Recognition of Combinatory Categorial Grammars and Linear
Indexed Grammars

K. Vijay-Shanker David J. Weir
Department of CIS Department of EECS
University of Delaware Northwestern University
Delaware, DE 19716 Evanston, IL 60208

1 Introduction

In recent papers [14,15,3] we have shown that Combinatory Categorial Grammars (CCG), Head Gram-
mars (HG), Linear Indexed Grammars (LIG), and Tree Adjoining Grammars (TAG) are weakly equiv-
alent; i.e., they generate the same class of string languages. Although it is known that there are
polynomial-time recognition algorithms for HG and TAG [7,11], there are no known polynomial-time
recognition algorithms that work directly with CCG or LIG. In this paper we present polynomial-
time recognition algorithms for CCG and LIG that resemble the CKY algorithm for Context-Free
Grammars (CFG) [4,16].

The tree sets derived by a CFG can be recognized by finite state tree automata [10]1. This
is reflected in CFL bottom-up recognition algorithms such as the CKY algorithm. Intermediate
configurations of the recognizer can be encoded by the states of these finite state automata (the
nonterminal symbols of the grammar). The similarity of TAG, CCG, and LIG can be seen from the
fact that the tree sets derived by these formalisms can be recognized by pushdown (rather than finite
state) based tree automata. We give recognition algorithms for these formalisms by extending the
CKY algorithm so that intermediate configurations are encoded using stacks. In [6] a chart parser for
CCG is given where copies of stacks (derived categories) are stored explicitly in each chart entry. In
Section 4 we show that storing stacks in this way leads to exponential run-time. In the algorithm we
present here the stack is encoded by storing its top element together with information about where
the remainder of the stack can be found. Thus, we avoid the need for multiple copies of parts of the
same stack through the sharing of common substacks. This reduces the number of possible elements
in each entry in the chart and results in a polynomial time algorithm since the time complexity is
related to the number of elements in each chart entry.

It is not necessary to derive separate algorithms for CCG, LIG, and TAG. In proving that these
formalisms are equivalent, we developed constructions that map grammars between the different for-
malisms. We can make use of these constructions to adapt an algorithm for one formalism into an
algorithm for another. First we present a discussion of the recognition algorithm for LIG in Section 22.

1A bottom-up finite state tree automaton reads a tree bottom-up. The state that the automaton associates with each
node that it visits will depend on the states associated with the children of the node.

2 We consider LIG that correspond to the Chomsky normal form for CFG although we do not prove that all LIG have

an equivalent grammar in this form. A discussion of the recognition algorithm for LIG in this form is sufficient to enable
us to adapt it to give a recognition algorithm for CCG, which is the primary purpose of this paper.

-172- International Parsing Workshop '89

We present the LIG recognition algorithm first since it appeares to be the clearest example involving
the use of the notion of stacks in derivations. In Section 3 we give an informal description of how to
map a CCG to an equivalent LIG. Based on this relationship we adapt the recognition algorithm for
LIG to one for CCG.

2 Linear Indexed Grammars

An Indexed Grammar [I] can be viewed as a CFG in which each nonterminal is associated with a
stack of symbols. In addition to rewriting nonterminals, productions can have the effect of pushing
or popping symbols on top of the stacks that are associated with each nonterminal. A LIG [2] is an
Indexed Grammar in which the stack associated with the nonterminal of the LHS of each production
can only be associated with one of the occurrences of nonterminals on the RHS of the production.
Empty stacks are associated with other occurrences of nonterminals on the RHS of the production. We
write A[--] (or A[--7]) to denote the nonterminal A associated with an arbitrary stack (or an arbitrary
stack whose top symbol is 7). A nonterminal A with an empty stack is written A[].

Definition 2.1 A LIG, G, is denoted by (V>/, Vj, V> 5, P) where

V'v is a finite set of nonterminals,

Vj is a finite set of terminals,

Vj is a finite set of indices (stack symbols),

S 6 Vn is the start symbol, and

P is a finite set of productions, having one of the following forms.

JtN - ALl...A-["]...AnQ AH-.41[]...A[-7]...A.[] A[l —*a

where A, A\,..., An 6 Vn and fIG {e}UV].

The relation => is defined as follows where a € Vf and Ti,T 2 are strings of nonterminals with
G

associated stacks.
e If A[--7]1— AIi[]...At["]...An[] € P then

TiA[q7]T2 => TI1AL[]...A,[a]...A,[]T2

e IfA[]~ AL[]...Aj[-i]...A.[] € P then

T,A[a]T2 => T1Ai[]...A,[a7]...An[] T2

In each of these two cases we say that A, is the distinguished child of A in the derivation.

o If A[] aes P then
r lA[}T: = >riar:

The language generated by a LIG, G, L(G) = {w |S[] == w }.

