
An Object Oriented Approach to Content Planning for
Text Generation

Ursula Wolz l

Columbia University
Department of Computer Science

New York, New York 10027
(212) 854 - 8124

email: wolz@cs.columbia.edu

Abstract

I'his paper describes GENIE, an object-oriented
architecture that generates text with the intent of extending
user expertise in interactive environments. Such
environments present three interesting goals. First, to
provide information within the task at hand. Second to
both respond to a user's task related question and
simultaneously extend their knowledge. Third, to do this in
a manner that is concise, clear and cohesive. Instead of
generating text based solely on either discourse goals,
intentions, or the domain, we found a need to combine
techniques from each. We have developed an object
oriented architecture in which the concepts about which
we talk (domain entities), the goals that may be
accomplished with them (intentions), end the rhetorical
acts through which we express them (discourse goals) are
represented as objects with localized knowledge end
methods. This paper describes how current text planning
methods were insufficient for our needs, and presents our
object-oriented method as an alternative.

1. Introduction
A practical problem for text generation is how to produce
good advice for users of interactive environments. In
such settings users attempt to accomplish tasks by
combining the set of available commands in a potentially
infinite number of ways. In this setting, the text
generation problem amounts to describing and justifying
a plan of action to the user, or describing trade-offs
between alternative plans, for example when suggesting a
better way to do a task. In developing GENIE [Wolz et al.
90, Wolz 90a, Wolz 90b], an advice giving system for
accomplishing tasks using Berkeley Unix Mail, we
discovered that current approaches to content planning
were insufficient for our needs in two ways. First, to

1Supported in part by ONR grant N00014-82-K-0256, by NSF grant
IST-84-51438, a grant from DARPA, and a grant from Siemens Researreh and
Technology Laboratories.

produce the kind of informative responses we found in
naturally occurring settings, we needed to carefully
partition how textual, domain, and intentional knowledge
influence the generation process. Second, in defining
textual structure, we found that both schemas [McKeown
85] and simple plan operators [Hovy 88, Moore & Paris
89] could not model the general structures we required
without introducing far too many special case operators.
Instead we found we could eliminate special case
operators by using a two stage process of liberal,
minimally constrained planning, followed by pruning in
which speech acts contend for inclusion in the text.

Both partitioning and our two stage planning process fall
naturally within an object oriented paradigm. Objects of
our three types, namely domain, intentional and textual,
have "knowledge" of how they participate in developing a
response to a question. This allows domain knowledge to
play more of a role in structuring response content than in
other systems. More importantly, as this paper will show,
all three can have localized knowledge of how they
interact with other objects which reduces the need for
special cases.

The next section will elaborate on the practical problem
of advice giving in open-ended settings, define our goals
for text generation in such settings, and justify why our
goals are appropriate. Section 3 shows why schema and
plan operators are insufficient. Our object-oriented
approach is described in section 4, with an emphasis on
text structuring. Section 5 reports on the status of GENIE,
and section 6 presents our conclusions.

2. Background
The GENIE project at Columbia addresses the problem of
how to extend users' expertise in interactive
environments. A communicative problem arises in such
environments because users tend to get stuck in a starter
set [Finin 83] of commands and never progress to more
sophisticated methods for accomplishing tasks. Question

9fi

answering in such an environment requires that a text
generator not only respond to the specific question asked,
but also attempt to add a little extra information in order
to enrich the user's knowledge. The domain we consider
is Berkeley Unix Mail, chosen because it is a microcosm
of Unix, providing extremely rich and sophisticated
functionality with a frustratingly hard to learn interface.
The domain also allows us to focus on extending system
expertise rather than domain problem solving since the
activities, sending, receiving and managing messages, do
not require high level thinking skills.

Interactive environments can be characterized as
computational tools that allow users to accomplish tasks.
Examples range from desk top aides such as word
processors, message systems and spread sheets, to
cad/cam systems and multi-purpose programming
environments. Typically a core set of functionality can
be combined and manipulated to construct solutions to
domain specific problems. A user approaches such an
environment with a domain specific or computational
goal, and constructs a plan to satisfy that goal with the
functional mechanisms available in the environment.

