A Framework for the Development of Natural Language Grammars

Massimo MARINO
Department of Linguistics
University of Pisa
Via S.Maria 36 1-56100 Pisa - ITALY
Electronic Mail: MASSIMOMOICNUCEVM.BITNET

Abstract
This paper describes a parsing system used in a framework for the development of Natural
Language grammars. It is an interactive environment suitable for writing robust NL applications
generally. Its heart is the SAIL parsing algorithm that uses a Phrase-Structure Grammar with
extensive augmentations. Furthermore, some particular parsing tools are embedded in the system,
and provide a powerful environment for developing grammars, even of large coverageA

1. Introduction

Every parsing system should embed a set of tools or mechanisms which should provide an aid
In treating a minimum set of linguistic phenomena. Designing SAIL we have mainly taken into
account the generality of the parsing system in order to give a wide freedom to the grammar designer,
S0 as to investigate many possible solutions in grammar design in order to adopt the best of them.
SAIL (System for the Analysis and Interpretation of Language) Is the parsing algorithm of the SAIL
Interfacing System (SIS) (/Marino 1988a/. /Marino 1988b/, /Marino 1989/), and Just because of Its
features of generality the design has been driven by some general aspects which derive from various
theoretical as well as computational accounts.

1. Whatever representation is adopted for the structure of the parsed sentences, it is agreed that
complex sets of syntactic and/or semantic features must describe the linguistic units. Therefore, it Is
necessary to provide feature handling mechanisms. This point has suggested to us a way of providing
a very rich language for handling feature structures (FS in the following). FSs are represented as
trees where each arc is labelled by an attribute, and nodes can be pointers to the following
alternative paths or a pointer to a leaf node where the value for the path spanned so far Is found.
They can store many kinds of information thanks to their efficient processing provided by a core set
of functions.

2. Some linguistic phenomena encountered In parsing NL, such as long-distance dependency or
the ability of treating some context-sensitive cases, led us to see the SAIL grammar rules as processes
executed by a processor, a role covered by the parser. The rules of a grammar have associated some
information related to their status of processes which are scheduled In a priority queue, according to
some their priority of execution (/Knuth 1973/, /Aho et al. 1983/). This also allows, for Instance,
that the execution of some rule can be requested to perform context-sensitive recognition, or some
rules can exchange between each other some information under the form of messages to perform the
treatment of long-distance dependency.

3. The parser is structured as a bottom-up (shift reduce) all-paths algorithm, and a formalism
for the grammar rules was defined to allow syntactic processing in parallel with semantic
processing. The grammar of SAIL is a Phrase-Structure Grammar (PSG) with extensive
augmentations, so that we also take advantage from the compositlonallty principle naturally

~This work has been carried out within the framework of the ESPRIT Project P527 CFID
(Communication Failure in Dialogue: Techniques for Detection and Repair).

-350- International Parsing Workshop '89

embedded In bottom-up parsers. As mentioned above, the parser is seen as a processor, thus one of its
main tasks is to schedule the processes/rules to run in a priority queue. This queue is not completely
under control of the parser since the grammar rules and the dictionary can also issue some specific
operations or requests about the management of the scheduling task.

4. The need of a flexible front-end for the user is of primary importance to provide a powerful
and complete development environment. The user interface built over SAIL, the SIS. is the
framework where a user can interact with the underlying parsing system in developing grammars.
This interface provides a set of commands, defined by means of a semantic grammar, that are caught
and processed by SAIL and can handle many possible requests of the user.

In the following section we give a brief description of the grammar and dictionary format and
how a grammar is defined in SAIL. Section 3 gives an overview of the SAIL parsing system, parser
organization, and data structures It uses. Section 4 describes the parsing tools available in the
system and their purposes. Finally, section 5 shows Just one example of a grammar fragment where
some parsing tools described in the previous sections are used.

