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ABSTRACT

In a natural language processing system, a large amount o f ambiguity and a large 
branching factor are hindering factors in obtaining the desired analysis for a given sentence 
in a short time. In this paper, we are proposing a sequential truncation parsing algorithm 
to reduce the searching space and thus lowering the parsing time. The algorithm is based 
on a score function which takes the advantages o f probabilistic characteristics o f syntactic 
information in the sentences. A preliminary test on this algorithm was conducted with a 
special version o f our machine translation system, the ARCHTRAN, and an encouraging 
result was observed.

Motivation

In a natural language processing system, the number o f possible analyses associated with 
a given sentence is usually large due to the ambiguous nature o f natural languages. But, it is 
desirable that only the best one or two analyses are translated and passed to the post-editor 
in order to reduce the load o f the post-editor. Therefore, in a practical machine translation 
system, it is important to obtain the best (in probabilistic sense) syntax tree having the best 
semantic interpretation within a reasonably short time. This is only possible with an intelligent 
parsing algorithm that can truncate undesirable analyses as early as possible.

There are several methods to accelerate the parsing process [Su 88b], one o f which is 
to decrease the size o f the searching space. This can be accomplished with a scored parsing 
algorithm that truncates unlikely paths as early as possible [Su 87a, 87b] and hence decreases 
the parsing time.

As for the searching strategy for the scored parsing algorithm, it may be either parallel or 
sequential. But in our system, a time limit is used to stop the parsing process when a sentence 
is taking too long to parse because its length or because it has a very complicated structure. 
Therefore, the sequential searching strategy is better for us than the parallel approach because
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wc arc likely to have some complete syntax trees to work with even if the parsing was 
suspended abnormally when its time expires. On the other hand, the parallel approach will 
not have this advantage because none of the on-going paths have traversed to the end.

In this paper, we are proposing a sequential truncation algorithm for parsing sentences 
efficiendy. This algorithm employs the score function we proposed in [Su 8 8a]. However, 
this algorithm is different from the one proposed in [Su 87a, 87b], which described a parallel 
truncation algorithm for scored parsing. Here, we are adopting a sequential truncation method. 
While we are using this sequential approach, a large speed-up in the parsing time has been 
.jb served.

Definition of the Score Function
In a scored parsing system, the best analysis is selected base on its score. Several scoring 

mechanisms have been proposed in the literatures [Robi 83, Benn 85, Gars 87, Su 88a]. 
The one we adopt is the score function based on the conditional probability we proposed in 
[Su 8 8a]. How to select the best analysis of a sentence is now convened into the problem 
of finding the semantic interpretation (Semi), the syntactic structure (Synj) and the lexical 
categories (LeXk) that maximize the conditional probability of the following equation,

S C O R E  (Sem ,, S y n j L e x t ) 
=  P  ( S e m t ' S y n j i L e x k \ w \ . . . w n )  

=  P  ( S e m t \ S y r i j ' L e x j e w i " W n )  * P  ( S y r i j  |Zexjt(u;i...u;n) * P  ( L e x ^ w i ^ w n )   ̂  ̂

=  S C O R E a t m  { S e m i )  * S C O R E s y n  ( S y n j ) * S C O R E u x ( L e x *) ,

where w i to wn stands for the words in the given sentence and the last three product terms 
are semantic score, syntactic score and lexical score respectively. Since we are using 
just the syntactic information in our current implementation, we will focus only on the 
syntactic aspect o f this score function (i.e. S C O R E j y n ( S y n j ) ,  which can be approximated 
by S C O R E s y n { S y n j )  «  P ( S y n j \ L e x k ) =  P { S y r i j \ v i „ v n ) ,  where V! to vn are the lexical 
categories corresponding to w i to wn).

