
An O verview  of  
Disjunctive Constraint Satisfaction

■John T. Maxwell III and Ronald M . Kaplan  

Xerox Palo Alto Research Center

Introduction

This paper presents a new algorithm for solving disjunctive systems of constraints. The algorithm 
determines whether a system is satisfiable and produces the models if the system is satisfiable. There 
are three main steps for determining whether or not the system is satisfiable:

1 ) turn the disjunctive system into an equi-satisfiable conjunctive system in polynomial time
2) convert the conjunctive system into canonical form using extensions of standard techniques 
■3) extract and solve a propositional ’disjunctive residue'

Intuitively, the disjunctive residue represents the unsatisfiable combinations of disjuncts in a 
propositional form based on the content of the constraints. Each of the transformations above 
preserves satisfiability, and so the original disjunctive system is satisfiable if and only if the 
disjunctive residue is satisfiable. If the disjunctions are relatively independent (as frequently happens 
in grammatical specifications), then the disjunctive residue is significantly easier to solve than  the 
original system.

The first three sections of this paper cover the steps outlined above. The fourth section describes how 
models can be produced. Finally, the last section compares this approach with some other techniques 
for dealing with disjunctive systems of constraints.

Turning Disjunctions into C onjunctions

B asic  L e m m a

Our method depends on a simple lemma for converting a disjunction into a conjunction of implications:

(1) 4>i V 4>2 is satisfiable iff ( p —*• 4>i ) A ( - 1 p -* 4)9 ) is satisfiable, 
where p is a new propositional variable.

Proof:
1) If 4)i v  $2  is satisfiable, then either 4>i is satisfiable or 4>2 is satisfiable. Suppose tha t  4>i is 

satisfiable. Then if we choose p to be true, then p —► is satisfiable because 4>i is satisfiable, 
and - l p-*  $2  is vacuously satisfiable because its antecedent is false. Therefore 
(p -+  <t>i ) A ( - l p -»  4)2 ) is satisfiable.

2) If ( p —► 4)i ) A ( i p - >  4>2 ) is satisfiable, then both clauses are satisfiable. One clause will 
be vacuously satisfiable because its antecedent is false and the other will have a true antecedent. 
Suppose that p -> 4>l is the clause with the true antecedent. Then 4>i must be satisfiable for p -+ 4>i to 
be satisfiable. But if 4>i is satisfiable, then so is 4>i V 4>2- Q E D.

Intuitively, the new variable p is used to encode the requirement that a t  least one of the disjuncts be 
true. In the rem ainder of the paper we use lower-case p to refer to a single propositional variable, and 
upper-case P to refer to a boolean combination of propositional variables. We call P 4> a contexted 
constraint, where P is the context and 4> is called the base constraint.

(Note that this lemma is stated in terms of satisfiability, not logical equivalence. A form of the lemma 
that emphasized logical equivalence would be: 4>t V 4)2 *"* 3p: ( p —► 4>l ) A ( - IP $2  )• )

-18- International Parsing Workshop '89



T u rn in g  a D is ju n c tive  S y s te m  into a C o n ju n c tive  S y s te m

The lemma given above can be used to convert a disjunctive system of constraints into an flat 
conjunction of contexted constraints in polynomial time. The resulting conjunction is satisfiable if and 
only if the original system is satisfiable. The algorithm for doing so is as follows:

(2 ) a) push all of the negations down to the literals
b) turn all of the disjunctions into conjunctions using the lemma above
c) flatten nested contexts with: I P t —* I Pj —* <J>)) <=* ( P t A Pj -* <$ )
d) separate conjoined constraints with: ( P, -» $ 1  A )) ** ( Pi $ 1  ) A ( P, -* 4)2 )

This algorithm is a variant of the reduction used to convert disjunctive systems to CNF in the proof 
that CNF is NP-complete[4], and is thus known to run in polynomial time. In effect, we are simply
converting the disjunctive system to an implicational form of CNF (note that P —* is logically
equivalent to ~>P V <t>)- CNF has the desirable property that if any one clause can be shown to be 
unsatisfiable, then the entire system is unsatisfiable.