2. The SAIL Grammar
The Grammar Format

The formalism we adopt to express grammar rules, called Complex Grammar Unit (CGU),
defines a syntactic and a semantic side called syntactic rule and semantic rule, respectively. The
syntactic rule contains the production, the tests, the actions and the recovery actions. The semantic
rule contains the semantic counterpart of the syntactic tests and actions. The presence of the
syntactic/semantic recovery actions is a very powerful mean to undertake alternative actions
whether the rule fails either matching the right-hand side of the production or checking the
syntactic/semantic tests. In this way the rules need not to be crudely rejected when they fall but. for
instance, they can activate other rules that could be applied successfully.
A rule in SAIL is written defining all the previous CGU's items. In addition, it Is also necessary to
provide the status of the rule/process, so that It can be properly taken into account by the parser. The
status says whether a rule can be scheduled for application or not by the parser. It can be active or
inactive. Active rules always are scheduled by the parser, whereas inactive rules are not (inactive
rules can be seen as sleeping rules). The status plays a central role in the organization of a grammar.
As an example, if a rule detects some right or wrong conditions in the parsing structure it can either
set active or activate an inactive rule.
Summarizing, a grammar rule is composed of three main items: 1) the status: active or inactive); 2)
the production in context-free (CF) format, in the following denoted by A <—w” ... wn. n >1. where the
left-arrow means that the left-hand side is reduced from the right-hand side according to the
bottom-up strategy of parsing; 3) the augmentations.
The production is augmented with an additional item, called the son-flag list. This list says for every
category in the right-hand side whether the corresponding node matched in the parsing structure
must be considered as a son of the left-hand side or not. Ifa son-flag is set to mfor a right-hand side
category the corresponding matched node is a son of the left-hand side node, otherwise it is not a son
node if the flag is -. We have two types of production depending on its structure: CF and context-
sensitive (CS) productions. CF productions, represented by A<—wj ... wn, are defined like:

(A W' ... wn)
+ ... 9)

where all nodes matched by the right-hand side must be sons of the left-hand side node. CS

productions represented by: ¢cj ... CoA Cp+i ... Cq*-cj ... Copwj ... wn Cp+j ... Cq, LEp£q, n>1 are

-351- Intemational Parsing Workshop '89

defined like:
(A (ci ...CpWj ..wn Cp+i ... Cog)
- .)

where only the nodes with a plus flag inside a context of minus-flagged nodes are sons of the left-
hand side node.”

The augmentations cover the syntactic and semantic tests and actions of the CGU model. They are
the body of a rule and are pieces of Lisp code executed by the parser during the application of the rule.
Status, production and augmentations is the information provided by the grammar writer for every

rule of a grammar. A rule is a named instance of a complex data structure defined according to the
following defrule format:

(defrule
m:gname gnome
:mame mame
m.production <production>[<son-flag-list>]
[status <status>
:syn-tests <code>
:sem-tests <oode>
:syn-actlons <code>
:sem-actions <oode>

‘syn-recovery-actions <code>

:sem-recovery-actions <code>])
gname is the grammar name where the rule mame is defined. These two names must be provided in
every rule definition since in the SIS we can have more than one grammar availablewhich must be
referred to by a name. A grammar usually is defined by a defgramm declaration of the form:

(defgramm gname [root])
where root is the root category of gname. This declaration sets up all data structures for the
grammar being defined and must be issued before any rule definition.

