type4, Type). 



p(and(Np, Mod),Type) :- 
p(Np, Type1), p(Mod,Type2), 

generation_point(Type1, Type2, Type). 

The relation between a predicate (or an 
argument) and a word is established by a call to a 
lexical entry as follows: 
p(Predieate, Type) :- 

Type, has(Type, 
sem_rept => Predicate ). 

Informally, Typel and Type2 are constructed 
from the treatment of the quantifier and the noun 
phrase, they are then combined, in the first rule 
above, by means of the first call to 
generation_point, resulting in Type3. This 
generation point includes the treament of the string 
of words being generated (including the precedence 
constraints on the words generated from lexical 
insertion) and the treatment of more abstract features 
such as category, inflection or semantic 
characteristics. Finally, the second call to 
generation_point integrates Type3 with Type4, the 
latter being the type associated to the remainder of 
the sentence. The result is Type. 

Generation points support by themselves the 
generation strategy. A model of these generation 
points is given below by means of an abstract 
machine. As can be noticed, calls to generation 
points occur after the parse of the corresponding 
semantic structure. This means that calls to 
generation points will be stacked (by Prolog) and 
will be then unstacked in the reverse order they have 
been stacked: the strategy is then bottom-up. 

Generation points determine, by means of a call 
to the grammatical system, the resulting syntactic 
category and the way the partial strings of words ill 
Type1, Type2 and Type4 are assembled. The way 
types are constructed by generation points is 
modelled by the following abstract machine. At this 
level, we generalize the generation points to take 
into account any number of subtypes, and not only 
two as shown in the examples.We claim that this 
method is general and can be used from most current 
semantic representations (such as, for example, DRT 
or Conceptual Graphs). 

The abstract machine for language generation 
can be described by its initial state and a step in the 
construction procedure. It has the general form of a 
finite state tree automaton. The initial state is o 0, it 

is the empty type. Let us now consider a step a i . 
1. Two cases arise: it is either 

(a) a set of subtypes from which a more 
general type can be constructed: 

o i = (a) (C 1, C 2 . . . . .  C n) is an unordered 
sequence of subtypes ; or 

(b) it is a single type : o i = D1 

2. Type constructor selection: 
(a) let DC be such that: DC has exactly k 

attributes const j ,  k <_ n, 
and DC is of the form: 

DC := xp( .... const I => C' 1 . . . . .  const k => C' k ) 
and: 
for all j E [ l,k], subsume(C'i, Ci ) 

(notice that the Cj are not n~cess~rily the jtn 
element of the list given in 1 above, notice also that 
the type constructor DC contains the subtypes 
constq together with other information like category 
and morphology.) 

or (b) D' (single type) 

3.  o i + l  = ( a ) ( D C , C k +  1 . . . . .  C n) 
for all i, j E [1,k] 

or (b) (D1, D'). 

The type constructor DC contains the subtypes 
constq together with other information like category 
and rhorphology. It should be noticed that the 
constructor DC is selected according to a 
subsumption criterion, which is more general and 
powerful than standard unification. It better 
corresponds to the process of incremental generation 
of phrases. The process ends when a type with 
category sentence is reached. This is a terminal state 
in the automaton, more precisely it is the root of the 
tree automaton, since our generation system proceeds 
in a bottom-up fashion. 

Let us now consider the step 2 above devoted to 
the selection of a type constructor. This selection is 
mainly guided by the generation points given in the 
formal grammar of the semantic representation. They 
indeed select between cases (a) or (b) and in case (a) 
they directly characterize which of the C i will be 
included in the type construction at the current stage. 
Finally, since active constraints associated to type 
descriptions can be executed at any time, the 
constraint resolution mechanisms which maintain 
constraint coherence are independent of the 
generation strategy. In other terms, these 
mechanisms are independent of the way and the order 
constraints are added to the set of active constraints. 
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The abstract machine which handles types and 
constraints is the following. It is represented by a 
tuple: <type, set of active constraints>. 

We then have: 

1. a i =  
(a) < (C 1, C 2 . . . . .  Cn), S > sequence of 

subtypes C i and of active constraaints S 
(b) < D1, S > 

L 

2. Type constructor selection: 
(a) < D C ,  R> where R is the set of 

constraints associated to DC and such that: 
i) same restrictions as above on DC and 
ii) R is consistent with S 

(b) < D' , R > (single type) 
with R consistent with S. 