E xam ple

The functional s tructure f of an uninflected verb in English has the following constraints in the 
formalism of Lexical-Functional G ram m ar[6 |:

(3) ((f INF) = - A ( f  TENSE) = PRES A -[(fSUBJ NUM) = SG A (f SUBJ PERS) = 3]) v  (f INF) = +

(In LFG notation, a constraint of the form (f a) = v asserts that fta) = v, where f is a function, a is an
attribute, and v is a value, (f a b) = v is shorthand for f(a)(b) = v.) These constraints say tha t  an 
uninflected verb in English is e ither a present tense verb which is not third person singular or it is 
infinitival. In the left column below this system has been reformatted so that it can be compared with
the results of applying algorithm (2 ) to it, shown on the right:

reformatted: converts to:

( (f INF) = - ( P t -*• (f INF) = - ) A

A (f TENSE) = PRES ( P-| -* (fTENSE) = PRES) A

A - [ (f SUBJ NUM) = SG ( p 1 A p 2 (f SUBJ NUM) x  SG ) A

A (fSUBJ PERS) = 3 ]) ( p 1 A ->p2 -► (f SUBJ PERS) * 3 ) A

V (f INF) = + ( “, P 1 - (f INF) = + )

Converting the Constraints to C anonical Form

A conjunction of contexted constraints can be put into an equi-satisfiable canonical form that  makes it 
easy to identify all unsatisfiable combinations of constraints. The basic idea is to s ta r t  with 
algorithms tha t  determine the satisfiability of purely conjunctive systems and extend each rule of 
inference or rewriting rule so tha t  it can handle contexted constraints. We illustrate  this approach by 
modifying two conventional satisfiability algorithms, one based on deductive expansion and one based 
on rewriting.

D ed u c tive  E x p a n s io n

Deductive expansion algorithm s work by determining all the deductions tha t  could lead to 
unsatisfiability given an initial set of clauses and some rules of inference. The key to extending a 
deductive expansion algorithm to contexted constraints is to show th a t  for every rule of inference tha t  
is applicable to the base constraints, there is a corresponding rule of inference th a t  works for contexted

-19- Intemational Parsing Workshop '89



constraints. The basic observation is that base constraints can be conjoined if their contexts are 
conjoined:

(4) ( Pi —> <J>i ) A ( P ‘2 —> 4>o ) =* ( Pi A P ‘2 —♦ 4>i A (|>2 )

If we know from the underlying theory of conjoined base constraints that <£i A <£2 —*■ 4)3, then the 
transitivity of implication gives us:

(5 ) ( Pi —* 4>i ) A ( P2 —* <J>2 ) =* ( Pi A P2 —<► 4>3 )

Equation (5) is the contexted version of A ^  $ 3. Thus the following extension of a standard
deductive expansion algorithm works for contexted constraints:

(6) For every pair of contexted constraints Pi —»<£1 and P 2 —* <po such that:
a) there is a rule of inference $  1 A $2 -+ (£3
b) P \  A P2 *  FALSE

c) there are no other clauses P3 —*• 4)3 such that P t A P 2 - P 3 
add Pi A P2 —* <$>3 to the conjunction of clauses being processed.

Condition (6b) is based on the observation that any constraint of the form FALSE —> (p can be discarded 
since no unsatisfiable constraints can ever be derived from it. This condition is not necessary for the 
correctness of the algorithm, but may have performance advantages. Condition (6c) corresponds to the 
condition in the standard deductive expansion algorithm that redundant constraints must be 
discarded if the algorithm is to terminate. We extend this condition by noting tha t  any constra in t of 
the form Pj —* 4> is redundant if there is already a constraint of the form Pj —► <£, where Pj -* Pj. This is 
because any unsatisfiable constraints derived from Pj -+ 4> will also be derived from Pj —* <£. Our 
extended algorithm term inates if the s tandard algorithm for simple conjunctions terminates. When it 
terminates, an equi-satisfiable disjunctive residue can be easily extracted, as described below.