-173- Intemational Parsing Workshop '89

2.1 Recognition of LIG

In considering the recognition of LIG, we assume that the underlying CFG is in Chomsky Normal
Form; i.e., either two nonterminals (with their stacks) or a single terminal can appear on the RHS of a
rule. Although we have not confirmed whether this yields a normal form, a recognition algorithm for
LIG in this form of LIG is sufficient to enable us to develop a recognition algorithm for CCG. We use
an array L consisting of n2 elements where the string to be recognized is ax.. .an. In the case of the
CKY algorithm for CFG recognition each array element Lt contains that subset of the nonterminal
symbols that can derive the substring ax.. .a;. In our algorithm the elements stored in Lij will encode
those nonterminals and associated stacks that can derive the string a, .. .a".

In order to obtain a polynomial algorithm we must encode the stacks efficiently. With each
nonterminal we store only the top of its associated stack and an indication of the element in L
where the next part of the stack can be found. This is achieved by storing sets of tuples of the form
((4,7,A"7",p, q in the array elements. Roughly speaking, a tuple (A, 7,A', 7', p,) is stored in | tiJ
when A[q7/7] => a,...aj and A/[g;7/] — ap..,aq where g is a string of stack symbols and A is
the unique distinguished descendent of A in the derivation of a,.. .a;.

Note that tuples, as defined above, assume the presence of at least two stack symbols. We must
also consider two other cases in which a nonterminal is associated with either a stack of a single
element, or with the empty stack. Suppose that A is associated with a stack containing only the single
symbol 7. This case will be represented using tuples of the form (A, 7,A"',p, 9 (w ” indicates that
an empty stack is associated with A'). When an empty stack is associated with A we will use the tuple
(A, -, -). In discussing the general case for tuples we will use the form (A,7,A", 7", p, 9 with
the understanding that: A' G VN or 7,7" £ VI or and p, q are integer between 1 and n or
The algorithm can be understood by verifying that at each step the following invariant holds.

Proposition 2.1 (A, 7,A, 7', p,q) £ LXJif and only if one of the following holds.
If v ~ — then A[7] => a,...ap_iA[}ag+\ ... a; and A'[ol~i\ =—> ap...aq for some a E

VI where A' is a distinguished descendent of A. Note that this implies that for
ano e VI, A[3] ak...ap_iA/[/3la,+1...aj. Thus, for @3 = 07', A[aYf] =">

a,-...ap_i A'[a7/]la,+i .. .aj which implies A[a7;7] Z¥=a,.. .aj.
If 77= - ~ A' then A[7] ==> a,-.. .a3 and A'[] ap.. .ag.
If A' = - then A[] == at.. .gj.

Wre now describe how each entry Lij is filled. As the algorithm proceeds, the gap between i and j
increases until it spans the entire input. The input, <zi... an, is accepted if (S, ,— E L\ n.
New entries are added to the array elements according to the productions of the grammar as follows.

1. The production A[»7] -+ Ai[]AZ2[-] is used while filling the array element Lij as follows. For
every k where i < k < j, check the previously completed array elements Litk and Lk+\j for
(Ai,*-,and some (A2,72,A3,73,P, <), respectively. If these entries are found add
(A, 7,A2,722k + 1,j) to Lij. If72 =73 =23 = P=q= ~ we Place (A,7,A2,-,fc+ 1,j) in
Lij. From these entries in Liyk and Ifc+i.j we know by Proposition 2.1 that Ax[] = at...at

-174- International Parsing Workshop 89

and 42[a] ==> ak+i .. .a; for some a E V}. Thus, Afcry] ==> a, . *a:. The production A™y] —
Ai[*-]A2[] is handled similarly.

2. Suppose A-*] —= Ai[].42[--7] is a production. When filling LtyJ we must check whether the
tuple (A i , i s in Lx and (A2,7,A3,73,p,q) is in Lk+lyJ for some k between i
and j. If we do find these tuples then we check in Lwq for some (A3,73,A4,74,r,s). In this
case we add (A, 73,A4,74,r,s) to L{j. If 73 = - then the stack associated with A3 is empty,
74= As = r = s = — and we add the tuple (A, r,5) to L{yl. The above steps can be
related to Proposition 2.1 as follows.