The Dictionary Format

Any dictionary of a grammar contains a set of forms that are associated with a set of syntactic
and semantic information. A form is whatever sequence of words w w2 ... wn. When n=1we have a
single form, otherwise a multiple form (n>1). For any form, be it single or multiple, the first word wj
is called the key form. The key form is the mean for storing and retrieving all information of the
whole form in the data structures built by the defgramm declaration. Any form has associated three
kinds of information, forming an interpretation: syntactic category; semantic value: a set of
features. A form can have more than one interpretation. In this case, a set of interpretations must be
defined supplying as the first item the key form; afterwards, for every sequence of words following

the key form, the set of interpretations. An entry of the dictionary is defined according to the

2This definition leaves free the user of defining rules with discontinuous constituents in the
syntactic representation. Currently the parser does not embed any strategy for a full treatment of
these cases since the classical definition of adjacency is implemented. This structure was initially
motivated in order to define CS rules by only one rule, and not by two (see Section 4.). Furthermore,
such a structure allows a faster search in the parsing structure, performed by the matcher of the
production, when, for instance, far constituents must be identified for long-distance tasks. Anyway,
stated the important role that can be covered by the representation of discontinuous constituents

(see /Bunt at al. 1987/), extension of the parser about this topic can be one of our future tasks.

-352- Intemational Parsing Workshop '89

following format:
(defentry keyform gnome
(defform form
(aet-int category <caienory>

(.esemual <semcal>

features <features>\)+)+)
where keyform must be a string ofjust one word, e.g., "dog", "train", etc.; the form must be either the
null string ' for the single form keyform, or a string of one or more words. Every form definition of
this kind is said to be in defentry format. <category> Is the syntactic category and <semval> is the

semantic value. The features must be provided in the following format:

<features> 2= ({[<attributes>) (<value>))+)
<attributes> ::=a sequence of feature attributes
<ualue> ::=a value for the feature attributes

As an example:
(((GENDER) (MASC))
((NUMBER) (SING))
((KIND-OF ARG1) (THING)))
Here are some examples of dictionary entries. The most trivial of them is:
(defentry “train” my_grammar
(defform '
(aet-int :category Noun)))
where the single form train is defined by one interpretation of category Noun. An example of a single
form with two interpretations is the following:
(defentry "tree™ my_grammar
(defform
(aet-int :category Noun
ofeatures (((KIND-OF OBJ) (PLANT))))
(aet-int :category Noun
features (((KIND-OF OBJ) (DATA-STRUCTURE)))))
where tree is defined as a plant and as a data structure. An example of multiple form Is:
(defentry "in" my_grammar
(deffonn **
(aet-int :category Prep))
(defform “the"
(aet-int :category CompPrep)))
where in is defined as a preposition and In the as a compound preposition.

The Feature Structures

In the current system we have adopted a data structure that can be at the same time efficient to
be processed, homogeneous and reusable in various places of the system. This is why the same data
structures are processed at different times in different places of the system. For instance, the lexical
Information looked-up from the dictionary Is stored at parsing time In the terminal nodes of the
parsing structure the parser builds. Thus, it is obvious to give the same format to the data in the
dictionary and in the nodes of the parsing structure. Feature structures, in their classical definition
as sets of attribute-value pairs, are associated with each interpretation of any form in the dictionary
and of any node In the parsing structure. FSs are treated as trees, and it is possible to manage

structures from the bottom of the parsing structure by means of a specific package of functions,

-353- Intemational Parsinag Workshop '89

called Feature Structure Handler (FSH). allowing the main operations on FSs as creation,
modification, deletion. Currently, this package contains 12 main operations that can be applied on
FSs. Over this set of low level operaUons on FSs we have developed a set of graph functions

accessible by the user, which act on the FSs associated with the nodes of the parsing structure.

Rules with Non-Operative Productions [NOP Rules)

When non-operative productions are defined in some rule they do not build a new node, but can
perform various actions, such as activating other rules, or altering semantic structures. There are
three types of non-operative productions depending on the NOP category used in the left-hand side:

{<NOP> | <NOP-ASE> | <NOP-SE> } <- wL...wn
If <NOP> is used then only the syntactic rule is applied and the semantic rule is never considered.
Only the semantic rule can be applied and the syntactic one is ignored by using the category <NOP-
SE>. Finally, both the rules are applied by using the category <NOP-ASE>. As we shall see in Section
4. this kind of production can be useful in CS recognition, providing an alternative way for defining
CS rules. Moreover, NOP rules are also useful when it is necessary to control the activation of real
rules, with the objective of limiting the indeterminism of the parser.