3. f f i+l  = 
( a ) < ( D C , C k +  1 . . . . .  Cn), (S u R u  

(subsume(C'j => Cj ))!for all j E [l,k] ) > 
(b) < (DI, D'), S u R > 

At the end of the generation process, the set of 
possible admissible surface sentences can be directly 
derived from the preddence constraints which may 
not be a total order (some words may have different 
positions). 

6. A n  A p p l i c a t i o n  to S e c o n d a r y  
P r e d i c a t i o n  

We now present a more elaborate and 
comprehensive example which will further motivate 
our approach. Secondary predication is described at 
both lexical and syntac'fic levels, the intertwining of 
several constraints makes it simpler to describe in a 
fully declarative way. The description is thus 
independent of its use~ parsing or generation. This 
gives a good application example of the specification 
and use of our formalism and system for a real 
phenomenon of mueh importance to natural 
language system designers. 

6.1 A l i n g u i s t i c  a p p r o a c h  
Secondary Predication is a term used in the 

literature to denote a very productive structural 
relationship in many languages: the relationship 
between a subject and a predicate, the subject being 
assigned a thematic role by that predicate and by an 
obligatory thematic roie assigner in the sentence, 
namely the verb. For instance, in (1) 

(1) Mary drinks the water cold 
the water, the direct object of drinks, is assigned a 

thematic role by this verb and another one by the 

adjective cold. Then, water is, at the same time, an 
object for drinks and a subject for cold. In other 
terms, water integrates - as an object - a primary 
predication which corresponds to the whole sentence, 
and - as a subject - a secondary predication which 
corresponds to the sequence the water cold. 

6.1 .1  O b j e c t - o r i e n t e d  P r e d i c a t e s  
Secondary predication is not an uniform or an 

homogeneous phenomenon, neither from the point 
of view of a specific language, nor from a 
crosslinguistic one. We will describe here some of 
the most relevant structural properties and lexical 
constraints of this type of construction in French. 
Let us begin by considering the French sentence 
corresponding to (1): 

(2) Marie bolt l'eau froide. 
(2) is an ambiguous sentence as can be 

illustrated by the paraphrases below (the English 
translations of the examples are, all of them, literal 
translations): 

(2) (a)( Marie boit l'eau qui est froide 
("Mary drinks the water which is cold") 

(b) Quand Marie boit l'eau, l'eau est froide. 
("When Mary drinks the water, the water is cold") 

Considering the interpretation in (2)(a), the 
adjective is part of the direct object of the verb, 
which is not the case for the interpretation in (2)(b). 
Then, l'eaufroide can have the structure 

(3)(a) [NP[NP reau] lAP froide]] 
or the structure: 
(3)(b) [NP i reau][AP i froide]. 

In (3)(a)froide is a modifier of eau, while in 
(3)(b) it behaves as a predicate, assigning a 
secondary thematic roleto the NP. The predication 
relationship is expressed by coindexation. 

Let us now consider the sentence (4): 
(4) Marie boit i'eau mindrale 
("Mary drinks the water mineral'9 
In spite of its superficial structural resemblance 

with the example above, (4) is not ambiguous, the 
interpretation corresponding to the paraphrase (b) 
being not available: 

(4)(a) Marie boit l'eau qui est min~rale 
("Mary drinks the water that is mineral") 

but : 
(4)(b) *Quand Marie boit l'eau, l'eau est 

min~rale 
("When Mary drinks the water, the water is 

mineral") 
This means that the possibility of having or not 

having an object-oriented secondary predication 



depends on the semantic nature of the adjective. 
Moreover, there also exist semantic co-occurrence 
reslrictions between the adjectival predicate and the 
verb: 

(5) *Marie boit l'eau congel~e 
("Mary drinks the water frozen'9 
(5) is excluded because something frozen cannot 

be drunk. Notice that the presence of an adjective in 
sentences like (2) is optional, in opposition to what 
happens in sentences like (6) (for the same 
interpretation of the verb): 

(6) Marie considdre l'eau froide 
("Mary considers the water cold") 
(6)(a) *Marie considdre l'eau 
"Mary considers the water") 