To show the mechanism informally, first refer to the syntax tree in Fig. 1. shown here 
with its reduction sequences (produced with a bottom-up parsing algorithm), where Li is i-th 
phrase level consists o f terminals and nonterminals. The transition from a phrase level Lj to 
the next phrase level Li+i corresponds to a reduction or derivation of a nonterminal at time ty.
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The syntax score of the tree in Fig. 1 can be formulated as the following conditional 
probability equation, where li and r* are the left and right contexts of the reducing symbols:

S C O R E s y n  ( S y n A )  

=  P  . L 2 \ L \ )

=  P  ( L s \ L 7 . . L 2 , L \ )  *  P  ( L j \ L s . . . L \ )  * . . .  *  P  ( L 2 \ L \ )  ^

~  ^ ( { ^ } |  { h , B , C , r j } )  *  P ( { C } |  { l e , F ,  G , r 6 } )  *  . . .  *  P ( { £ > } |  { ’/ l i u ; l f r 1 } )

Eq. 2 can be further reduced to the following equation if only one left and one right context 
symbol are considered where “0” is the null symbol.

S C O R E S y n  ( S y n A )

«  P ( { ^ }  | { 0 ,  B , C ,  0 } )  *  P ( { C }  | { B , F , G , 0 } )  *  . . .  *  P ( { D }  | { 0 , u , 1 , U ; 2 } )  ( 3 )

If we want to calculate the score at the point where a word is just being fetched (compact 
multiple reductions and one shift into one step), the S C O R E ^ n f S y r i A )  can also be approximated 
into the following equation.

S C O R E 3 y n ( S y n A )  

=  P ( L s L 7 . . L 2 \ L i ) 

= ^ ( ^ 8,£7 ,£61^ 5,£4...£1 ) * P (£51^ 4,£3...£1 ) * P (LitLz\L2,L\) * P(Ij2\Li) (4) 
*  P ( L s L 7 L6 \L5) * P ( L s\L<) * P ( L < L z\L2 ) * P ( L 2 \L1) 
* P ( L s \ L 5 ) * P ( L s \ L < )  * P ( L < \ L 2 ) * P ( L 2 III)

Two assumptions were made in formulating Eq. 2 -4 . First, it is assumed that the forming 
of phrase level i is only dependent on its immediate lower phrase level, since most information 
percolated from other lower levels is contained in that level. And second, a reduction is only 
locally context sensitive to its left or right context at each phrase level. This assumption is 
also supported in other systems as well [Marc 80, Gars 87].

A simulation based solely on this syntactic score was conducted and reported in [Su 8 8a] 
with a full-path searching algorithm. The result shows that the correct syntactic structures o f  
over 85% of the test sentences were successfully picked when a total o f three local left and 
right context symbols were consulted.
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The Sequential Truncation Algorithm
Using the score function defined in the previous section, we will present the idea of 

sequential truncation algorithm with Fig. 2.
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Fig. 2 The searching tree

Each path in Fig. 2 corresponds to a possible derivation of a given sentence. The parser 
will use the depth-first strategy to traverse the searching tree. But during the searching process, 
the parser compares the score of each path accumulated so far with a running threshold C(ai) 
(a detailed definition will be given in the following section) at each step i when the next 
word is fetched. If the score of the path is less than the running threshold C(ai), it will be 
truncated, i.e. blocked, and the next path will be tried. This process continues until we get 
the first complete parse tree (i.e. when the whole sentence is reduced to a S node). After 
we obtain the first complete parse tree, a lower bound for the scores is acquired. The parser 
will continue to traverse other pathes, but from now on, the score o f each path will also be 
compared with the final accumulated score o f the first complete parse tree in addition to be 
compared with the running threshold. This additional comparison is similar to the branch and 
bound strategy employed in many A l applications [Wins 84] and it w ill accelerate the parsing 
process further. The whole process is shown in the flow chart in Fig. 3. If the test fails 
in either case, this path will be truncated. Continuing in this manner, we may get a second 
complete parse tree which has a final score higher than the first one. In this case, we will 
replace the lower bound with the final score o f the second parse tree and repeat the whole 
process until the end o f the entire searching process.

