
The Computational Complexity of Tom ita’s
Algorithm

M a r k J o h n s o n

A p r i l 26 , 19S9

1 Introduction
The Tomita parsing algorithm adapts Knuth’s (1967) well-known parsing algo­
rithm for LR()t) grammars to non-LR grammars, including ambiguous gram­
mars. Knuth’s algorithm is provably efficient: it requires at most 0 (n |G |) units
of time, where |G| is the size of (i.e. the number of symbols in) G and n is
the length of the string to be parsed. This is often significantly better than
the 0 (n 3|G |2) worst case time required by standard parsing algorithms such as
the Earley algorithm. Since the Tomita algorithm is closely related to K nuth’s
algorithm, one might expect that it too is provably more efficient than the Ear­
ley algorithm, especially as actual computational implementations of Tom ita’s
algorithm outperform implementations of the Earley algorithm (Tomita 1986,
1987).

This paper shows that this is not the case. Two main results are presented in
this paper. First, for any m there is a grammar Lm such that Tomita’s algorithm
performs Q(nm) operations to parse a string of length n. Second, there is a
sequence of grammars G m such that Tomita’s algorithm performs f2(nc1Gm')
operations to parse a string of length n. Thus it is not the case that the Tomita
algorithm is always more efficient than Earley’s algorithm; rather there are
grammars for which it is exponentially slower. This result is forshadowed in
Tomita (1986, p. 72), where the author remarks that Tomita’s algorithm can
require time proportional to more than the cube of the input length. The result
showing that the Tomita parser can require time proportional to an exponential
function of the grammar size is new, as fair as I can tell.

2 T he Tom ita Parsing A lgorithm
This section briefly describes the relevant aspects of the Tomita parsing al­
gorithm: for further details see Tomita (1986). Familiarity with Knuth’s LR

-203- Intemational Parsing Workshop '89

parsing algorithm is presumed: see the original article by Knuth (1967), Aho
and Ullman (1972), or Aho, Sethi and Ullman (1986) for details.

The Tomita algorithm and Knulh’s LR parsing algorithm on which it is based
are both shift-reduce parsing algorithms, and both use the same LR automaton
to determine the parsing actions to be performed. The LR automaton is not
always deterministic: for example, if the grammar is ambiguous then at some
point in the analysis of an ambiguous string two difTerent parsing actions must be
possible that lead to the two distinct analyses of that string. Knuth’s algorithm
is only defined for grammars for which the parsing automaton is deterministic:
these are called the LR(k) grammars, where k is the length of the lookahead
strings. Tomita’s algorithm extends Knuth’s to deal with non-deterministic LR
automata.

Tomita’s algorithm in effect simulates non-determinism by computing all of
the LR stacks that result from each of the actions jf a non-deterministic LR
automaton state. Tomita’s algorithm mitigates the cost of this non-determinism
by representing the set of all the LR stacks possible at a given point of the parse
as a multiply-rooted directed acyclic graph called a graph-structured stack, which
is very similiar to a parsing chart (Tomita 1988). Each node of this graph
represents an LR state of one or more of the LR stacks, with the root nodes
representing the top states of LR parse stacks. The graph contains exactly one
leaf node (i.e. a node with no successors). This leaf node represents the start
state of the LR autom ata (since this is the bottom element of all LR parse
stacks), and each maximal path through the graph (i.e. from a root to the leaf)
represents an LR parse stack.

As each item in the input string is read all of the parsing actions called
for by the top state of each LR stack are performed, resulting in a new set of
LR stacks. Because of the way in which the set of LR stacks are represented,
Tom ita’s algorithm avoids the need to copy the each LR stack in its entirity
at non-deterministic LR automaton states; rather the top elements of the two
(or more) new stacks are represented nodes whose successors are the nodes
that represent the LR stack elements they have in common. Similiarly, if the
same LR state appears as the top element of two or more new stacks then these
elements are represented by a single node whose immediate successors are the set
of nodes that represent the other elements of these LR stacks. This “merging” of
identical top elements of distinct LR stacks allows Tom ita’s algorithm to avoid
duplicating the same computation in different contexts.

Finally, Tomita employs a packed forest representation of the parse trees in
order to avoid enumerating these trees, the number of which can grow expo­
nentially as a function of input length. In this representation there is at most
one node of a given category at any string location (i.e. a pair of beginning and
ending string positions), so the number of nodes in such a packed forest is at
most proportional to the square of the input length. Each node is associated
with a set of sequences of daughter nodes where each sequence represents one
possible expansion of the node; thus the trees represented can easily be “read

-204- International Parsing Workshop '89

off” the packed forest representation.