R e w r i t in g

Rewriting algorithms work by repeatedly replacing conjunctions of constraints with logically 
equivalent conjunctions until a normal form is reached. This normal form usually has the property 
that all unsatisfiable constraints can be determined by inspection. Rewriting algorithms use a set of 
rewriting rules that specify what sorts of replacements are allowed. These are based on logical 
equivalences so that no information is lost when replacements occur. Rewriting rules are in terpreted 
differently from logical equivalences, however, in that they have directionality: whenever a logical 
expression matches the left-hand side of a rewriting rule, it is replaced by an instance of the logical 
expression on the right-hand side, but not vice-versa. To distinguish the two, we will use «-* for 
logical equivalence and »  for rewriting rules. (This corresponds our use of —► for implication and => 
for deduction above.)

A rewriting algorithm for contexted constraints can be produced by showing tha t  for every rewrite  
rule that is applicable to the base constraints, there is a corresponding rewrite rule for contexted 
constraints. Suppose tha t  $ 1  A <J>2 <=> <$>3 is a rewriting rule for base constraints. An obvious candidate 
for the contexted version of this rewrite rule would be to treat the deduction in (5) as a rewrite rule:

(7) ( Pi -*• $ 1  ) A ( P 2 —<► $2  ) <=> ( Pi A P2 -» $3  ) (incorrect)

This is incorrect because it is not a logical equivalence: the information that <p\ is true in the context 
Pi A -> P2 and that $2  is true in the context P 2 A —1 Pi has been lost as the basis of future deductions. If 
we add clauses to cover these cases, we get the logically correct:

(8) ( P i —►4)i ) A ( P 2—* $2 ) ^  ( Pi A - P 2 -*<J>i) A( P2 A - P t -> <£2 ) A ( Pi A P2 —♦ $3 )

-20- International Parsing Workshop '89



This is the contexted equivalent of <pi A $ 2 <=> $ 3. Note that the effect of this is that the contexted 
constraints on the right-hand side have unconjoinable contexts (that is, their conjunction is 
tautologically false). Thus, although the right-hand side of the rewrite rule has more conjuncts than 
the left-hand side, there are fewer implications to be derived from them.

Loosely speaking, a rewriting algorithm is constructed by iterative application of the contexted 
versions of the rewriting rules of a conjunctive theory. Rather than give a general .t iine  here, let us 
consider the particular case of a ttr ibute  value logic.

A p p lica t io n  to A t tn b u te - V a lu e  L og ic

Attribute-value logic is used by both LFG and unification-based grammars. We will s ta r t  with a 
simple version of the rewriting formalism given in Johnson[51. For our purposes, we only need two of 
the rewriting rules that Johnson defines[5 pp. 38-39]:

O) ti == t2 «  t2 « t l when ||t i|| < ||t2i| ( INI is Johnson's norm for terms. )

(10) t2=s tiA<t) «  t2~ t i  A <$>[t2/til  where <t> contains t2 and ||t2|| >  i|ti||

( <J>[t2/til denotes "4) with every occurrence of t2 replaced by ti". )

We turn equation (10) into a contexted rewriting rule by a simple application of (7) above:

( 1 1 ) ( P i - > t 2 =  t 1 ) A (  P2 -><t>)
»  ( Pi A ->P2 —► t2 = t L) A ( -  Pi A P2 -+<t>) A (  Pi A P 2 -+ ( t2 =  ti A<t>[t2/tiD)

We can collapse the two instances of 1 2 =  1 1 together by observing that ( P - * A A B )  *+
( p a  ) A ( P -> B ) and tha t  ( P{ -* A ) A ( Pj A ) «- ( P t V Pj -* A ), giving the simpler form:

(12) ( Pi -* t2 =  t i ) A ( P2 -*« 4>) «=> ( Pi -* t2 = ti ) A ( P2 A -  Pi -> 4>) A ( P2 A Pi -* 4>[t2/ti  1)

Formula (12) is the basis for a very simple rewriting algorithm for a conjunction of contexted 
attribute-value constraints.