If all the paths are blocked without arriving at any complete parse tree, we can adopt one 
of two possible strategies. First, we could loosen the running thresholds, i.e. lowering the 
C(qO, and try the deepest path gone so far again. Second, we can process this sentence in 
fail-soft mode. The fail-soft mechanism will skip and discard the current state and attempts 
to continue the parsing at some later point
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The effectiveness o f the sequential truncation algorithm depends on the distribution of 
scores o f the database and the input sentences. As we can see, for each syntax tree can be 
expressed as the product o f a sequence of conditional probability as shown in Eq. 4. Each 
term in the product corresponds to a transition between two ’’shift" actions and is evaluated 
immediately after a ’’shift". Taking the logarithm on both sides o f Eq. 4, we get the following  
equation where X* denotes a sequence o f phrase levels at i-th step and L is the length of the 
sentence.

L
log ( S C O R E s)l„ ( S y n ) )  =  J ^ l o g  P { X ,  (5)

1=1

j
If we define y j  =  ^  log P  ( X i \ X i - \ ) , then yj denotes the accumulated logarithmic score 

i= l
up to the j-th word which is also the j-th shift of the sentence.

Suppose we have M sentences with their correct parse trees in the database. For each 
parse tree, we can evaluate yj by using the logarithmic score function defined before. So for 
the k-th sentence in the database, we obtain a sequence y*, y *, , where y*denotes
the accumulated logarithmic score o f the k-th sentence and L* denotes the length o f the k-th 
sentence.
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If wc regard each parse tree in the database as a sample point in a probability outcome 
space, we may regard Y* as a random variable which maps each parse tree into an accumulated 
logarithmic score (note, for a sentence with length L^, it will be associated, with random
variables : Vi, V2,...*£„)• So y*, with k from 1 to M, will be the samples of the random
variable Yi. Since each sentence has its own length, the number of samples in the database 
for different random variable Yi will not be the same.

Using the samples in the database, we can draw a histogram for each Yi. We then
approximate each histogram by a continuous density function / y ( y ) .  To allow a fraction 
Qi, say 99%, of the best parse trees to pass the test at step i, we can set a constant C(c*i) 
such that P { Y X> C  ( a t )) =  a t. For each path, Yj is the random variable of the accumulated 
logarithmic score up to the i-th shift, and C(ai) is the running threshold that we will use to 
compare with the running accumulated logarithmic score at step i. Those paths with running 
accumulated logarithmic score yi less than C(c*i) would be blocked. Using the notation 
defined above, the probability of obtaining the desired parse tree for a sentence with length 

L k

L* would be Yi a »*
»= i

If we set Zi as the random variable which maps all the possible paths of all the sentences 
we want to parse into the accumulated logarithmic score at i-th word, then all the paths, 
whether they can reach the final state of the searching tree or not, will have a set of running 
accumulated logarithmic scores. Fig. 4 shows the relation between the density function ( 2 ) 
of running score o f the input text and the density function f y  (y)  of cumulative score of the 
database. In the figure, the dashed lines are the means of the density functions. Since the 
step-wise cumulative score in the database is evaluated using the correct parse tree that we 
have selected, we would expect that the expectation value of Yi will be greater than that o f Zi, 
that is, E[Yi] > E[Zi]; and the variance of Yi is less than that of Zi, that is Var[Yi]<Var[Zi].

means

to be 
tancated

Q cc j)
4a. a wcreecase

to be 
truncated

Q « i)
4b. a better case

Rg.4 Relationship between the running sccre cf the inpU text 
and the cumrnulative score of the database

Let f t  denotes F'z (C (cti))y  where F'z (z )  is the cumulated distribution function o f Zi, 
then f t  is the probability that a path will be truncated at the i-th step o f the searching tree. 
By using this sequential truncation method, the searching space would then be approximately

reduced to ( 1  -  f t ) ,  which is a small portion o f the original searching space generated by a

full path searching algorithm. Therefore the efficiency o f parsing is increased. Since f t  in Fig. 
4a is less than that in Fig. 4b, which correspond to the situation that has a large expectation
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difference (E[Y,]-E[Zi]) and a small variance ratio (Var[Yi]/Var{Zi]), the underlying grammar
that has the property of Fig. 4b would benefit most from this algorithm. In addition, we can
see that if we increase the running threshold C(c*i), we will get a greater fa and a lower aj.