In such open-ended settings no two users will approach
the system with the same background or needs.
Consequently the degree of difficulty of functionality is
more dependent upon the particular experience of a user,
than on broad categories of functional difficulty or user
expertise [Chin 88]. Users tend to develop their own
highly personal repertory of commands. For example, an
"expert" user who has extensive experience reading
messages, and a "novice", one who has almost no
experience reading messages, may both need to be
introduced to a method for storing mail in files. The level
of expertise of the first user is less significant than
whether his or her particular expertise contributes to how
much more easily the new method can be communicated.
Therefore a particular goal may be satisfied by more than
one plan, where the criteria for which plan is "best" is
dependent upon the context of the task at hand. This
context can be viewed as a model of the user, and it is the
primary influence on the choice of content and the
structure in which that content appears as text. It consists
of:

• The discourse context w The type of
question the user is asking, and the
specificity of the question. For example, is
the user asking for a plan, for an explanation
for why a plan failed, or for a better plan than
the one he or she is currently using 2.

• The situational context - - The "physical

2A more accurate label might be the "question context," however
eventually this structure should represent the dialogue between the user
and GENIE over time. We keep the more grand label to remind ourselves
of this.

situation" the user is in, that is, the state of
the environment and the user's position in it.
This includes background knowledge about
domain entities such as what some one's
email (electronic mail) address is.

• B e l i e f s a b o u t th e U s e r ' s T a s k E x p e r t i s e w
The computational goals GENIE believes the
user knows about and the plans the user has
for satisfying them.

Finally, since a user's primary goal is to complete the
task, and only secondarily to get new information, he or
she would prefer a succinct, informative answer.
However the answer should also be sufficiently
grounded, that is, it should contain advanced organizers
[Gagne & Briggs 79] that explicitly articulate any of its

goals, assumptions, and decisions in choosing a course of
domain action that are not obvious to the user.

An example scenario might help illustrate these points.
Consider the user model defined at the top of Figure 2-1.
The user asks the question, "how do I send a message",
which implies a question intent to receive a plan for the
goal "send a message." The discourse context contains
the question intent "given a goal give me a plan", and the
expectation that such a plan exists, and that GENIE will
provide it to the user. The statement of the goal further
indicates that the user is asking about sending a single
message, in contrast to "sending mail" where the quantity
of messages is ambiguous. The goal statement does not
however does not say anything about who the recipient
might be. The details of the goal statement can have a
profound effect on how GENIE selects content, and
chooses to present it. Physically, the user is in the Unix
shell, and has no new mail. In the past the user has never
initiated the sending of a message, but has only sent
messages in reply to messages s/he has received. Finally,
as background, in Berekely Unix mail, one cannot "get
into" the mail environment with the command "mail"
unless one has new mail. The text GENIE produces as a
result of this scenario appears in the lower part of the
figure.

Sentences 1 - 3 are produced as a result of responding to
the user by introducing a plan for sending mail. Sentence
1 is an advanced organizer, which makes sure GENIE is
answering the question the user asks. Note that if GENIE
had true dialogue capabilities, it might pose this as a
question. Only ff the user responded in the affirmative
would it proceed with the remainder of the text as is.
Sentences 4 and 5 are enrichment, elucidating why the
user's usual plan won't work. Note too, how discourse
goals are merged. For example, sentence 3 is both an
example and a definition of syntax.

Text generation for interactive environments therefore
requires addressing the following goals:
1. Provide information about the relationship between

9 6

Input:
Discourse: How can I send a message to message?
Situation: User is in Unix, with no new mail.

Kathy is a user with email address "kathy."
User knowledge of domain tasks:

User has never sent a message from Unix shell,
but has only initiated sending from "read mode"
afar reading new mail.

Output:

(1) I assume you are in unix, your recipient is an
individual, and the address is a local address. (2) You
must supply the email address of the individual. (3)For
example, to send mail to Kathy, type

mail kathy

since kathy is her email address.
(4) You usual method is to read your mail, then use the
mail command inside the mail environment. (5) Since you do
not have any new mail, your usual method will not work.

Figure 2-1: An example scenario

users' task (their computational goal) and the
methods ((plans) that may be used to accomplish
them. Do this within the current context of the task
at hand.

2. Respond informatively, but also attempt to provide
enriching material.

3. Provide advanced organizers, but do it in a manner
that is concise, clear and cohesive.

Taken together these goals suggest that a large amount of
information must be presented in as short a text as
possible. Evidence from three informal studies indicates
that natural occurring texts satisfy these goal. First a set
of textual materials, including manuals, tutorials, texts
and canned text on-line resources were studied. Tutorials
and on-line resources tended to focus on responding
directly to the problem of how to do tasks. Reference
manuals, text books and especially "advanced user"
manuals focused on enrichment. In all, 20 passages
covering information about Unix, Lisp, Pascal, Logo and
a number of word processors were analyzed. These texts
have strongly influenced our approach to content
selection and structuring. In particular, we found that
four types of strategies occurred through which
information about the relationship between domain plans
and goals was given:

• Introducing: Presenting plans that the user
has not encountered before.