3. Overview of the SAIL Parsing System
In this section we describe briefly the parser, the data structures it handles, and how it works.

Starting from the FSH core package, we have adopted this data structure wherever possible Inside,
the parsing system as the figure below shows. The parser builds a parsing structure under the form of
a graph, where each node contains two kinds of information: an internal structure of data used by
the parsing algorithm only, and the linguistic (syntactic and semantic) information set by the
grammar rules. Both these structures are represented in a unique FS managed by the parser and the
running grammar by using the underlying FSH functions. Any source grammar must have a set of
rules and a set of dictionary forms written in the formats described previously. Grammar rules can
make use of two sets of functions: the graph functions, which use the FSH package to update the
linguistic structures of the graph, and the parser management functions to handle the various

parsing tools and mechanisms (see Section 4.).

The parser is a CF-based one, originally derived from the ICA (Immediate Constituent Analysis)
algorithm described in /Grishman 1976/. It is a bottom-up shift-reduce action-based algorithm,
performing left-to-right scanning and reduction in an immediate constituent analysis. The data

structure it works on is a graph where all possible parse-trees are connected. The graph is composed

-354- Intemational Parsing Workshop '89

of nodes that can be terminal or non-terminal. Terminal nodes are built in correspondence to a
scanned form, whereas non-terminals are built whenever a rule (other than a NOP rule) is applied.
The parsing system was designed to view the grammar rules as processes to be executed, and the
parser as the processor. At any moment, the parser, following a priority schema, handles a queue of
processes awaiting execution. In fact we can have different types of rules with different priorities of
execution. So it is possible that a rule, when applied, sends a request for execution of another rule
inserting the called rule in the appropriate position in the queue. After a scanning or a reduction, the
parser gets a set of active rules which are the applicable rules at that moment. When the parser takes
such a set - called a packet - for every rule in the packet3 it builds a process descriptor and inserts
it in the queue. We call such a process descriptor an application specification (AS), while the queue is
called the application specification list (ASL). ASs are composed of all the necessary information
useful to execute the process on the proper context. ASs in a given ASL are ordered depending upon
the rule involved in an AS. In general, if standard active rules have to be executed. ASL is handled
with a LIFO policy. The parser performs all possible reductions building more than one node if
necessary, extracting one AS at a time before analyzing the next one. After an AS is extracted from
ASL the parser searches a match for the right-hand side on the graph. The matching, if successful,
returns one or more sets of nodes, called reduction sets. For every reduction set. the application of
the rule is tried. In this way we can connect together all possible parses for a sentence in a unique
structure. The complete algorithm of the parser is therefore:
Until the end of the sentence is reached:
Scan aform:
build a new terminal node for the scanned form;
For everu interpretation of the node:
get the packet of rules corresponding to its category andfor every rule tn
the packet insert in ASL the AS;
For everu AS in ASL:
get the first AS from the top of ASL;
get the rule specified in the AS, it is the current rule, and access the node
specified in the AS. it is the current node:
starting from the current node perform the match on the graph using the
production of the current rule:
if at least one reduction set isfound then:
For everu reduction set:
if the tests of the current rule hold then:
execute the actions of the current rule:
ifa new non-termtncd node is built then:
get the packet of rules corresponding to its category and
for every rule in the packet insert in ASL the AS;
else:
apply the recovery actions of the current rule;
else:
apply the.recovery actions of the current rule;

3A packet Is a set of active rules. Any grammar Is partitioned as a set of packets such that, for
every category cat of the grammar, the packet P(cat) is the set of those rules that have cat as the right-
most category in their right-hand side. This partitioning is useful for getting the rules applicable at a
given moment and it Is used by the matcher of the productions.