(@) If 73 5 - then for some a € V/, A4[q74) ="> ar .. .a3 a subderivation of 43(0:7473] =
av...aq a subderivation of A2[c*74737] —> a*+i...aj. Combining this with Ai[]] =
a,...at we have A[q7473] —>a, ... a;.

(b) If 73 = —then A3[] av...aqis a subderivation of A2[f] => "k+1-..aj. Combining
with Ai[] ==> a,-.. .a*, we get A[] ==><Zj...aj.

Productions of the form A[-*] —AI[-*7]A2[] are handled similarly.

3. Suppose A[] — a is a production. This is used by the algorithm in the initialization of the array
L. If the terminal symbol a is the same as the ith symbol in the input string, i.e., a = a,, then
we include (A, - in the array element Z,tl.

2.2 Complete Algorithm
Fori:=1to n do

Li.i := {(1, IA[]-» a,}
Fori:=nto 1 do

Forj :=jto n do

Fork :=itoj —1do

Step la. For each production A(--7] — Ai[]A2[]
if (Ai, -, ,-) € Li'k and (A2,72,A3,73,p, q) € Lk+i,j
then Lij := Lij u {(A,7,A2,72,k+ 1,;) }

Step Ib. For each production A[--7] —>Ai[--]A2[]
if (Ai, 71,A3,73,p,q) € Li,!, and (A2—— ——) € Lk+ij
then Lij I—Lij U {(A,7>Ai,7i>*i")}

Step 2a. For each production A[-]—*Ai[]A2[--7]
if (A2,7iA3,73,p,q) € £%+i,;> (A3,73,A4,74,r,5) € £PI?,and (A i € L%k
then Lij .= Lij U {(A,73>A4,74> }

Slep 2b. For each production Al--] —%Ai[--7]A2][]
if (Ai, 7,A3,73,p,?) 6 (A3,73,A4,74,r,5) G Ip,}, and (A2) — -, =) 6 EX+1;
then Lij := Lij u {(A, 73,A4,74,r,5) }

-175- International Parsing Workshop '89

2.3 Complexity of the Algorithm

Any array element, say Zjj, is a set of tuples of the form (A, 7,A', 7', p,q) where p and q are either
integers between i and j, ori =j = The number of possible values for A, A', 7, and 7' are each
bounded by a constant. Thus the number of tuples in LX) is at most 0((j —t)2). For a fixed value
of i,j,k, steps la and Ib will attempt to place at most 0((j - i)2) tuples in L{j. Before adding my
tuple to Lij we first check whether the tuple is already present in that array element. This can be
done in constant time on a RAM by assuming that each array element LXJ is itself an (i -f 1) x (j 4-1)
array. A tuple of the form (A, 7,A', 7', p,q) will be in the (p,q)th element of LX] and a tuple of the
form (A, —— — —-) will be in the (i + I,j + I)th element of Lxj. Thus these steps take at most
0({j ~ 02) time- Similarly, for a fixed value of i, j, and fc, steps 2a and 2b can add at most 0((j - i)2)
distinct tuples. However, in these steps 0((j —i)4) not necessarily distinct tuples may be considered.
There are 0((j —i)4) such tuples because the integers p,q,r,s can take values in the range between i
and j. Thus steps 2a and 2b may each take 0((j —i)4) time for a fixed value of i,j,k. Since we have
three initial loops for i,j, and k, the time complexity of the algorithm is O (n7) where the length of
the input is n.

3 Combinatory Categorial Grammars

CCG [9,8] is an extension of Classical Categorial Grammars in which both function composition
and function application are allowed. In addition, forward and backward slashes are used to place
conditions concerning the relative ordering of adjacent categories that are to be combined.

Definition 3.1 A CCG, G, is denoted by (Vj, V)v,5,/, R) where

Vj is a finite set of terminals (lexical items),

V)v is a finite set of nonterminals (atomic categories),

5 is a distinguished member of Vjyv,

/ is a function that maps elements of Vj u {€} to finite subsets of C(Vj\), the set of
categories,3 where C(V}v) is the smallest set such that Vjv C C(V”) and ci,c2 G C(Vjv)
implies (ci/c2), (ci\c2) € C(VN),

R is a finite set of combinatory rules.

There are four types of combinatory rules involving variables x,y,z,z\,... over C(V)y) and where
It € {\>/}4-

1. forward application: > ix/ly) V~%*x

2. backward application: y (x\y) -+ X

For these rules we say that (x/y) is the primary category and y the secondary category.