• Reminding: Briefly describing plans to
which the user has been exposed, but may
have forgotten.

• Clarifying Distinctions: Explaining

distinctions and options about plans.

• Elucidating Misconceptions: Clearing up
misunderstandings that have developed about
plans to which the user has been exposed.

These strategies had a consistent general structure that
included sub-strategies such as summarizing or
elaborating on a plan that had their own linguistic
structure. See [Wolz et al. 90] for a thorough discussion
of these strategies. The "Introduce" strategy will be
discussed extensively in the following sections.

The second analysis looked at 30 unix related question
answering sessions in which the correspondence occurred
through electronic mail. We found that the responses still
fell within the four strategies. The respondent made an
attempt to respond informatively, and in 8 cases explicitly
included contextual information that acted as an advanced
organizer, or that might not have been obvious to the
questioner. In 7 cases the respondent included
information that was not merely in response to the
question, but that could extend the questioner's expertise.
Most importantly however, we found instances where
sub-strategies, and sometimes the four basic strategies
themselves, were combined to produce very concise
utterances. We also noticed that sub-strategies were
absent when their contents was not critical, or when it
was obvious from the question. The last of these points
have led us to the goal of conciseness.

A third study of human-to-human tutoring in a computer
lab also corroborated the strategies, the incidence of
enriching behavior, the use of advanced organizers.
However, verbal responses tended to be significantly
more long winded, exhibiting more of a stream of
consciousness than the mail messages. Since GENIE
produces interactive text, our goal is to most closely
match the mail message behavior, and aim for
conciseness.

3. L i m i t a t i o n o f C u r r e n t A p p r o a c h e s
GENIE was developed as a result of the design goals
enumerated above, namely to answer a question within
the task at hand, satisfy the dual discourse goals of
responding and enriching, and do this clearly and
concisely. These goals presented some special problems
for capturing textual structure, and for defining choice
points for refining that structure into natural language
clauses and vocabulary.

In order to cover two simultaneous discourse goals
through clear and concise text, we discovered that
schemas [McKeown 85, Paris 87] provided too rigid a
structure with insufficient definition of choice points,
while plan operators [Hovy 88, Moore & Paris
89] provided too many choice points without sufficient
structure. In order to answer a question within the task at

9 7

hand, GENIE needed to make choice point decisions based
on intentional [Appelt 85, Moore & Paris 89], domain
and textual [McKeown 85, Paris 87] knowledge. Previous
work on text generation has tended to put the emphasis on
one of the three, incorporating the other two implicitly.

The problem can be best illustrated by looking at the
informal description of the strategy of "introducing"
presented in Figure 3-1. The structure of this strategy
was derived from principles of instructional
design [Gagne & Briggs 79] and on the analysis of text.
The informal definition contains both structure, in the
form of how to expand an introduction into sub-structures
such as "summarize", and under what circumstances to do
so, for example whether the goal is satisfied by an action
or another plan, or whether the user knows or does not
know the subgoal. This strategy assumes a recursive
definition of a goal, where the goal can be satisfied by an
action or indirectly by a plan that itself consists of a set of
subgoals. This definition of a goal follows that used in
STRIPS [Fikes and Nilsson 71] where the term goal
refers to a state difference. It is to be distinguished from
the goal state, or end state which is sometimes referred to
as "the goal."

Casting this informal description as a formal schema
looses the explicit information about what circumstances
motivate expansion into particular sub-structures. For
example, the schema definition presented in Figure 3-2
does not contain choice point knowledge.

Conversely, casting the description as a set of plan
operators looses the explicit structure in the informal
description. The structure emerges only during planning.
Researchers in text generation using plan operators
(Appelt85,Hovy88, Moore-paris89) have adapted the
hierarchical definition of a plan operator developed by
Sacerdoti [Sacerdoti 77] A discussion of the merits and
disadvantages of the subtle differences between
definitions is not appropriate here. Instead, we must
focus here on the components of plan operators that are
critical to representing choice points and sub-structure,
namely a constraint/action-body pair. Constraints or
preconditions define choice points, while the body of the
operator defines actions that are taken if the constraints
are met. Figure 3-3 shows informal definitions of some of
the operators that would be required to model the sub-
structures that appear in Figure 3-1.