Lk
The parsing efficiency will thus increase, but the probability (i.e. [ ]  a ,)  that we will get the

»=i
desired parse tree would decrease. How to select a good C(aO to achieve a desired parsing 
success rate would be discussed in the following section.

How to set the running threshold
Using the model given in the last section, the probability that we will get the global

optimal solution, i.e. the parse tree with the largest probability, for a sentence with length L 
L

is K l =  [ ]  <*„ where K l is a constant pre-selected by the system designer as a compromise

between the parsing time and the post-editing time. Assuming that the average branching 
factor for each path at each stage is a constant N, then the average total number of paths 
we have to try is :

9 ( < * i =  N  +  N  * ( 1  -  fa )  * N  +  N  * ( 1  -  fix) * N  * ( 1  -  h )  * N  +  -  
=  N  * ( \  +  N  * h ( a \ )  +  N 2 * h ( a i )  * h (012) +  ...)

/  L—l i \  <*>
=  J V * f l  +  ^ . / V '  * J"I h (a j) 1

In Eq. 6 , in order to minimize the path number, the relation h ( a \ )  <  h (0:2 ) ... <  h (a ^ )  
must holds because h(aj) has a larger coefficient than h(ai+i).

The problem of selecting an appropriate running threshold C(aO is now converted into

one o f minimizing g(ai...a:L) under the constraint of a{ =  K l - Taking the logarithm on
1 = 1

L
both sides, we get £  log a t =  log K l . Then the Lagrange multiplier A is used to get 

1 = 1
L

g* ^ * Y j °9  a «- Taldng the partial derivative o f g* with respects
1=1

to a i...a L , we will get the following equations :

* L
^ - = 0 ,  - ^ - = 0 ,  ... =  0 , and  ^ l o g  a i  =  log K l (7)
d a \  oa'i , 00LL l=1

There are (L + l) variables, which are a i...aL , and A, and (L + l) equations. So, 
can be solved by the numerical method. Since a* is usually very close to 1, we can linearize 
the function h(ai) in the region around <**=1 and approximate by h (a ,)  % a * a,- +  b. In this 
way, we can substitute h(aj) in the above equation by a * a* -I- b to simplify the calculation.

During our derivation, we have assumed that the average branching factor at each stage 
is a constant N. This constraint can be relaxed by assuming the average branching factor at 
i-th stage to be N*. In this way, we will get a more complicated expression for g (a i...aL ), 
but it can still be solved in the same way.

The running threshold C(o;i) can now be computed off-line by selecting different Kl 
for different sentence length L. We will call this set of C (a0  the “static running threshold”,
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because once they are computed, they will not be changed during the sentence parsing. 
However, if we arrive at a complete parse tree with much higher final accumulated running 
score than the final accumulated running threshold, then even if a path can pass all the 
accumulated running thresholds it might still be discarded when it is being compared with 
the final accumulated running score. So, the running threshold should be adjusted to reflect a 
high final accumulated running score. Therefore, it would be better if the running threshold 
is changed to C '(ai)=C (ai)+A C (aj), where A C (ai) is set to 7  * (y* — C  (a ,) ) ,  where 0< 7 < 1  
and y* is the accumulated logarithmic score o f the current best parse tree at the i-th step, 
and 7  is a tunning constant pre-selected by the system designer. C'(aj) is then the “dynamic 
running threshold”. Using the dynamic running threshold, the efficiency of parsing would 
be further improved.