3. generalized forward composition for some fixed n > 1:

(x/y) (o (yII*1)|2 eoe|»*n) “m (<ee(*[I*1)]2 *<In7n)

3Note that / can assign categories to the empty string, e, though, to our knowledge, thisfeature has not been employed
in the linguistic applications of CCG.

4There is no type-raising rule although its effect can be achieved to a limited extent since / can assign type-raised
categories to lexical items.

-176* International Parsing Workshop 89

4. generalized backward composition for some n > 1.

(o -*2/|1-1)]2 eo-In*n) (Ay) — (s . (x]i*i)]|2°*e-In*n)
For these rules (x/y) is the primary category and (..)I2... |n*n) the secondary category.

Restrictions can be associated with the use of each combinatory rule in R. These restrictions take the
form of constraints on the instantiations of variables in the rules.

1. The leftmost nonterminal (target category) of the primary category can be restricted to be in
a given subset of Vjv.

2. The category to which y is instantiated can be restricted to be in a given finite subset of C (V\).

Derivations in a CCG, G = (Vj, Wy, 5,/, R), involve the use of the combinatory rules in R. Let =>
G
be defined as follows, where Ti, T2 € [C{VN)u VT)mand c,ci,c2€ C(VN).

e If R contains a combinatory rule that has CiC2 — ¢ as an instance then

TicT2 ==> TiGic2T2

« Ifc6/(a) for somea 6 Vt U{c}and c £ C(V)v) then

TicT?2 :G> TiaT?2

The string languages generated by a CCG, G, L(G) = {it; |5 wilw € Vf }
In the present discussion of CCG recognition we make the following assumptions concerning the
form of the grammar.

1. In order to simplify our presentation we assume that the categories are parenthesis-free. The
algorithm that we present can be adapted in a straightforward way to handle parenthesized cate-
gories and this more general algorithm is given in [:2].

2. We will assume that the function / does not assign categories to the empty string. This is
consistent with the linguistic use of CCG although we have not shown that this is a normal form
for CCG.

3.1 The LIG/CCG Relationship

In this section, we describe the relationship between LIG and CCG by discussing how we can construct
from any CCG a weakly equivalent LIG. The weak equivalence of LIG and CCG was established
in [15]. The purpose of this section is to show how a CCG recognition algorithm can be derived from
the algorithm given above for LIG.

Givena CCG, G = (Vj, V\r,5,/, R), we construct an equivalent LIG, G' = (V]j, V)v, VjvU{/,\}, S,P)
as follows. Each category in ¢ 6 C(V]v) can be represented in G' as a nonterminal and associated
stack Af[a] where A is the target category of c and a € ({/»\}V)v)* suck Aa = c¢. Note that we
are assuming that categories are parenthesis-free.

177- International Parsing Workshop '89

We begin by considering the function, /, which assigns categories to each element of Vj- Suppose
that ¢ E f(a) where ¢ G C(Vh) and a G Vt- We should include the production A[a] —* a where
c - Aa in P. For each combinatory rule in R we may include a number of productions in P. From the
definition of CCG it follows that the length of all secondary categories in the rules R is bounded by
some constant. Therefore there are a finite number of possible ground instantiations of the secondary
category in each rule. Thus we can remove variables in secondary categories by expanding the number
of rules in R. The rules that result will involve a secondary category ¢ G C(Vjv) and a primary category
of the form x/A or x\A where A 6 Wv is the target category of c. The rule may also place a restriction
on the value of the target category of x. In the case of the primary categories of the combinatory
rules there is no bound on their length and we cannot remove the variable that will be bound to the
unbounded part of the category (the variable x above). Therefore the rules contain a single variable
and are linear with respect to this variable; i.e., it appears once on either side of the rule.

It is straightforward to convert combinatory rules in this form into corresponding LIG productions.
We illustrate how this can be done with an example. Suppose we have the following combinatory rule.

x/A A/B\C\B - x/B\C\B

where the target category of x must be either C or D. This is converted into the following two
productions in P.

C[-/B\C\B] - C[-M] A[/B\C\B] D[-/B\C\B] - D[-/A] A{/B\C\B]

Notice that these LIG productions do not correspond precisely to our earlier definition. We are
pushing and popping more that one symbol on the stack and we have not associated empty stacks with
all but one of the RHS nonterminals. Although this clearly does not affect weak generative power, as
we will see in the next section, it will require a modification to the recognition algorithm given earlier
for LIG.