Plan operators introduce an even more insidious problem.
Note that both Introduce-plan and Introduce-action
contain the operator "state-goal" in their bodies. Other
high-level strategies such as Remind Plan or Elucidate
Misconception also include this sub-structure. Recall that
GENIE will initiate two strategies, one in response and one
to enrich. For example, to produce the text in Figure 2-1
GENIE chose to respond by introducing a new plan to the
user, and enrich, by elucidating why the user's usual plan
won't work in the current situation. The fundamental

1. Informally, introducing a plan consists of
a. Stating the goal.

b. If the goal is satisfied by an action, introducing the
action, otherwise:

c. Stating any assumptions that affected the choice of
plan.

d. Summarizing the sub-goals for the plan.

e. For each sub-goal either introducing or reminding
about the plan for the sub-goal depending on whether
the model of user task expertise indicates the user
knows how to satisfy the sub-goal.

f. If the plan is not the top-level plan, reviewing the
steps in the plan through an example.

g. Relating each step in the example to a sub-goal.

2. Introducing an action consists of:
a. If the goal which the plan satisfies is the top level

goal, stating the goal.

b. Presenting the syntax.

c. Describing the parameters.

d. Describing any preconditions that must exist for it to
work.

e. Describing the effects (which is not the same as
stating the goal).

f. If the goal which the plan satisfies is the top level
goal, giving an example.

Figure 3-1: Introducing a plan or an action

Introduce Schema
{goal-statement}
{assumptions plan-summary

(introduce I remind) example* comparison*}
{syntax parameters preconditions

effects example* }

{ } = optionality
* = zero or more

Figure 3-2: The strategy of introducing as a Schema

problem with having two discourse strategies within a
single text is that when each is instanfiated as a sequence
of speech acts, redundancy and conflicts may appear
unless the instantiafions of those structures are
coUaboratively developed. Furthermore, in GENIE, the
highest level strategies (remind, introduce, elucidate,
clarify) all contain at least one instance of recursion on
another top level strategy. For example, introducing a
plan requires introducing or reminding the substeps of the
plan. Published descriptions of cur~nt content planners

9 8

introduce-plan
constraints: goal is satisfied by plan
action-body: state-goal

state-assumptions
summarize-plan
expand-plan
plan-example
relate-steps

introduce-action
constraints: goal is satisfied by action
action-body: state-goal

state-syntax
state-preconditions
state-parameters
action-example

Figure 3-3: Possible plan operators for introducing

don't show how this kind of open-ended recursion is
handled. Examples tend to only show how a top level
discourse goal is elaborated through a refinement process.
When runaway recursion might occur, computational
tricks such as limiting the number of levels of deepening
is suggested. This is not sufficient for GENIE'S purposes.

For example consider a domain goal G that is satisfied by
plan P, that expands into subgoals, that are satisfied by
plans that themselves expand until a set of actions is
reached. Clearly one can't limit the expansion since the
actions are a critical component of the text. If one blindly
follows the informal description of introducing the top
level plan P, then all of the subgoals and sub-plans will be
included recursively. Merely stating the top level goal
and plan, and the resulting actions would seem to be a
natural intuitive solution. But this would require different
operators for "high" level strategies, than for those further
down the structure. This thwarts the elegant nature of
independent, generalized structures such as schema's and
plan operators. To further aggravate the situation,
consider that many of those actions may have the same
preconditions. Again, if one blindly follows a
generalized "introduce action" operator, then for all those
actions that include precondition P, a speech act stating P
will be included. One would prefer that P be stated at
most once.

Avoiding this problem through "special case" operators is
insufficient. For example, consider two plan operators
that handle when to state the goal.
1. If introducing in response, include a statement of the

goal unless it is explicitly mentioned in the question.

2. If introducing as enrichment, do the same thing
except if you already mentioned the goal in
response, don't mention it again.

The second operator is dependent upon the result of the

first one, and although superficially they seem to be
independent entities, they are not. Now a third special
case is introduced when "elucidating a misconception",
because here too, there are circumstances in which the
goal should be stated. All three operators know about
each other implicitly through their constraints. Because
plan operators based on Sacerdoti's hierarchical model
assume a set of abstraction spaces, "high level" operators
always precede lower-level ones, and the higher ones
consequently have an implicit influence on the
subordinate ones.