(13) For each pair of clauses Pi —* tj =  t t and P 2 —> 4>:
a) if ||tj|| > INI,then set fc2 t0 tj and fci t0 else set fc2 t0 ̂  and t i t0 ti
b) if <|> mentions t 2 then replace P2 -* <P with ( P2 A -*Pi -> <J>) A ( P 2 A Pi -* <t>[t2/ t i l )

Notice that since Pi -* t2 =  ti is carried over unchanged in (12), we only have to replace P2 <t> in 
(13b). Note also that if P 2 A P t is FALSE, there is no need to actually add the clause P2 A Pi - *  <t>(t2/ti] 
since no unsatisfiable constraints can be derived from it. Similarly if P 2 A —1 ? !  is FALSE there is no 
need to add P 2 A ~1 Pi —► <t>.

E x a m p le

The following example illustrates how this algorithm works. Suppose that (15) is the contexted 
version of (14):

(14) [f2 =  f i V ( f i a )  =  c i ]A [ ( f2 a) =  c2 v ( f i a )  = c3] where q  * cj for all i * j

15) a. Pi -> f2 — fl
b. ^Pi -* II 0 r—

•

c. P2 -*> (f2 a) =C2
d. ~' P2 -> (fl a) = C3

-21- Intemational Parsing Workshop '89



(For clari ty,  we omit the A's whenever  contexted const ra in t s  are d isplayed in a column.) There is an 
applicable rewrite rule for const r a in ts  ( 15a) and (15c) tha t  produces three  new const raints:

(16) pi — f2 = fi ^  Pi -*■ =
p2 -+ (T2 a) =  c2 ~"Pi a P2 -* (f-2 a) =  c2

pi A p2 -» (fi a) =  C9

Although there is an applicable rewri te  rule for ( 15d) and the last  clause of ( 16), we ignore it since p t 
A p9 A —-p2 is FALSE. The only o ther  pai r  of cons t ra in t s  tha t  can be rewr i t ten  are  ( 15b) and ( I 5d). 
producing three more const ra ints:

(IT) —1 pi -*> (fi a) =  ci <=> ~' Pi ~ " (fi a) =  ci
—1P2 — *  (fi a) =  C3 P i A t ?  ~ (fi a) =  c3

“’Pi A - p 2 -*> Cl = c 3

Since no more rewrites  are  possible, the normal  form ot ( 15) is thus:

18) a. Pi — f2 = fi
b. “■Pi -> (fl a) =  ci
c. - 1 pi A p2 — (f2 a) =  C2
d. Pi A - 1 p2 -*• (fi a) =  c3
e. Pi A P2 — (fi a) = C2
f. -1 Pi A p2 -» 0 II 0 CO

Extracting the Disjunctive Residue
When the rew riting algorithm is finished, all unsatisfiable combinations of base constraints will have 
been derived. But more reasoning must be done to determine from base unsatisfiabilities whether the 
disjunctive system is unsatisfiable. Consider the contexted constraint P -* <J>, where <J> is unsatisfiable. 
In order for the conjunction of contexted constraints to be satisfiable, it must be the case tha t  -• P is 
true. We call - ' P a  nogood, following deKleer's terminology! 1 ]. Since P contains propositional 
variables indicating disjunctive choices, information about which conjunctions of base constraints are 
unsatisfiable is thus back-propagated into information about the unsatisfiability of the conjunction of 
the disjuncts that they come from. The original system as a whole is satishable just  in case the 
conjunction of all its nogoods is true. We call the conjunction of all of the nogoods the residue ot the 
disjunctive system.

