The systematic construction of Earley Parsers:
Application to the production of an O(n) Earley Parser
for Tree Adjoining Grammars
Bernard Lang
INRIA
B.P. 105
78158 Le Chesnay, CEDEX, France

lang@margauz.inria. fr

Logic Programming languages (Prolog) were originally introduced as an exten-
sion of context-free (CF) languages. Conversely CF grammars may be seen as logic
programs (or Horn clauses) where the predicates are the CF graminar symbols, and
where these predicates have arguments corresponding to the boundaries of the input
string fragments they derive into.

Earley’s parsing algorithm can be generalized to Horn Clauses as a dynamic pro-
gramming evaluation technique. Keeping in mind the relation between Horn clauses
and CF grammars, we suggest encoding similarly in Horn Clauses other syntactic
formalisms so as to take advantage of this generalisation of Earley’s algorithm to
obtain for free efficient parsers for these encoded formalisms.

As an example, we consider the problem of TAG parsing. We show that any
TAG can be encoded into a logic program for which there is an evaluation in time
O(n®). We show on this example how the general dynamic programming procedure
can be adapted to conform the constraint that sentences be parsed from left to right,
even in the presence of interleaved constituents as is the case for TAGs.

The Valid Prefix Property
and
Parsing Tree Adjoining Grammars
Yves Schabes
Department of Computer and Information Science
R-555 Moore School
University of Philadelphia
220 South Street 83rd Street
Philadelphia, PA 19104-6389, USA

schabes@linc.cis.upenn.edu

The valid prefix property (VPP), capability of a left to right parser to detect
errors as soon as possible, is often unobserved in parsing CFGs. Earley’s parser
for CFG maintains the VPP and obtains a worst case complexity (O(n?®)) as good
as parsers that do not maintain VPP (as the CKY parser). Contrary of CFGs,
maintaining the valid prefix property for TAGs seems costly.

The aim of talk was to informaly explain why the VPP for TAGs seems expensive
to maintain and also to introduce a new Earley-style parser for TAGs which has
O(n®) worst case time complexity. The new parser does not maintain VPP but it can

11



behave in linear time on some grammars, in O(G?n*) worst time for unambiguous
TAGs and in general in O(G?n®)-time in the worst case. An earlier Earley-type
parser that we proposed in 1988 maintains the VPP but at its cost of its worst case
complexity (O(G*n®)-time). To our knowledge, it is the only known polynomial-time
general TAG parser that maintains the VPP. Both Earley-style parsers for TAGs
use top-down filtering and therefore their behaviors are in practice superior to pure
bottom-up parsers (as Joshi’s and Vijay-Shanker's adaptation of CKY algorithm to
TAG).

In practice, the importance of the VPP varies from grammars and is currently
being evaluated on natural language TAG grammars for English and French.

Parallel TAG Parsing on the Connection Machine
Michael Palis, David We:

Department of Computer and Information Science
School of Engineering and Applied Sciences
R-555 Moore School
University of Philadelphia
220 South Street 33rd Street
Philadelphia, PA 19104-6889, USA
palis@linc.cis.upenn.edu

We present a parallel parsing algorithm for Tree Adjoining Grammars (TAGs)
and its implementation on the Connection Machine (CM). The CM TAG parser is
designed to handle TAGs of arbitrary size without significant decrease in perfor-
mance. Specifically, the expected run-time of the parallel algorithm is logarithmic
in the grammar size (as opposed to quadratic in a serial implementation).

The CM TAG parser is an emulation of the CRCW PRAM algorithm. The
PRAM algorithm is characterized by frequent communication between processors
via the shared memory. Moreover, the pattern of inter-processor communication
does not have the regular structure often found in many parallel numerical algo-
rithms. Because the CM has a distributed memory, the emulation of the PRAM
algorithm can only be realized by explicit message-passing, albeit between non-
adjacent processors. Unfortunately, routing messages between non-adjacent proces-
sors is time-consuming on the CM. The CM uses a deterministic oblivious routing
strategy, which, in the worst-case, can introduce ,/p delay per emulated step, where
p is the number of processors used.

To obtain a more efficient emulation, we employ randomization: i.e., grammar
nodes of the TAG are mapped randomly to corresponding CM processors. In theory,
this reduces the delay per emulated step to O(log(p)) with high probability. In
practice, we use randomization as part of a pre-processing step: given a fixed TAG,
we generate several random mappings of the TAG to the CM, then choose the most
efficient mapping. The most efficient mapping is obtained experimentally by running

12