What we can infer from the fact that (6)(a) is 
ruled out is that: (i) conside'rer (to consider) does not 
subcategorize for an NP, then fro/de can not be a 
modifier of l'eau; (ii) if fro/de is not a modifier of 
l'eau it must be a predicate, but, in this case, we 
dont have the structure presented in (3)(b). In fact, 
l}au froide behaves like a clausal phrase. It can even 
be replaced by a completive sentence (the semantic 
interpretation remaining the same) as exemplified in 
(6)(b): 

(6)(b) Marie considdre que l'eau est froide 
("Mary considers that the water is cold") 

We have then empirical evidence to analyse 
l'eaufroide in (6) as a clause, a "small clause" using 
an usual label in the literature (since the categorial 
status of the small clause is irrelevant for our 
purposes, we will only use the symbol "SC" to refer 
to this constituent, assuming the small clauses 
analysis proposed by Stowell (1981) and Stowell 
(1983)). As a consequence, l'eau froide is a 
predication having the structure in (7): 

(7) [SC[NP i l'eau] [AP i froide]] 
In this case it is the whole predication, and not only 
its subject, which is theta-marked by the verb. 
Stricto sensus, we have not a secondary predication, 
nevertheless, the conlrastive analysis remains 
important since the two kinds of structures are 
superficially very similar. 

As largely assumed in the GB framework 
(Chomsky (1981) and (1986)), predication is 
configurationnaly constrained: subject and predicate 
must be reciprocally m-commanded, that is, all 
maximal projections (phrase levels) dominating one 
of them must dominate the other one. Given this 
condition and the facts we have examined, (8) and 

(9) are appropriate representations (we use here X-bar 
notation only when relevan0, respectively, for (2) 
and (6): 

(8) [S [NP Marie] IV" [V'[V boit] [NP i l'eau] ] 
[AP i froide]]] 

(9) [S [NP Marie] [V"[V'[V consid&e] [SC [NP i 
l'eau] [AP i froide]]]]] 

Although attached to different nodes inside V" 
(while in (8) the subject of the secondary 
predication occupies the direct object position and 
its predicate is in a weak adjunction position (in the 
sense of Demonte (1988)), in (9) subject and 
predicate are together in direct object position), the 
predications we have considered so far involve only 
adjacent elements. Let us now examine sentence 
(10): 

(10) La lessive rend le linge blanc 
(The washing makes the clothes white") 
Similary to what happens in (6), the sentence is 

ruled out if the adjecfif is not present: 
(lO)(a) *La lessive rend le linge 
("The washing makes the linge") 

With respect to these facts it seems to be 
natural that sentence (10) is structurally identical to 
(9). Nevertheless, (10)(b), which is equivalent to 
(10), does not support this hypothesis: 

(lO)(b) La lessive blanchit le linge 
("The washing whitens the clothes") 

As we can observe, blanchit, a verbal predicate, 
can replace the verb - rend - and the adjectival 
predicate blanc (for the same semantic 
interpretation). Then, rend blanc behaves like a 
single predicate. At the same time, blanc is a 
secondary predicate for linge. Following a proposal 
by Marrafa (1983) and (1985) for similar cases in 
Portuguese, we consider rend blanc as a 
discontinuous complex predicate and we express the 
relationship between the two elements that 
constitue it by co-superscription. Therefore, (10) has 
the structure (10)(c),where k indicates the 
discontinuity in the predicate rend-blanc : 

(10)(c) [S[NP La lessive] [V"[V'[V k rend] [NP i 
le linge] [Apki blanc]]]] 

6.1.2 Subject-oriented predicates 
Discontinuity can also be an obligatory 

property of a certain kind of secondary predication, 
namely in the case of subject-oriented predicates. 
(11) is an example: 

(11) Jean dansait triste 
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("John dansed sad") 
Since Jean is a proper noun, it can not be 

modified. Then triste is necessarily a predicate for 
John. Although the subject of triste is the main 
subject and not an NP in object position as in the 
above sentences, there are semantic co-occurrence 
constraints between the verb and the adjectival 
predicate, as illustrated below: 