For example, clause (18f) asserts tha t  -*pi A ^ P 2 - » > ci = c 3. B utc i  = c 3 is unsatisfiable, since we know 
that ci * c3. Thus ~>( - 1 pi A - 1 P2) is a nogood. Since ci = c3 is the only unsatisfiable base constra in t in 
( 18 ), this is also the disjunctive residue of the system. Thus (14) is satisfiable because - l (~ lp i A  1 po) 
has at least one solution (e.g. pi is true and P2 is true).

Since each nogood may be a complex boolean expression involving conjunctions, disjunctions and 
negations of propositional variables, determining whether the residue is satisfiable may not be easy. 
In fact, the problem is NP complete. However, we have accomplished two things by reducing a 
disjunctive system to its residue. First, since the residue only involves propositionat variables, it can 
be solved by propositional reasoning techniques (such as deKleer's ATMS) that do not require 
specialized knowledge of the problem domain. Second, we believe tha t  for the particular case of 
linguistics, the final residue will be simpler than  the original disjunctive problem. This is because the 
disjunctions introduced from different parts of the sentence usually involve different a ttr ibu tes  in the 
feature structure, and thus they tend not to interact.

Another way that nogoods can be used is to reduce contexts while the rewriting is being carried out, 
using identities like the following:

-22- International Parsing Workshop '89



(19) ~,PiA( ~1Pi A  P2~* <t>) <=> Pi A ( P-2 —► c$>)

(20) - P i  A( Pi A P2-><$>) “’ Pi

(21) Pi A Pi <=> FALSE

Doing this can improve the performance since some contexts are simplified and some constraints are 
eliminated altogether. However, the overhead of comparing the nogoods against the contexts may 
outweigh the potential benefit.

Producing the M odels
Assuming that there is a method for producing a model for a conjunction of base constraints, we can 
produce models from the contexted system. Every assignment of tru th  values to the propositional 
variables introduced in (1 ) corresponds to a different conjunction of base constraints in the original 
system, and each such conjunction is an element of the DNF of the original system. Rather than 
explore the entire space of assignments, we need only enumerate those assignm ents for which the 
disjunctive residue is true.

Given an assignment of tru th  values tha t  is consistent with the disjunctive residue, we can produce a 
model from the contexted constraints by assigning the tru th  values to the propositional variables in 
the contexts, and then discarding those base constraints whose contexts evaluate to false. The 
minimal model for the rem aining base constraints can be determined by inspection if the base 
constraints are in normal form, as is the case for rewriting algorithms. (Otherwise some deductions 
may have to be made to produce the model, but the system is guaranteed to be satisfiable.) This 
minimal model will satisfy the original disjunctive system.

E xa m p le

The residue for the system given in (18) is - l ( _lpi A ->p2 ). This residue has three solutions : pi and 
P 2 both true, pi true and p2 false, and pi false and p2 true. We can produce models for these solutions 
by extracting the appropriate constraints from (18), and reading off the models. Here are the solutions 
for this system:

solution: constraints: model:

(22) pi true, p2 true: f2 = fi A (f i  a) =  C2 !![’ 1

(23) pi true, p2 false: f2 =  fi A (fi a) =  c3 !![• 1
(24) pi false, p2 true: (fl a) = ci A (f2 a) = C2 fl[a cl]

C om parison with Other T ech n iqu es

In this section we compare disjunctive constra in t satisfaction with some of the o ther techniques tha t  
have been developed for dealing with disjunction as it arises in gram m atical processing. These other 
techniques are framed in term s of feature-structure unification and a unification version of our 
approach would facilitate the comparisons. Although we do not provide a detailed specification of 
context-extended unification here, we note that unification can be thought of as an indexing scheme 
for rewriting. We s ta r t  with a simple illustration of how such an indexing scheme might work.