A final problem with implementing the informal
structure of Figure 3-1 as plan operators is that a
significant amount of domain specific knowledge is
embedded in the operators, The operators in Figure 3-3
illustrate this point. The "state-..." operators are
essentially "inform" speech acts, but they imply that a
specific sort of domain object is to be the subject of the
informing. Although text plan operators are supposed to
be textual in nature, it is far too easy to implicitly embed
domain knowledge in them. This compounds the
complexity in developing constraints because textual,
domain, and intentional knowledge can be haphazardly
intertwined. A similar problem occurs in creating the tests
on schemas, since the test may be described by an
arbitrary lisp expression. In developing GENIE, we found
ourselves mired in layers of operators that contained such
complex inter-related constraints. This suggested a
different sort of architecture that would allow us to deal
with the complexity of inter-related, but distinct
influences, and at the same time model both structure and
choice of structure in one formalism.

4. An Object-Oriented Architecture for
Content Planning

Given the problems described in the previous section, we
will focus here on the aspects of GENIE'S object-oriented
architecture that address the problems of text structuring
and content choice. The over-all architecture is described
in [Wolz 90a]. In particular, this section will illustrate
how special case operators are avoided by cleanly
dividing the structuring process into two stages. First,
rhetorical strategies are refined with minimal constraints
to the point of rhetorical acts. Second, the rhetorical acts
contend for inclusion in the set that is realized as text.
Some acts may have cause to be explicitly included or
excluded, and among those that are included some may
be merged with others, while some may need to be
explicitly kept separate. Before these processes can be
described however, it is necessary to articulate the nature
of object-orientedness as it applies to GENIE, and describe
the input to the text structuring phase.

99

4.1. Object Classes for Content Planning
GENIE employs three overlapping classes of objects;
domain objects, intentional objects and discourse objects.
Domain Objects classify domain entities, including both
the commands such as "mail" or "copy" that the user
invokes, and the entities manipulated by commands such
as flies, messages and users. Intentional Objects allow
GENIE tO construct and analyze plans, and include
computational goals, plans to satisfy them, and actions
(which contain commands as a subclass). Discourse
Objects include rhetorical strategies, rhetorical plans,
rhetorical acts, syntactic structures and vocabulary. Note
that these classes are not mutually exclusive. For
example, a goal such as "wanting to send mail" is both an
intentional and domain object since it is a domain specific
goal.

Each object class has explicit relationships to other
classes. For example the class "goal" contains an
attribute "who-satisfies-me", whose value can point to
either a plan or an action. A plan in turn is an object class
that is related to a rhetorical strategy "talk-about." The
strategy in turn knows under what circumstances the
object about which it talks (the plan) should be
introduced, reminded about, clarified or elucidated, that
is, it is related to these other rhetorical strategies. Finally,
rhetorical strategies may be instantiated either by
rhetorical plans, that recurse to other strategies, or by
rhetorical acts such as "stating" that can be manifested as
English texL

4.2. Constructing Domain Objects for Inclusion
in the Text

Recall that GENIE answers questions about how to do
tasks. In other words, it provides descriptions of the
relationships between goals, plans, actions and the effects
of actions in the domain. Providing an answer involves
understanding the user's question in a situational context
by instantiating a set of domain objects, generating the set
of objects (domain goals, plans, actions, effects) that are
expected in reply, and selecting the discourse objects that
talk about those objects.

For example, consider the question from Figure 2-1:
"How do I send a message?" As a result of parsing this
sentence, the discourse context will include an
instantiation of the very specific goal "send-mail." The
discourse context will also include the question intent that
the user expects to be told the best plan for the goal in the
current context. A specialized plan class knows how to
construct an instantiation of such a plan, calling it
b e s t - p l a n . It creates a relationship between the
instantiation of the "send-mail" goal, and b e s t - p l a n
and relates b e s t - p l a n to an instantiation of an abstract
plan for satisfying that goal. It also instantiates
discriminator objects that capture the assumptions and
decisions that were made in constructing the abstract

plan. Like other objects that might be included in the
final text, these discriminator objects, which are domain
dependent, have rhetorical strategies that can talk about
them. b e s t - p l a n is then refined, by instantiating the
subgoals of its abstract plan until the process bottoms out
as actions.