(11)(a) *Jean dansait repenti 
("John dansed repented") 
Taking into account these constraints and not 

violating the m-command condition refered to above, 
we represent the adjectival predicate as an strong 
adjunction (again in die terms of Demonte (1988)) to 
V", the syntactic representation of (11) being, then, 
(11) (b): 

(11)@) [S[NP i Jean] IV" IV" IV' IV dansait]]] 
[AP i triste]]] 

Notice that continuous and discontinuous 
secondary predication s can co-occurre in the same 
sentence: 

(12)Jean i boit l'eauj froidej triste i 
("John drinks the 'water cold sad") 

It is also interesting to point out that, in certain 
cases, sentences are iambiguous with respect to 
continuous and discontinuous secondary predication: 

(13)Jean i laisse son amiej triste i j 
("John left his girlfriend sad") 

To summarize, secondary predication can be 
associated to different types of structure and to 
continuous or discontinuous elements. Moreover, 
there are numerous and  different semantic co- 
occurrence restrictions ~ of different types affecting 
the lexical items invoNed. 

6.2 An Implementation in terms of 
types and constraints 

We now show how the above examples are 
expressed both at syntactic and lexical levels. The 
full syntactic structures are given under (8), (9), 
(10c) and (1 lb). The structure in (8) says that the AP 
is a sister of the V' (noted in the grammar as V with 
bar level 1) and that the AP is co-indexed with the 
object NP, the co-indeXation relation is left pending 
since it is preceded by the V' description. We have 
the following construction: 
xp( cat => v, string => SV, 

const l  => x l (  cat => v, string => $3) ,  
b 

const2 => xp( cat: => a, string => $4,  
index => I ) :- 

pend ing(xp(ca t  => v ) , [ x l (  cat => v, 

string => T, const l  => xO( cat => v, 
string => $1) ,  const2 => xp( cat => n, 

string => $2 ,  index => I ) ) ] ), 
p recede(S1  ,$2) ,  p r e c e d e ( S 3 , S 4 ) .  

Since the AP is not obligatory (it is a weak 
adjunct), there is nothing said about it in the 
lexicon. 

Construction (9) introduces a small clause 
(noted here as sc). Since it is not necessarily 
contiguous to the V', but only dominated by the V', 
we need a pending constraint. The type construction 
is the following: 
x l (  cat => v, string => SV, 

const l  => xO( cat => v, string => $1 ), 
const2 => xp( cat => sc, string => $2 ) ) :- 
pending(x1 (cat => v ) , [ x l (  cat => sc, 
string => SV, const l  => xp( cat => n, 

index => I, string => $3), const2 => 

xp( cat => a, string => S4,index => I ) ) ] ), 
precede(S1,S2), precede(S3,S4).  

The lexical entry of the verb (here considerer) 
has a pending constraint for the small clause: the 
verb subcategorizes for a small clause. 

Construction (10c) introduces a double 
indexation but no long-distance dependency for the 
compound predicate 'rend-blanc'. We represent it as 
follows: 
x l (  cat => v, string => SV, 

const l  => xO( cat => v, 
compound_..pred => K, 

string => $1), 
const2 => xp( cat => n, index => I, 

string => $2 ), 
const3 => xp( cat => a, index => I, 
string => $3, compound pred => K ) ) :- 

precede(S1 ,$2), precede(S2,S3).  

Finally, the construction given in ( l lb)  
introduces a long-distance relation between an NP in 
subject position and an AP which is in object 
position. To handle this phenomenon, we have to go 
up to the sentence level, that we will represent here 
for simplicity as s (instead of, for example, COMP). 
The type construction is the following: 
xp( cat => s, string => SV, 

const l  => xp( cat => n, string => $1 ,  
index => I ), 

const2 => x p ( c a t = > v ,  string => $2 ) )  :- 
pending(xp(cat => s),[xp( cat => v, 



string => T, 
const l  => xp( eat => v,string => S3), 
const2 => xp( cat => a, 

string => $4, index => I ) ) ] ), 
precede(S1 ,$2), precede(S3,S4) .  

At the lexical level, the adjoined AP is not 
mentioned, since it is not syntactically necessary 
(but it might be necessary from a semantic point of 
view, as also for case (8) above). 