-23- Intemational Parsing Workshop '89



U nifica tion  In d ex in g

Regarding unification as an  indexing scheme, the main  ques tion th a t  needs to be answered is where to 
index the contexts.  Suppose that  we index the contexts with the values  under  the at t r ibutes .  Then the 
a t t r ibute-value  (actual ly,  attribute-corc/Jexr-value) matr ix  for 125a) would be (25b):

(25) a. f a ) = c i V (,fb) = C2V(f a ) = c 3)
’  I p l e l l
a L - P I & ' P 2 C3J

b Q p l & p 2 c f | _

Since the contexts are  indexed unde r  the a t t r ibutes ,  two disjunct ions  will only in terac t  if they have 
a t t r ibutes  in common.  If they have no a t t r i bu te s  in common,  the i r  uni fica tion will be l inear  in the 
number  of a t t r i but es ,  r a th e r  than  mul t ipl ica t ive in the n um ber  of disjuncts.  For instance,  suppose 
that  (26b) is the a t t r i bu te  value mat r i x  for (26a):

(26) a. (f c ) =  C4 V ((f d) = C5 V (f e ) =  eg)
c (fi3 c 4] 

d [ } p3 &p 4  c5]

9 [ j p 3 & ' p 4  ctf]

(27)

Since these disjunctions have no a ttr ibu tes  in common, the a ttribute-value matrix  for the conjunction 
of (25a) and (26a) will be simply the concatenation of (25b) and (26b):

» Tpl Cl1a Lrp l & - p 2  c3j  

b Q-p l&p2 c2 j  

c [p3 c 4] 

d Q p 3 & p 4  c5]  

e [ } p 3 & ' p 4  c6]

The DNF approach to this problem would produce nine f-structures with eighteen attribute-value 
pairs. In contrast, our approach produces one f-structure with eleven attr ibute-value or context-value 
pairs. In general, if disjunctions have independent a ttr ibutes, then a DNF approach is exponential in 
the number of disjunctions, whereas our approach is linear. This independence feature is very 
important for language processing, since, as we have suggested, disjunctions from different parts of a 
sentence usually constrain different attributes.

K a r ttu n e n  s D is ju n c t iv e  V a lu es

Karttunen(7] introduced a special type of value called a "disjunctive value” to handle certain  types of 
disjunctions. Disjunctive values allow simple disjunctions such as:

(28) (f CASE) = ACC V  (f CASE) = MOM
to be represented in the unification data  s tructure  as:

( 2 9 > [Ca s e  {a c c  n o m £|

where the curly brackets indicate a disjunctive value. Karttunen 's  disjunctive values are not limited 
to atomic values, as the example he gives for the German article ’’die" shows:

(30) die = IN F L

£ ASE {NOM ACC}

( [S e n d e r  fem]] 
AGR J  [num ber s g J

([n u m b e r  p Q

-24- International Parsing Workshop '89



The corresponding a t t r ibute-context -value  matr ix  for our scheme would be:

131 die = IN FL

CASE

AGR

j p l  NOtfl
ACCJ

GENDER [p2 FEM]

NUMBER
fp2 SG]
L-p2 py

The advantage of disjunctive constraint satisfaction is tha t  it can handle all types of disjunctions, 
whereas disjunctive values can only handle atomic values or simple feature-value matrices with no 
external dependencies. Furthermore, disjunctive constraint satisfaction can often do better than 
disjunctive values for the types of disjunctions that they can both handle. This can be seen in (31), 
where disjunctive constraint satisfaction has pushed a disjunction further down the AGR feature than 
the disjunctive value approach in (30). This means that if AGR were given an a ttr ibu te  other than 
GENDER or NUMBER,  this new a ttr ibu te  would not interact with the existing disjunction.