3 C o m p l e x i t y as a F u n c t i o n of I n p u t L e n g t h
The rest of this paper shows the complexity results claimed above. This section
describes a sequence of grammars Lm such that on sufficiently long inputs the
Tomita algorithm performs more than Q(nm) operations to parse an input of
length n. This result follows from properties of the packed forest representation
alone, so it applies to any algorithm that constructs packed forest representa­
tions of parse trees.

Consider the sequence of grammars Lm for m > 0 defined in (1), where
5 m + 2 abbreviates a sequence of S ’s of length m + 2.

5 — a
5 —> 5 5 (1)
S _* 5 m+2

All of these grammars generate the same language, namely the set of strings
a + . Consider the input string a M + 2 for n > m. By virtue of the first two rules in
(1) any ncin-empty string location can be analyzed as an 5. Thus the number of
different sequences of daughter nodes of the matrix or top-most 5 node licensed
by the third rule in (1) is {mn+l) the number of ways of choosing different right
string positions of the top-most 5 node’s first m + 1 daughters. Since (m + L)
is a polynomial in n of order m + 1, it is bounded below by cnm for some
c > 0 and sufficiently large n, i.e. Since any algorithm which
uses the packed forest representation, such as Tom ita’s algorithm, requires the
construction of these sequences of daughter nodes, any such algorithm must
perform Q(nm) operations.

Finally, it should be noted that this result assumes that the sequences of
daughter nodes are completely enumerated. It might be possible these sequences
could themselves be “packed” in such a fashion that avoids their enumeration,
possibly allowing the packed forest representations to be constructed in polyno­
mial time.

4 C om plexity as a Function o f G ram m ar Size
This section shows that there are some grammars such that the total number
of operations performed by the Tomita algorithm is an exponential function of
the size of the grammar.

The amount of work involved in processing a single input item is proportional
to the number of distinct top states of the set of LR stacks corresponding to
the different non-deterministic analyses of the portion of the input string shown
so far. By exhibiting a sequence of grammars in which the number of such

-205- Intemational Parsing Workshop '89

states is an exponential function of the size of the grammar we show that the
total number of operations performed by the Tomita algorithm can be at least
exponentially related to the size of the grammar.

Consider the sequence of grammars for m > 0 defined in (2).

5 - Ai
.4, - BjAi
Ax - Bj
Bj — a

(2)
0 < i < m
0 < i, j < m , i ^ j
0 < i , j < m , i jk j
0 < j < m

All of the grammars Gm generate the same language, namely the set of
strings a + . Since these grammars are ambiguous they are not LR(t) for any k.

Consider the behaviour of a non-deterministic LR parser for the grammar
Gm on an input string an where n > m. The items of the start state are shown
in (3).

0 < i , j < m , ^ j

S — -.4,-
Ai - ■BjAi
A t - -Bj
Bj — a

The parser shifts over the first input symbol a to the state shown in (4)

(3)

[Bj —♦ a-] 0 < j < m (4)
This is a non-deterministic state, since all of the m reductions Bj — a are

possible parsing actions from this state. Suppose that the reduction to Bkl is
chosen. The state that results from the reduction to Bkl is shown in (5). There
are m such states.

0 < j < m t i £ j, k ! (5)

Ai —- Bj.-, • .4,
Ai - B k r
Ai — BjAi
Ai - Bj
Bj — a

After shifting over the next input symbol the parser again reaches the same
ambiguous state as before, namely the state shown in (4). Suppose the reduction
to Bki *s chosen. If B t, = B*, then the resulting state is the one shown in (5).
On the other hand, if Bt, Bjei then the resulting state is as shown in (6).
There are m (m — l)/2 distinct states of the form shown in (6), so after reducing
B k 2 there will be m(m + l)/2 distinct LR states in all.

Ai
Ai
Ai
Ai
B,

Bkt • Ai

■B}Ai
Bj
•a

(6)

•206- International Parsing Workshop '89

It is n o t h a rd to see t h a t a f ter n > m i n p u t s y m b o l s h a v e b e e n r e a d a n d
r e d u c e d t o 5 t , . . . B k K r e s p e c t i v e l y t h e r e s u l t i n g s t a t e wi l l b e as s h o w n in (7) .