If it so happen that all the pathes are blocked before any complete parse tree is formed, 
we can find the deepest path (let us assuming it to be at the j-th step) among the blocked ones 
and continue it with a lowered running threshold of C'(aj )=y'] , where y' is the score of this 
path at the j-th step. Since the procedure to lower the running threshold is quite complicated 
and uses up memory space in run time, it might be better just invoke the fail-soft mechanism 
for sentences whose paths are all blocked.

Testing

We completed two preliminary testings of truncation algorithm with special versions of 
our English-Chinese MT system and a database o f 1430 sentences.

In the first experiment, the sentence parsing time needed by a charted parser that uses 
bottom-up parsing with top-down filtering is compared with the time needed by the same 
charted parser with truncation mechanism. From the test, we found that the average sentence 
parsing time by the charted parser with truncation is improved by a factor o f four. For some 
sentences, the improvement can go as high as a factor o f twenty. This result is encouraging 
because minimizing parsing *time is critical to a practical MT system.

Nevertheless, we noted that our output quality has degraded slightly. By this, we mean 
that the best selected tree produced by the charted parser with no truncation is not among 
the trees produced by the charted parser with truncation. Exploring this problem further, we 
discovered that the chart [Wino 83] used during parsing is in conflict with the truncation 
mechanism. The reason for having chart is to be able to store all subtrees that were parsed in 
previous path traversal. So, when we backtrack to the next path and arrive at the same range 
o f inputs, the same subtrees can be used again without reparsing. However, the idea behind 
the truncation mechanism is to discard subtree in the context in which it has low probability. 
Therefore, if  we adopt the truncation mechanism during parsing, not every subtree between a 
string o f inputs is successfully constructed and stored into the chart. For example, in Fig. 5, 
there are two possible subtrees between b and c when the pathes in the block A are expanded.
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Lj R2 c a t ext

Fig. 5 . Chart with truncation mechanism

In Fig. 5, one of the subtrees is discarded and the other is stored into the chart. There are 
two reasons why a subtree may be discarded. First, it might be caused by a natural language’s 
constraints on the context dependency. Second, a subtree might be discarded because o f its 
small running accumulated score (and thus truncated by the truncation mechanism.) Either 
will leave us a chart with incomplete subchart. So, this will result in the best possible tree 
being missing as a side-effect o f using this chart. For instance, in Fig. 5, the best tree might 
be the second subtree with the left context o f L2 and with the right context o f R2 (i.e., its 
probability is the highest.) But, since the path expansion starting from the left context o f Li 
has the second subtree discarded because its probability under the context o f Li and Ri is 
small, the best tree will never be formed. Therefore, with a chart having incomplete subcharts, 
the possibility o f obtaining the best tree is determined by the pathes traversed before.

One solution to this incompatibility problem is to mark the sections o f the chart that are 
complete. Hence, if an incomplete subchart is encountered again, it will be reparsed. On the 
other hand, if a complete set o f chart is encountered, the subtrees can be copied directly from 
the chart. Another solution is to suspend the truncation mechanism when a set is being tried 
the first time. And if subtrees are copied directly from the chart, the truncation mechanism  
resumes its normal function. In this way, it is guaranteed that every subchart in the chart is 
complete. Both o f these solutions increase our sentence parsing time as the overhead. This 
compromise, however, is unavoidable if the advantages o f using chart are to be maintained.

In the second experiment, we converted the charted parser for the first experiment into 
one with sequential searching strategy and without the use o f the chart. Similar sentence 
parsing test is conducted for this chartless parser but with a smaller analyses grammar. The 
result shows that the total parsing time for this parser with truncation mechanism added is 
better than the same parser without truncation by the factor o f three.