However, disjunctive values may have an advantage of reduced overhead, because they do not require 
embedded contexts and they do not have to keep track of nogoods. It may be worthwhile to incorporate 
disjunctive values in our scheme to represent the very simple disjunctions, while disjunctive 
constraint satisfaction is used for the more complex disjunctions.

K asper 's  S u ccess ive  A p p r o x im a t io n

Kasper(8, 9] proposed tha t  an efficient way to handle disjunctions is to do a step-wise approximation 
for determining satisfiability. Conceptually, the step-wise algorithm tries to find the inconsistencies 
that come from fewer disjuncts first. The algorithm sta r ts  by unifying the non-disjunctive constraints 
together. If the non-disjunctive constraints are inconsistent, then there is no need to even consider the 
disjunctions. If they are consistent, then the disjuncts are unified with them one at a time, where each 
unification is undone before the next unification is performed. If any of these unifications are 
inconsistent, then its disjunct is discarded. Then the algorithm unifies the non-disjunctive constraints 
with all possible pairs of disjuncts, and then all possible triples of disjuncts, and so on. (This technique 
is called "k-consistency" in the constraint satisfaction literature[3].) In practice, Kasper noted that 
only the first two steps are computationally useful, and tha t  once bad singleton disjuncts have been 
eliminated, it is more efficient to switch to DNF than  to compute all of the higher degrees of 
consistency.

Kasper’s technique is optimal when most of the disjuncts are inconsistent with the non-disjunctive 
constraints, or the non-disjunctive constraints are themselves inconsistent. His scheme tends to 
revert to DNF when this is not the case. Although simple inconsistencies are prevalent in many 
circumstances, we believe they become less predominate as g ram m ars are extended to cover more and 
more linguistic phenomena. The coverage of a gram m ar increases as more options and alternatives  
are added, e ither in phrasal rules or lexical entries, so tha t  there are fewer instances of pure 
non-disjunctive constraints and a greater proportion of inconsistencies involve higher-order 
interactions. This tendency is exacerbated because of the valuable role that disjunctions play in 
helping to control the complexity of broad-coverage gram m atical specifications. Disjunctions permit 
constraints to be formulated in local contexts, relying on a general global satisfaction procedure to 
enforce them in all appropriate  circumstances, and thus they improve the m odularity and 
manageability of the overall gram m atical system. We have seen this trend towards more localized 
disjunctive specifications particularly  in our developing LFG gram m ars, and have observed a 
corresponding reduction in the num ber of disjuncts that can be eliminated using Kasper's technique. 
On the other hand, the number of independent disjunctions, which our approach does best on, tends to 
go up as modularity increases.

One other aspect of LFG gram m atical processing is worth noting. Many LFG analyses are ruled out 
not because they are inconsistent, but ra the r  because they are incomplete. That is, they fail to have an

-25- Intemational Parsing Workshop '89



attribute that a predicate requires (e.g. the object is missing for a transitive verb). Since incomplete 
solutions cannot be ruled out incrementally (an incomplete solution may become complete with the 
addition of more information), completeness requirements provide no information to eliminate 
disjuncts in Kasper's successive approximation. These requirements can only be evaluated in what is 
effectively a disjunctive normal form computation. But our technique avoids this problem, since 
independent completeness requirements will be simply additive, and any incomplete contexts can be 
easily read off of the attribute-value matrix and added to the nogoods before solving the residue.

Kasper's scheme works best when disjuncts can be eliminated by unification with non-disjunctive 
constraints, while ours works best when disjunctions are independent. It is possible to construct a 
hybrid scheme that works well in both situations. For example, we can use Kasper's scheme up until 
some critical point (e.g. after the first two steps), and then switch over to our technique instead of 
computing the higher degrees of consistency.