7. Specif ic  features of our approach 

Our approach can be contrasted mainly with the 
usual systems based on unification grammar (UG) 
formalisms (Shieber, 86), (Emele and Zajac 90). The 
first major difference is that the unification and 
rewriting mechanisms usually associated with UG 
are replaced by a more constraining operation, type 
construction, which always proceeds by sucessive 
restrictions (or monotone increasing specialisation) 
each time a type is further expanded. From that point 
of view, our approach also substantially differs from 
(Ait Ka~i and Nasr, 86) who propose a powerful and 
semantically clear mechanism for typed unification 
associated to type inheritance. 

Next, we have a single operation: type 
construction; we do not have on the one hand 
grammar rules and on the other hand, associated to 
each rule, a set of equations to deal with feature 
values and constraints. The constraints we have 
associated with our types are not of the same nature 
and cannot be compared to the equations of UGs. 
They are moreover a part of the type. 

Constraints added to types are interpreted within 
the CLP framework, this permits us to have a more 
expressive and powerful constraint system, which is 
also more efficient and simpler to write. Constraint 
satisfaction is not indeed guaranteed at the level they 
are given, but throughout the whole type 
construction process. 

Our approach is compatible with the current 
principled-based approaches to describing languages. 
This is exemplified in section 4 by the constraints 
on role and case assignments. In a more general way, 
the description language we have presented here is 
particularly appropriate for highly abstract 
descriptions of language, which corresponds to 
several current trends in computational linguistics. 
Our description language is, in the same time, well- 

adapted to deal with lexical-based approaches to 
language processing (those approaches like lexicon 
grammars where the lexicon plays a central role) and 
to describe representations developed within lexical 
semantics. 

Finally, a constraint like pending generalises 
the notion of long-distance dependency to several 
other kinds of dependencies. This generalization is in 
particular a consequence of the fact that type 
structures do not have any ordering on subtypes and 
they cannot, thus, directly express the difference 
between remote and close constituents. 

Besides these general properties, our approach 
has several interesting properties which are more 
specific to reversibility. First, the common data 
shared by the two processes is all the linguistic data 
which is specified in a declarative way: lexical and 
grammatical. The semantic composition rules are the 
same. In the case of generation, they are translated 
into a parser of the formal grammar of this semantic 
representation. It should be pointed out that the 
parser given in section 5 can be generated 
automatically. 

Both processes also have a lot of elements in 
common at the procedural level: the type 
construction mechanisms are identical, the major 
difference at this level being the selection rule, 
which is, in the ease of generation, guided by the 
semantic form from which the process starts. The 
other difference is that parsing proceeds a priori top- 
down in the case we have exemplified (it could also 
proceed bottom-up). Generation proceeds bottom-up, 
for reasons explained in section 5. From this 
difference it results that the starting type in the case 
of parsing is a general type corresponding to 
sentence whereas there are no starting type in the 
case of generation, the starting points being the 
types corresponding to the predicates appearing in 
the logical formula, which are deduced from an 
operation close to lexical insertion. If the parsing 
process were bottom-up, then the starting types 
would be the same and the subsumpfion operation 
would also be used instead of the standard 
unification. 

Finally, and most importantly, the constraint 
system that we have presented is fully independent of 
the strategies used and of the direction of the process: 
generation of parsing. This is a consequence of the 
fact that constraints are evaluted only when there is 
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sufficient available information to evaluate them and 
also that their coherence with the other constraints is 
checked throughout the whole proof construction 
procedure. The variables which are used by active 
constraints are thus global variables. 

Conclusion 

In this document, we have first defined a 
formalism based on t~jpes and active constraints of 
the Logic Programming framework and have shown 
that it is well-appropriate to describe language 
constructions. We have in particular illustrated it by 
focussing on secondary predication, an important 
phenomenon in langt~age processing. Finally, we 
have shown that our formalism is particularly 
appropriate to be used by a parser and by a generator, 
in a symmetric way, and we have defined for that 
prupose two abstract machines. This work is now 
fully implemented in Sicstus Prolog (which allows 
the writing of constraint resolution mechanism) on a 
Sun workstation. Since constraints are so far meta- 
interpreted, we cannot make real comparisons with 
existing NLP systems. A significant result is 
however the much smaller number of backtraking 
operations that we havelobserved. 
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