From the positive results o f the above two experiments, we have shown the inclusion 
o f the sequential truncation algorithm is advantageous for a MT system. In addition, we 
have also shown the feasibility o f harmonize the use of chart and the truncation algorithm. 
Currently, we are in the process of resolving the incompatibility problem between the chart 
and the truncation mechanism and constructing a working system with this solution.
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Conclusion
In a natural language processing system, it is important to arrive at a good analysis for a 

sentence in a relatively short time. One way to achieve this is to decrease the parsing time 
by reducing the searching space. We have proposed a sequential truncation algorithm with 
a score function to achieve this goal.

In this sequential truncation strategy, a sequence of running thresholds are used to bound 
the searching space during each step of the scored parsing. In addition, a path can also be 
blocked by the branch-and-bound mechanism if its accumulated score is lower than that of an 
already completed parse tree. There are several reasons for adopting this strategy. First, the 
first parse tree with a moderate quality can be found quickly and easily. Second, the running 
threshold serves to truncate part of the path that is quite unlikely to lead to the best analysis, 
and thus greatly reduces the searching space.

We have made a pilot test on the truncation mechanism with a charted parser that adopts 
bottom-up parsing with top-down ‘"tering. With a database of 1430 sentences, the result 
indicates an average improvement ir le  sentence parsing time by the factor of four (for some 
sentences the improvement goes as . gh as a factor of twenty). However, we also discovered 
an incompatibility problem between the use of chart and the truncation mechanism. In another 
pilot test we conducted on the truncation mechanism, the sentence parsing time is tested for 
a chartless parser that adopts sequential parsing strategy. The result shows an improvement 
in parsing time by a factor o f three for the inclusion of the truncation mechanism. These 
encouraging results demonstrate a great promise for the sequential truncation strategy.

As our current research topic, we shall resolve the incompatibility problem between the 
chart and the truncation algorithm and include the solution into our working MT system, the 
ARCHTRAN.

References
[Benn 85] Bennett, W.S. and J. Slocum, "The LRC Machine Translation System," Computational 

Linguistics, voL 11, No. 2-3, pp. 111-119, ACL, Apr.-Sep. 1985.
[Gars 87] Garside, Roger, Geoffrey Leech and Geoffrey Sampson (eds.), The Computational Analysis 

of English : A Corpus-Based Approach, Longman , New York, 1987.
[Marc 80] Marcus, M.P., A Theory of Syntactic Recognition for Natural Language, MIT Press, 

Cambridge, MA, 1980.
[Robi 82] Robinson, J.J., "DIAGRAM : A Grammar for Dialogues," CACM, vol. 25, No. 1, pp. 

27-47, ACM, Jan. 1982.
[Su 87a] Su, K.-Y., J.-S. Chang, and H.-H. Hsu, "A Powerful Language Processing System for English- 

Chinese Machine Translation," Proc. of 1987 Int. Conf. on Chinese and Oriental Language 
Computing, pp.260-264, Chicago, Dl, USA, 1987.

[Su 87b] Su, K.-Y., J.-N. Wang, W.-H. Li, and J.-S. Chang, "A New Parsing Strategy in Natural 
Language Processing Based on the Truncation Algorithm", Proc. of Natl. Computer Symposium 
(NCS), pp. 580-586, Taipei, Taiwan. 1987.

[Su 88a] Su, K.-Y. and J.-S.Chang, "Semantic and Syntactic Aspects of Score Function," Proc. 
COLJNG-88, vol. 2, pp. 642-644, 12th Int. Conf. on Comput. Linguistics, Budapest, Hungary, 
22-27 Aug. 1988.

[Su 88b] Su, K.-Y., “Principles and Techniques of Natural Language Parsing : A Tutorial,” Proc. of  
ROCUNG-I, pp.57-61, Nantou, Taiwan. Oct 1988.

[Wino 83] Wmograd, Terry, Language as a Cognitive Process, Addison-Wesley, Reading, MA., USA, 
1983.

[Wins 84] Winston, P.H., Artificial Intelligence, Addison-Wesley, Reading, MA., USA, 1984.

-104- Intemational Parsing Workshop '89