0 < i, j < m , i j , k\ • . . . (7)

.4, — B±n • .4,

.4 , - B kn,-

.4 , — ■BJA l

.4 , — Bj
Bj — -a

S i n c e t he r e are 2 m — 1 d i s t i n c t s u c h s t a t e s , t he T o m i t a pa r se r m u s t p e r f o r m
at l e as t 2 m — 1 c o m p u t a t i o n s per i n p u t i t e m a f t er t h e f irst m i t e m s h a v e b e e n
r ead . S i n c e \Gm\ — 5 m 2 — m = 0 (m 2), t h e r at io o f t h e a v e r a g e n u m b e r o f
c o m p u t a t i o n s pe r i n p u t i t e m for a s u f f i c i e n t l y l o n g s t r i n g t o g r a m m a r s i z e is
Q (2 rn/ m 2) = Q (c m) for s o m e c > 1. T h u s t he t o t a l n u m b e r o f o p e r a t i o n s
p e r f o r m e d by t h e par se r i< Q (c |G,n)̂, e x p o n e n t i a l f u n c t i o n o f g r a m m a r s ize .

5 C o n c l u s i o n
T h e r e s u l t s j u s t d e m o n s t r a t e d d o n o t s h o w t h a t T o m i t a ’s a l g o r i t h m is a l w a y s
s l o w e r t h a n p o l y n o m i a l l y b o u n d e d a l g o r i t h m s s u c h as E a r l e y ’s, in f a c t in p r a c t i c e
it is s i g n i f i c a n t l y f as t er t h a n E a r l e y ' s a l g o r i t h m (T o m i t a 1 9 8 6) . O n t h e o t h e r
h a n d , t h e r e s u l t s p r e s e n t e d he re s h o w t h a t t h i s s u p e r i o r p e r f o r m a n c e is n o t
j u s t a p r o p e r t y o f t h e a l g o r i t h m a l o n e , b u t a l s o d e p e n d o n p r o p e r t i e s o f t h e
g r a m m a r s (a n d p o s s i b l y t he i n p u t s) u s ed . It w o u l d b e i n t e r e s t i n g t o i d e n t i f y
t h e p r o p e r t i e s t h a t are r eq u ir ed for e f f i c ie nt f u n c t i o n i n g o f T o m i t a ’s a l g o r i t h m .

S e c o n d , i t m i g h t p o s s i b l e to m o d i f y T o m i t a ’s a l g o r i t h m s o t h a t i t p r o v a b l y
r eq u ir es a t m o s t p o l y n o m i a l t i m e . For e x a m p l e , r e q u i r i n g al l g r a m m a r s u s e d
by t h e a l g o r i t h m to be in C h o m s k y N o r m a l F o r m w o u l d p r o h i b i t t h e g r a m m a r s
u s e d t o s h o w t h a t T o m i t a ’s a l g o r i t h m d o e s n o t a l w a y s run in p o l y n o m i a l t i m e .
W h e t h e r t h i s r e s t r i c t i o n w o u l d e n s u r e p o l y n o m i a l t i m e b e h a v i o u r w i t h r e s p e c t
t o i n p u t l e n g t h is an o p e n q u e s t i o n (n o t e t h a t t h e g r a m m a r s u s e d t o s h o w t h e
e x p o n e n t i a l c o m p l e x i t y w i t h r e s p e c t to g r a m m a r s i z e are a l r e a d y in C h o m s k y
N o r m a l F o r m) .

F i n a l l y , t h e n o n - p o l y n o m i a l b e h a v i o u r o f T o m i t a ’s a l g o r i t h m w i t h r e s p e c t
t o i n p u t l e n g t h f o l l o w e d f r o m t h e p r o p e r t i e s o f t h e p a c k e d f or es t r e p r e s e n t a ­
t i o n o f p a r s e t r ee s , s o it f o l l ow s t h a t a n y a l g o r i t h m w h i c h u s e s p a c k e d f or es t

r e p r e s e n t a t i o n s wi l l a l so e x h i b i t n o n - p o l y n o m i a l b e h a v i o u r .

6 Bibliography
A h o a n d U l l m a n (1 9 7 2) The Th eor y o f Pars ing , Trans la t i on and Co mpi l ing , vol .
1, P r e n t i c e Hal l , N e w Je rs ey .

A h o , S e t h i a n d U l l m a n (1 9 8 6) C o mp i l e r s : Pr inc ip le s , Techniques and Tools,
A d d i s o n - W e s l e y , R e a d i n g , M a s s .

-207- Intemational Parsing Workshop '89

T o m it a (1986) Efficient Par s ing fo r Natural L anguage , Kluwer, B o sto n ,
Mass.

T o m it a (1 9 8 7) “An Efficient A u g m e n te d -C o n te x t -F r e e Parsing A lg o r i th m ” ,
Computa t iona l Linguistics, vol. 13, 31-46.

T o m ita (1 98 8) “G ra p h -S tru ctu red S tack and N atu ra l L anguage P a rs in g ” , in
The Proceedings of the 26th Annual Meeting of the Assoc ia tion f o r C om p ut a­
t ional Linguistics , S U N Y Buffalo, New York.

-208- Intemational Parsing Workshop '89