3.2 Recognition of CCG

In order to produce a CCG recognition algorithm we extend the LIG recognition algorithm given in
Section 2.2. From the previous section it should be clear that the CCG and LIG algorithms will be
very similar. Therefore we do not present a detailed description of the CCG algorithm. We use an
array, C, with n2elements, CtJ for 1 < t <j < n. The tuples in the array will have a slightly different
form from those of the LIG algorithm. This is because each derivation step may depend on more than
one symbol of the category (stack). The number of such symbols is bounded by the grammar and is
equal to the number of symbols in the longest secondary category. We define this bound for a CCG,
G = (Vj, V}v,5,/, R) as follows. Let 1(c) = k if c € ({/A}*jv)fc Let 5(G) be the maximum 1(c) of
any category ¢ G C(V}v) such that c can be the secondary category of a combinatory rule in R.

As in the LIG algorithm we do not store the entire category explicitly. However, rather than storing
only the top symbol locally, as in the LIG algorithm, we store some bounded number of symbols locally
together with a indication of where in C the remainder of the category can be found. This modification
is needed since at each step in the recognition algorithm we may have to examine the top s(G) symbols
of a category. Without this extension we would be required to trace through c(G) entries in C in order
to examine the top c(G) symbols of a category and the algorithm’s time complexity would increase.

-178- Intemational Parsing Workshop '89

An entry in C will be a six-tuple of the form (A,a,/3,7,p, q) where A EV/y,a,BE ({/IAKvVV
and one of the two cases applies.

or 2<1(@a) < s(G) —1, I(@3)=s(G)- 1, 7 Ef \}Viv, 1<p<gqg<n

0<1(a) < 23(G) —2, 3 =€ 7=p=q —
An entry(A, a, (3,~/,p,q) isplaced inCt,j when

e If/3=€and 7 —p —q — - then Aa . a, .. .aft.

 If BE£ ethen for some a' E ({/,\ }VIV)*, Aa'/3a . a,...a; and Aa'/?7 :G">a,,...a7.

The steps of the algorithm that apply for examples of forward application and forward composition
are as follows.

« x/IA A—»ER
For each k between i and j, we look for (B, a,/?,7,p,9) E C,* and (A, -) E C*HiJ
where B is a possible target category of x and the string (3a has /A as a suffix. If we find these
tuples then do the following.

If 1(a) >3 or (3= e then include (B,a',/3,i,p,q) in CtJ where a = a'/A
If 1(a) =2 and (3" e then look in Cpqg for some (B, a', /?', 7', r,s) such that (3 isa suffix of
/3'a', and include (B, a'™a",fi',7',r,3)in Ct)J where a = q"/A and a'= qll;7.

If 1(a) = /A then we know that @= eand 7 = p =g = — and we should add (5, et —
in

« x/A A\B/C —x\B/C Ei?
For each Abetween i and j, we look for (A', a,j3,7,p, D E C,»and (A,\B/C, ¢, -) E Cjt+ij
where A'is a possible target category of x and /A is a suffix of /3a. If we find these tuples then
do the following.

If 1gs) = s(G) —1 or 1(a) = 2,5(G) —3 then include (A',\B/C, /3,/A,i, k) in C,j where (3/A
is a suffix of (3a such that I((3") —s(G) —1.

If I((3) = 0and 1(a) < 25s(G) —3) then include (A, \B/Ca\e,———) in C,t] where a'/A =
(3a.

Each of the other forms of combinatory rules can be treated in a similar way yielding an algorithm
that closely resembles the LIG algorithm presented in Section 2.2. Note that in a complete algorithm,
the forward composition example that we have considered here would have to be made more general
since the number of cases that must be considered depends on the length of the secondary category in
the rule. The time complexity of the full CCG recognition algorithm is the same as that of the LIG
algorithm; i.e., o (n7).

179- International Parsing Workshop '89

4 Importance of Linearity

The recognition algorithms given here have polynomial-time complexity because each array element
(e-g» LXJ in LIG recognition) contains a polynomial number of tuples (with respect to the difference
between j and i). These tuples encode the top symbol of the stack (or top symbols of the category)
together with an indication of where the next part of the stack (category) can be found. If we had
stored the entire stack in the array elements5, then each array entry could include exponentially many
elements. The recognition complexity would then be exponential.