Figure 4-1 shows some of the itentional objects that are
instantiated for b e s t - p l a n . Describing the actual
process here would take us too far afield. Note that the
discriminators include which part of the user model
affected the choice. Decisions that are based on the
discourse and situational context are "stronger" than those
that are based on the model of user task knowledge. The
former are deduced from facts, the latter, like default
heuristics for object types, are deduced from weaker
beliefs. The strength of the deduction will affect how the
decision is described in the text.

BEST-PLAN (plan)
subgoals: ENTER-SEND-MODE-I, CHOOSE-RECIPIENTS-I

ENTER-SEND-MODE- 1 (goal)
discriminator: UNIX-READ-I
who-satisfies-me: B-SUB-I

B-SUB-I (plan)
subgoals: SEND-FROM-UNIX- 1

SEND-FROM-UNIX-1 (goal)
who-satisfies-me: SEND-FROM-UNIX-ACTION- 1

CHOOSE-RECIPIENTS-I (goal)
discriminator: GROUP-SINGLEd
who-satisfies-me: B-SUB-2

B-SUB-2 (plan)
subgoals: CHOOSE-SINGLEd

CHOOSE-SINGLE-I (goa D B-SUB-3 (plan)
discriminator: LOCAL-REMOTE-I subgoals: CHOOSE-LOCAL-1
who-satisfies-me: B-SUB-3

CHOOSE-LOCAL-I
who-satisfies-me: CONSTRUCT-LOCAL-ADDRESS-ACTION- 1

UNIX-READ-I (discriminator)
choice-from: SITUATION

GROUP-SINGLEd (discriminator)
choice-from: USER-TASK-MODEL

LOCAL-REMOTE-1 (discriminator)
choice-from: USER-TASK-MODEL

Figure 4-1: Set of Objects to be Included in Response

The best plan by itself is not sufficient for GENIE'S
design goals. In particular, its construction offers little
insight into what the user knows about it, or for that
matter whether the user knows any plan for satisfying the
goal, and whether that plan works in the current context.
Therefore, in this context it is also necessary to construct
a User Model Plan, u s e r - p l a n , that has a similar
structure. The two plans are "compared" by annotating
differences in the sets of objects produced for each. More

i00

importantly, the best-plan and user-plan are
annotated as to whether each is valid in the current
situation, and if so, whether they are the same plan. The
information is critical to how each will be "talked about."
In the scenario of Figure 2-1 the u s e r - p l a n will not
work because it requires that new mail exist, which is not
the case in the scenario. Once the relationship between
the goal, b e s t - p l a n and u s e r - p l a n have been
established, text structuring can begin.

4.3. Structuring Content: Instantiating
Rhetorical Strategies

Structuring content consists of selecting two rhetorical
strategies, one for responding, and one for enriching, and
instantiating a rhetorical plan for each strategy. The
selection is based on the nature of the question intent, the
domain plans that have been constructed, whether those
domain plans satisfy the goal, and whether they are
identical. The selection rules were compiled from our
design goals, and result in one plan being described in
response and possibly a second being described as
enrichment. The plans for the two strategies are then
reeursively expanded until the process bottoms out as a
set of rhetorical acts.

Structuring begins when the domain plans such as
best-plan and user-plan are sent messages to
"talk-about" themselves 3. In the example scenario,
best-plan decides that it should be "introduced in
response to the question" because it is not identical to
user-plan. Had the plans been identical,
b e s t - p l a n would have chosen to be reminded instead.
u s e r - p l a n decides that it should be "elucidated as
enrichment" because it doesn't work in the current
context.

The strategies map to rhetorical plans that are a
sequences of message passing instructions with simple
control structures, such as interating on a list, and binary
branching. A rhetorical plan is refined by sending those
messages to other rhetorical strategies or to rhetorical acts
that cannot not be further refined. The method for
expanding the rhetorical plan is dependent upon the
object type of the entity to be talked about. Classes of
objects may use the same rhetorical strategy through
inheritance, however, when appropriate two classes may
require the same strategy, but have their own private
rhetorical plans for those strategies. For example, given
the informal descriptions of introducing a plan or an
action in Figure 3-1, it is clear that the text structure of
introducing these two kinds of things is dissimilar. The
rhetorical strategy associated with introducing a plan is
formally described as:

3In other scenarios, other kinds of plans might be constructed, s e e

[Wolz 90a] for details.