-355- Intemationai Parsing Workshop ‘89

4. Parsing Tools
Rule Disabling/ Enabling Operations

As stated previously, rules can assume two different states, active or inactive. The rule's state is
determined at the moment of rule definition. In addition, it is possible to change the state during ‘he
parse by using two specific functions. In the application of a rule, others may be changed from active
to inactive, performing a disabling operation, or changed from inactive to active, performing an
enabling operation. It is possible to change the state of one or more rules at a time and the rules can
also perform self-enabling and self-disabling operations. Changes of state effected during a parsing
are not permanent. At the end of each parsing the rules are reconfigured as indicated in their
original definition.

Dictionary-Driven and Rule-Driven Activation

The mechanism of activation of rules can be used in our parsing system in order to improve the
determinism of the parser. We remark that the parsing algorithm is basically a bottom-up parallel
non-deterministic parser, so that partitioning a grammar as a set of active and Inactive rules, and
driving their application by an activation mechanism, we can achieve a great control on the parser
directly from the grammar, without embedding specific control strategies within the parsing
algorithm.
Activation of rules can be effected during the two main phases of the parser activity: scanning and
reduction. Dictionary-driven activation can be performed when the parser scans a form defined

with an interpretation like the following:

(set-int
category <category>
isemval <semval>

features (((queue) (rule-name+))))

The special feature queue advises the parser of a preference for specific rules to apply when the form
is scanned. This preference is Independent of the state of the rules specified and the ASs are queued
in ASL without considering the packet corresponding to category being scanned. As a consequence of
this mechanism of activation, the fifth and sixth line of the parser algorithm must be changed as
follows: Qf+ the packet of rules corresponding to Us category and for every rule in the packet insert
in ASL the AS unless the interpretation requires rule activation by the special feature queue. In this
case insert in ASL the AS ofthe rules supplied as values of the specialfeature queue.

Rule-driven activation, at level of reduction task, can be accomplished by using a devoted function,
called rule-actiyation. whose arguments are the names of the rules to activate, and provides for
gueuing ASs in ASL for every name specified. In both the types of activation, the activated rules are
applied Just once immediately after the scanning or the termination of the activating rule. The state
of the activated rule is not modified and activation of more than one rule at a time is possible, as

well as nested activations.

Context-Sensitive Rules

CS rules were not directly Implemented in our parsing system, but they were available by nature
(in addition to the way currently defined in Section 2.) thanks to the rule-activation mechanism and
NOP rules. The complete application for a CS production aAJ3<—cqffi is made in two steps. The first
one concerns a context determination, the context being represented by the right-hand side of the CS
production. (r$. The second one is just an application of the CF production A<-y, if and only if the

first step has determined the context where the CF production is applicable. This can be easily

-356- Intemational Parsing Workshop '89

accomplished by defining a NOP rule for the context determination as first step. Afterwards, this
NOP rule must activate the CF rule as second step, building the node A in the proper context.

Message Passing

The message passing mechanism is a parsing tool that makes possible asynchronous
operations on linguistic data. This way of processing implies the co-operation between two rules
which interact with each other exchanging some information by means of a sending and a receiving
task performed at the two independent times of rule application. The sending task is performed by
the sending rule at a Ume T/, sending a message for another rule. This latter rule must perform the
receiving task to receive the message at its execution time T2. (T2>Ti). Since the relevant linguistic
data the parser works on are stored as FSs, the messages are FSs. We have implemented two
approaches of message passing. The first one makes use of a global FS where any rule can store
global features. Any rule during a parse can access this global FS and whatever feature value. This
type of FS is the global counterpart of the FS stored in every node of the graph structure: the FS ofa
node is local and can only be accessed by the nodes linked to its node by a direct connecUon link.
Therefore,- there being no right of privacy on features in the global FS, this particular structure must
be accessed with care by the rules since it can be a place of conflicts among them.
The second approach provides a structure that preserves the right of privacy of the messages. Also in
this case the messages are FSs, and are stored in a sort of mailbox, called message-box. Any rule can
refer to the message-box to store a message, specifying the destination rule. On the other side, any
rule can refer to the message-box to get messages, and only the messages addressed to it will be

available. Let us consider the two cases shown in the following partial parse-trees.