It is interesting to consider why it is not necessary to store the entire stack in the array elements.
Suppose that (A,7,.4,7',p,q) 6 Lij. This indicates the existence of a tuple, say (A', 7', A", 7", r,5),
in LBg. It is crucial to note that when we are adding the first tuple to LXJ we are not concerned about
how the second tuple came to be put in Lp<g This is because the productions in LIG (combinatory
rules in CCG) are linear with respect to their unbounded stacks (categories). Hence the derivations
from different nonterminals and their associated stacks (categories) are independent of each other. In
Indexed Grammars, productions can have the form A[-*7] —>Ai[-] A2[*]. In such productions there is
no single distinguished child that inherits the unbounded stack from the nonterminal in the LHS of the
production. In a bottom-up recognition algorithm the identity of the entire stacks associated with A\
and A2 has to be verified. This nullifies any advantage from the sharing of stacks since we would have
to examine the complete stacks. A similar situation arises in the case of coordination schema used to
handle certain forms of coordination in Dutch. A coordination schema has been used by Steedman [9]
that has the form x conj x —»x where the variable x can be any category. With this schema we have
to check the identity of two derived categories. This results in the loss of independence among paths
in derivation trees. In [13] we have discussed the notion of independent paths in derivation trees with
respect to a range of grammatical formalisms. We have shown [12] that when CCG are extended with
this coordination schema the recognition problem becomes NP-complete.

5 Conclusion

We have presented a general scheme for polynomial-time recognition of languages generated by a
class of grammatical formalisms that are more powerful than CFG. This class of formalisms, which
includes LIG, CCG, and TAG, derives more complex trees than CFG due the use of an additional
stack-manipulating mechanism. Using constructions given in [15,3], we have described how a recog-
nition algorithm presented for LIG can be adapted to give an algorithm for CCG. These are the first
polynomial recognition algorithms that work directly with these formalisms. This approach can also
be used to yield TAG recognition algorithm, although the TAG algorithm is not discussed in this
paper. A similar approach has been independently taken by Lang [5] who presents a Earley parser for
TAG that appears to be very closely related to the algorithms presented here.

5In the chart parser for CCG given by Pareschi and Steedman [6] the entire category is stored explicitly in each chart
entry.

-180- International Parsing Workshop '89

References

[1]

(2]

[3]

[4]

[5]
[6]

8]

Bl

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. V. Aho. Indexed grammars — An extension to context free grammars. 3. ACM, 15:647-671,
1968.

G. Gazdar. Applicability of Indexed Grammars to Natural Languages. Technical Report CSLI-
85-34, Center for Study of Language and Information, 1985.

A. K. Joshi, K. Vijay-Shanker, and D. J. Weir. The convergence of mildly context-sensitive
grammar formalisms. In T. Wasow and P. Sells, editors, The Processing of Linguistic Structure,
MIT Press, 19809.

T. Kasami. An Efficient Recognition and Syntax Algorithm for Context-Free Languages. Technical
Report AF-CRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA, 1965.

B. Lang. Nested Stacks and Structure Sharing in Earley Parsers. In preparation.

R. Pareschi and M. J. Steedman. A lazy way to chart-parse with categorial grammars. In 23th
meeting Assoc. Comput. Ling., 1987.

C. Pollard. Generalized Phrase Structure Grammars, Head Grammars and Natural Language.
PhD thesis, Stanford University, 1984.

M. Steedman. Combinators and grammars. In R. Oehrle, E. Bach, and D. Wheeler, editors,
Categorial Grammars and Natural Language Structures, Foris, Dordrecht, 1986.

M. J. Steedman. Dependency and coordination in the grammar of Dutch and English. Language,
61:523-568, 1985.

J. W. Thatcher. Characterizing derivations trees of context free grammars through a generaliza-
tion of finite automata theory. J. Comput. Syst. Sci., 5:365-396y1971.

K. Vijay-Shanker and A. K. Joshi. Some computational properties of tree adjoining grammars.
In 23rd meeting Assoc. Comput. Ling., pages 82-93, 1985.

K. Vijay-Shanker and D. J. Weir. The computational properties of constrained grammar for-
malisms. In preparation.

K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. Characterizing structural descriptions produced
by various grammatical formalisms. In 25l meeting Assoc. Comput. Ling., 1987.

K.Vijay-Shanker, D. J. Weir, and A. K. Joshi. Tree adjoining and head wrapping. In 1lth
International Conference on Comput. Ling., 1986.

D. J. Weir and A. K. Joshi. Combinatory categorial grammars: Generative power and relationship
to linear context-free rewriting systems. In 26t/ meeting Assoc. Comput. Ling., 1988.

D.H. Younger. Recognition and parsing of context-free languages in time n3. Inf. Control,
10(2):189-208, 1967.

-181- Intemational Parsing Workshop '89