(rh-plan introduce plan
((state-it goal-I-satisfy)
(ITERATE choice ON choices-made WITH

(describe-decisions choice)
(ITERATE subgoal ON subgoals WITH

(summarize subgoal))
(ITERATE subgoal ON subgoals WITH

(IF (subgoal in-user-model)
(remind who-satisfies-me)
(introduce who-satisfies-me)))))

This plan says, to introduce a plan, state the goal it
satisfies. For each choice made to construct it, describe
the reason for the choice. For each subgoal, summarize
the subgoal, then for each subgoal, if the subgoal is
known by the user, remind the user about how it can be
satisfied, otherwise, introduce how it can be satisfied. A
particular object, like a domain plan, has a set of
attributes or slots that link it to other objects. For
example, a plan has a "goal-l-satisfy" slot that relates it to
the goal it satisfies, and the goal in turn has a "who-
satisfies-me" slot that points to the plan. The statement
"(state-it goal-I-satisfy)" says to send a "state-it" message
to the object related to me by my "goal-l-satisfy"
attribute. When this message is sent, a rhetorical object
of class "state-it" is instantiated that links the calling
rhetorical object with the called object, creating ties
between them and the domain objects.

Of particular significance is the fact that rhetorical plan
are minimally constrained. For example, the plan for
introducing a domain plan has no constraints on when to
include the statement of the domain goal, so this plan can
be used both to describe the b e s t - p l a n , or one of its
sub-plans, or the u s e r - p l a n without complex
constraints. More importantly, this rhetorical plan does
not need to keep track of which operators are appropriate
for different kinds of objects. For example, when
expanding its subgoals, it merely sends a message to the
object related to the subgoal by the "who-satisfies-me"
slot. The object, either a plan or an action, upon
receiving the message instantiates its localized rhetorical
plan for reminding or introducing. This process continues
until a set of rhetorical acts is constructed.

4.4. Contending for Inclusion: Communication
Between Rhetorical Acts

The structuring stage produces an initial ordering of
rhetorical acts that contain functional descriptions which
when given to the surface generator can produce text. The
form of these descriptions is based on the theory of
functional grammar [Halliday 85]. Due to the minimally
constrained refinement employed during the expansion of
the strategies, the set of rhetorical acts produce redundant,
extraneous or obvious information that would be terribly
verbose if instantiated as text. For example, Figure 4-2
shows the text that would be produced if the first 6
rhetorical acts instantiated in the send mail example were

i01

given to the surface generator. Note that these 6 acts are
only 1/5 of the rhetorical acts that are produced in this
example.

STATE-IT-GOAL- 1 ::
domain-object[goal] :send-mall-I
STATE-IT-STRONG-DISCRIMINATOR- l ::
domain-object[discriminator] :unix-read- 1
STATE-IT-GOAL-2 ::
domain-object[goal] :choose-recipients- 1
STATE-IT-WEAK--DISCRIMINATOR- 1 ::
domain-object[discriminator] :group-single-1
STATE-IT-GOAL-3 ::
domain-object[goal] :send-individual- 1
STATE-1T-WEAK-DISCR/MINATOR-2 ::
domain-object[discriminator] :local-remote- 1

You want to send mail.
I know you are in Unix.
You want to specify a recipient.
I assume your recipient is an individual.
You want to specify a single recipient.
I assume the address is a local address.

Figure 4-2: Text Produced Before Content Filtering

some distance may find themselves next to each other, or
even merged, if the acts between them are excluded.
Once processing is complete, the remaining objects apply
knowledge for constructing clause level structures which
are then passed to the surface generator.

Figure 4-3 shows how the 6 acts from Figure 4-2 contend
to be included, and are eventually merged to produce the
first sentence in Figure 2-1. The first act of stating the
main goal can be excluded because it is in the discourse,
and is probably obvious to the user. The second and third
statements of goals may be excluded because they are
part of a goal-plan-goal chain, that is, they supply
unnecessary detail about the relationship between the top
level goal and the actions. The result of these deletions
makes the two "weak" discriminator statements adjacent,
at which point they can be merged. This newly merged
object can then be merged with the "strong" discriminator
that follows it. In general, when weak assertions out
number strong ones, the weak assertions can subsume the
strong assertions, if the significance of the strong
assertion isn't important. For example, it is acceptable to
say "I assume X and Y" even if you "know X" provided
the distinction between knowing X and assuming X is not
critical to the response.

The contention stage reviews this list and specifically
includes, excludes, merges or keeps separate acts within
this list. For example information derived from either the
situational context, such as the mode the user is in, should
be included because it may not be obvious to the user.
Information derived from the discourse context, such as
an explicit reference to the goal may be excluded as
obvious because it was referred to in the question. In the
process of both reminding and clarifying, the same
preconditions may be introduced twice. These can be
merged into one utterance. However, if a component of
an utterance is critical, such as a failed precondition when
elucidating a misconception, then it should be kept
separate.