We suppose some information, created or raised in the node SN from the terminal side by the rule Rs.
must be used in the node RN built by the rule Rr. (1) shows that the message-box could be used
bypassing the nodes N1.N2. This is useful when (some) data from SN are not relevant for processing
in NI and N2. gaining the advantage that no memory space is wasted using the nodes N1.N2 for
raising the data from SN to RN. On the other side, (2) shows a case where no path exists between SN
and RN. Therefore, the only connection between the nodes can be a common structure accessed by
them. The use of the message-box is very easy since all the work is done by two functions. The
function eendm*g makes a copy of a subset of the FSs of the nodes it can access (i.e., the nodes
corresponding to the left- and right-hand side of the production) and stores it in the message-box.
The function recelvemsg gets a message under the form of FS and stores it in the node corresponding
to the left-hand side of the production.

All the functions: sendmsg, receivem*g, and those for handling the global FS are implemented using
the FSH package.

-357- Intemational Parsing Workshop '89

5. An Example: SAILing X and X and ... X

The example shows a fragment of a grammar whose aim is to drive the parser according to a
specific strategy of recognition achieving as result an optimized parsing structure, i.e.. the minimum
number of nodes strictly necessary is built.

The recognition of indefinitely long clauses of the form X and X and ... X could be achieved by using
the productions: AND <—NP "and NP. AND <—AND *and NP. where, for instance. X can be an NP and
eand is the category of and. These productions produce a parsing structure of the kind shown below.
Being k the number of conjunctions, the number of the nodes N(k) built by these two productions is
given by: N(k) = TN(k) + NTN(k), TN(k) = 2k + 1. NTN(k) = (I/2)k(k + 1).

AND

NP ""and NP *and NP *and NP *and NP

TN(k) determines the number of the terminal nodes, and NTN(k) the number of the non-terminal
nodes. For the graph above N(4) = 19, since TN(4) =9 and NTN(4) = 10. This kind of parsing structure
is not optimized, besides N(k) is a quadratic function of k. In the figure above we have drawn in
boldface lines the parsing structure with the minimum number of nodes we want. For this optimized
structure NTN(k) is a linear function of ki NTN(k) = k. Therefore, the formula for the optimized case
NO (k) is: NO(k) = 3k+ 1.

Our grammar fragment is based on a watch-rule, called Check-and-rule, that checks whether the
parser has already built a node of category AND followed by "and NP. This rule has the production:
<NOP> <- AND 'and NP. and if its right-hand side has no match it means that the first node AND

has to be built. Check-and-rule has the following definition.

(defrule
:gname myjrammar
‘mame Check-and-rule
:production (<NOP> (AND "and NP))
status active
:syn-actlons (rule-activation '(Make-and-rule NP))

:syn-recovery-actions (rule-activation '(Make-flrst-and-rule NP)))
The syn-actions are applied if the right-hand side has a match and the rule Make-and-rule is
activated to build a non-terminal node AND. The syn-recovery-actions are applied when the parser
has to build for the first time a node AND. and the rule Make-first-and-rule is activated. These two

activated rules must be inactive since the watch-rule has the work of activating them.