Another, possibly more interesting, way to incorporate Kasper's strategy is to always process the sets 
of constraints with the fewest number of propositional variables first. That is, if P3 A P4 had fe^ er
propositional variables than P { A P.,, then the rewrite rule in (32b) should be done before (32a):

(32) a. ( P L - *  <J>1 ) A ( P 0 -* <£9 ) => ( P L A P., -* (J>5)
b. ( P 3 -* <$>3 ) A ( P 4 -+ 4>4 ) =» ( P 3 A P 4 -* (J>6)

This approach would find smaller nogoods earlier, which would allow combinations of constraints that 
depended on those nogoods to be ignored, since the contexts would already be known to be inconsistent.

E ise le  a n d  D orre  s tech n iqu es

Eisele and Dorre[2] developed an algorithm for taking Karttunen 's  notion of disjunctive values a little 
further. Their algorithm allows disjunctive values to be unified with reen tran t  structures. The 
algorithm correctly detects such cases and "lifts the disjunction due to reentrancy". They give the 
following example:

Notice that the disjunction under the "a" a ttr ibu te  in the first m atrix is moved one level up in order to 
handle the reentrancy introduced in the second matrix  under the "b" attribute.

This type of unification can be handled with embedded contexts without requiring tha t  the disjunction 
be lifted up. In fact, the disjunction is moved down one level, from under "a" to under "b" and "c":

O vera ll

The major cost of using disjunctive constraint satisfaction is the overhead of dealing with contexts and 
the disjunctive residue. Our technique is quite general, but if the only types of disjunction tha t  occur 
are covered by one of the other techniques, then that technique will probably do better  than our

-26- International Parsing Workshop '89



scheme. For example, if all of the nogoods are the result of singleton inconsistencies (the result of 
unifying a single disjunct with the non-disjunctive part), then Kasper's successive approximation 
technique will work better because it avoids our overhead. However, if many of the nogoods involve 
multiple disjuncts, or if some nogoods are only produced from incomplete solutions, then disjunctive 
constraint satisfaction will do better than the other techniques, sometimes exponentially so. We also 
believe that further savings can be achieved by using hybrid techniques if the special cases are 
sufficiently common to w arran t the extra complexity.

A cknow ledgem ents

The approach described in this paper emerged from discussion and interaction with a number of our 
colleagues. We are particularly indebted to John Lamping, who suggested the initial forumulation of 
the basic lemma, and to Bill Rounds for pointing out the relationship between our conversion 
algorithm and the NP completeness reduction for CNF. We are also grateful for many helpful 
discussions with Dan Bobrow, Johan deKleer, Jochen Dorre, Andreas Eisele, Pat Hayes, Mark 
Johnson, Lauri K arttunen, and Martin Kay.

References

[11 deKleer, J. (1986). An Assumption-based TMS. Artificial Intelligence 28, 127-162.

[21 Eisele, A. and Dorre, J. (1988). Unification of Disjunctive Feature  Descriptions. Proceedings of
the 26th Annual Meeting o f the ACL. Buffalo, New York.

[31 Freuder, E.C. (1978). Synthesizing Constraint Expressions. Communications o f the AC M  21,
958-966.

[41 Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory, Languages and
.Computation, p. 328-330.

[51 Johnson, M. (1988). Attnbute-Value Logic and the Theory o f G ram m ar . Ph.D. Thesis.
Stanford University.

[6] Kaplan, R. and Bresnan, J. (1982). Lexical Functional Grammar: A Formal System for 
Grammatical Representation. In J. Bresnan (ed.), The Mental Representation of Grammatical  
Relations. MIT Press, Cambridge, Massachusetts.

[7] . Karttunen, L. (1984). Features and Values. Proceedings o f  COLING 1984, Stanford, CA.

[81 Kasper, R.T. (1987). Feature Structures: A Logical Theory with Application to Language
Analysis. Ph.D. Thesis. University of Michigan.

[91 Kasper, R.T. (1987). A Unification Method for Disjunctive Feature  Descriptions. Proceedings
of the 25th Annua l Meeting o f  the A C L , Stanford, C A.

-27- International Parsing Workshop ’89