The rhetorical acts contain the methods for determining
how they can be filtered. This includes specific rules for
when they may be excluded, when they must be included,
what other objects they may or must be merged with and
which one is dominant, and when they are to be kept
separate. Contention for inclusion in the text begins when
the set of rhetorical acts is sent messages to "execute"
themselves. Each examines its methods for how it may
be merged etc. Processing continues until all objects
return successfully. Some objects will have been
excluded and some will have instantiated new "merged"
objects, subordinating themselves to the merged object.
Restructuring occurs during merges and excludes. A
merge may move an act up or down depending on
whether the dominant act comes before or after the
submissive one. Two acts which are initially separated by

Excluded[
STATE-IT-GOAL-1 because IN-DISCOURSE-CONTEXT
Excluded!
STATE-IT-GOAL-2 because IN-GOAL-PLAN-GOAL-PATH
Excluded[
STATE-IT-GOAL-3 because IN-GOAL-PLAN-GOAL-PATH
Merged!
STATE-IT-WEAK-DISCRIMINATOR-2 and
STATE-IT-WEAK-DISCRIMINATOR- 1 into
CONJOINED-WEAK-DISCRIMINATOR- 1 because
SAME-TYPE
Merged!
CONJOINED-WEAK-DISCRIMINATOR- 1 and
STATE-IT-STRONG-DISCRIMINATOR- 1 into
CONJOINED-WEAK-DISCRIMINATOR-2 because
WEAK dominates STRONG

I assume you are in unix, your recipient is an individual, and
the address is a local address.

Figure 4-3: Application of Filtering Methods

5. Status
GE~E is implemented on a Sun 3/60 in Sun Common
Lisp. All of the object types described are represented
using Hyperclass [Smith and Carando 86] which provides
powerful inheritance mechanisms. Surface text
generation is accomplished through FUF[Elhadad
88] that employs a two stage process of functional
unification [Kay 79] and linearization to produce English

102

[Finin 83] Finin, T. Providing help and advice in task
oriented system. Proceedings of the Eighth International
Joint Conference on Artificial Intelligence, Karlsruhe,
West Germany, 1983, pp. 176-178.

[Gagne & Briggs 79] Gagne, R. M. and L. J. Briggs
Principles of Instructional Design. Holt Rinehart and
Winston, New York, 1979.

[Halliday 85] Halliday, M.A.K. An Introduction to
Functional Grammar. Arnold, London, 1985.

[Hovy 88] Hovy E.H. Two types of planning in
language generation. Proceedings of 26th Meeting of
ACL, Association for Computational Linguistics, 1988.

[Kay 79] Kay, M. Functional Grammar. Proceedings of
the 5th meeting of the Berkeley Linguistics Society,
1979.

[MeKeown 85] McKeown, K.R. Text Generation:
Using Discourse Strategies and Focus Constraints to
Generate Natural Language Text. Studies in Natural
Language Processing. Cambridge University Press,
Cambridge, England, 1985.

[Moore & Paris 89] Moore, J.D. and C.L. Paris.
Planning text for advisory dialogues. Proceedings of 27th

• Meeting of ACL, Association for Computational
Linguistics, 1989, pp. 203 - 211.

[Paris 87] Paris, C.L. The Use of Explicit User Models
in Text Generation: Tailoring to a User's Level of
Expertise. Ph.D. Thesis, Columbia University, 1987.

[Sacerdoti 77] Sacerdoti, E. A Structure for Plans and
Behavior. American Elsevier North-Holland, New York,
1977.

[Smith and Carando 86] Smith, R.G and P.J. Carando.
Structured Object Programming In Strobe.
Schlumberger-DoU Research, Ridgefield, CT, 1986.

[Wolz 90a] Wolz, U. Extending User Expertise in
Interactive Environments. Ph.D. Thesis, Columbia
University, 1990. Forthcoming.

[Woh 90b] Wolz, U. The impact of user modeling on
text generation in task-centered settings. Second
International Conference on User Modeling, Honolulu,
Hawaii, 1990.

[Woiz et al. 90] Woh, U., K.R. McKeown and
G. E. Kaiser. "Automated tutoring in interactive
environments: A task centered approach."
Machine-MediatedLearning 3, 1, 1990, pp. 53-79.

104