(defrule
:gname my_grammar
mame M ake-flrst-and-rule
production (AND (NP *and NP))
:status inactive)

-358- International Parsing Workshop '89

(defrule

:gname my.grammar
‘mame Make-and-rule
:production (AND (AND ’and NP))
:status inactive)

6. Final Remark*

Some remarks about the parsing system and the parsing tools described so far are Ln order. A

first point concerns the priority assigned to rules. It is clear that we can have three main kinds of
rules: activated rules, NOP rules and standard rules. This Is also their decreasing priority order of
execution: activated rules have the highest priority since they are a natural completion and
extension of the activating rule: NOP rules can aflect structures used by standard (non-NOP) rules in
their packet, therefore they need to be properly scheduled with a higher priority than the others.
Furthermore, this classification shows how CGUs are not a mere place of a declarative description of
a grammar, but they are also a place where a procedural description of actions concerning the
parsing process can be given. This Is a powerful way, when conditions are detected, of altering the
natural behaviour of the parser that follows a parallel bottom-up, non-deterministic strategy.
Actions taken follow the detection of some situation in the parsing structures, e.g., the activation of
a rule instead of another when a misspelling Is found In the input, and a parsing process can be
driven by a grammar where only the necessary rules for context detection are set active and those
devoted to build structures inactive. This way of setting control of the parser places this parsing
system In the category of situatlon-action parsers (/WlInograd 1983/).
Unfortunately this paper cannot be a place for a wide description of examples of grammars using the
parsing tools of SAIL. Some running examples, as well as that described above, can be found In
/Marino 1988a/. Moreover, some lll-formed Input cases have been faced, e.g., lexical/syntactic 111
formedness, constraint violation, constituent shuffling, missing constituents, in /Ferrari 1989/. A
wide report of the work developed in the framework of the European ESPRIT Project P527 CFID
using the SAIL Interfacing System is In /Deliverable 9/ where, among other things, the description
of an English grammar and semantics Is shown (/Mac Aogain et al. 1989/).

The author Is thankful to Giacomo Ferrari who made possible this work

References

/Aho et al. 1983/ Aho. A., V., Hopcroft, J., E. and Ullman, J., D. 1983. Data Structures and
Algorithms. Addison-Wesley, Reading, Mass.

/Bunt at al. 1987/ Bunt, H.. Thesingh, J. and van der Sloot. K. 1987. Discontinuous Constituents In
Trees, Rules, and Parsing. Proceedings of the 3rd Conference of the European Chapter
of the ACL. Copenhagen. Denmark, pp. 203-210.

/Deliverable 9/ Deliverable 9: Implementation of Dialogue System. 1989. Ref. CFID.D9.2. ESPRIT
Project 527 (CFID).

/Ferrari 1989/ Ferrari. G. 1989. The Treatment of Ill-Formed Input within the Frame of SAIL.
Working Paper. ESPRIT Project 527 (CFID).

/Grishman 1976/ Grishman, R. 1976. A Survey of Syntactic Analysis Procedures for Natural
Language. American Journal of Computational Linguistics. Microfiche 47, pp. 2-96.

/Knuth 1973/ Knuth. D., E. 1973. The Art of Computer Programming. Vol.m: Sorting and Searching.
Addison-Wesley, Reading, Mass.

/IMac Aogain et al. 1989/ Mac Aogain, E. and Harper, J. 1989. Semantics and Grammar. In

-359- Intemational Parsing Workshop '89

/Deliverable 9/.
/Marino 1988a/ Marino. M. 1988. The SAIL Interfacing System: A Framework for the Development

of Natural Language Grammars and Applications. Technical Report DL-NLP-88-1.
Department of Linguistics. University of Pisa.

/Marino 1988b/ Marino. M. 1988. A Process-Activation Based Parsing Algorithm for the
Development of Natural Language Grammars. Proceedings of 12th International
Conference on Computational Linguistic*. Budapest Hungary, pp. 390-395.

/Marino 1989/ Marino, M. 1989. SAIL: A Prototype Environment for Writing NL Applications. In
/Deliverable 9/.

/WLnograd 1983/ Winograd, T. 1983. Language as a Cognitive Process. Vol. 1: Syntax. Addlson-
Wesley. Reading, Mass.

-360- Intemational Parsing Workshop '89

