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Abstract

In this study we examine the effect of se-
mantic augmentation approaches on ex-
tractive text summarization.  Wordnet
hypernym relations are used to extract
term-frequency concept information, sub-
sequently concatenated to sentence-level
representations produced by aggregated
deep neural word embeddings. Multi-
ple dimensionality reduction techniques
and combination strategies are examined
via feature transformation and clustering
methods. An experimental evaluation on
the MultiLing 2015 MSS dataset illus-
trates that semantic information can intro-
duce benefits to the extractive summariza-
tion process in terms of F1, ROUGE-1 and
ROUGE-2 scores, with LSA-based post-
processing introducing the largest im-
provements.

1 Introduction

In recent years, the abundance of textual informa-
tion resulting from the proliferation of the Internet,
online journalism and personal blogging platforms
has led to the need for automatic summarization
tools. These solutions can aid users to navigate the
saturated information marketplace efficiently via
the production of digestible summaries that retain
the core content of the original text (Yogan et al.,
2016). At the same time, advancements intro-
duced by deep learning techniques have provided
efficient representation methods for text, mainly
via the development of dense, low-dimensional
vector representations for words and sentences
(LeCun et al., 2015). Additionally, semantic in-
formation sources have been compiled by humans
in a structured manner and are available for use to-
wards aiding a variety of natural language process-
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ing applications. As a result, semantic augmenta-
tion approaches can introduce existing knowledge
to the neural pipeline, circumventing the need for
the neural model to learn all useful information
from scratch.

In this study, we examine the effect of seman-
tic augmentation and post-processing techniques
on extractive summarization performance. Specif-
ically, we modify the input features of a deep neu-
ral classification model by injecting semantic fea-
tures, simultaneously employing feature transfor-
mation post-processing methods towards dimen-
sionality reduction and discrimination optimiza-
tion. Specifically, we aim to address the following
research questions.

e (Can the introduction of semantic information
in the network input improve extractive sum-
marization performance?

e Does the semantic augmentation process
benefit via dimensionality reduction post-
processing methods?

The rest of the paper is structure as follows. In
section 2 we cover existing related work relevant
to this study. This is followed by a description of
our approach (section 3). In section 4 we outline
our experimental methodology and discuss on re-
sults and findings. Finally, we present our conclu-
sions in section 5.

2 Related work

2.1 Text representations

Extensive research has investigated methods of
representing text for Natural Language Processing
and Machine Learning tasks.

Vector Space Model (VSM) approaches project
the input to a n-dimensional vector representa-
tion, exploiting properties of vector spaces and lin-
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ear algebra techniques for cross-document opera-
tions. Approaches like the Bag-of-Words (Salton
et al., 1975) have become popular baselines, map-
ping the occurence of an input term (e.g. a word)
to their occurence frequencies in the text. Mod-
ifications to the model include refinements in the
term weighting strategy such as DF and TF-IDF
normalizations (Yang, 1997; Salton and Buckley,
1988), term preprocessing such as stemming and
lemmatization (Jivani et al., 2011), and others.
Further, sentence and phrase-level terms are exam-
ined (Scott and Matwin, 1999), along with n-gram
approaches, which consider n-tuple occurences of
terms instead (Brown et al., 1992; Katz, 2003; Post
and Bergsma, 2013).

Other approaches encode term co-occurence in-
formation via representation learning, relying on
the distributional hypothesis (Harris, 1954) to cap-
ture semantic content. At the same time, the need
to circumvent the curse of dimensionality (Hastie
et al., 2005) of term-weight feature vectors has led
to the production dense, rather than sparse rep-
resentations. Early such examples used analytic
matrix decompositions on co-occurence statistics
(Jolliffe, 2011; Deerwester et al., 1990; Horn and
Johnson, 2012), while more recently, vector em-
beddings are iteratively optimized learned by an-
alyzing large text corpora using local word con-
text in a sliding window fashion (Mikolov et al.,
2013a,b), or using pre-computed pairwise word
co-occurences (Pennington et al., 2014). More re-
fined methods break down words to subword units
(Bojanowski et al., 2017), where learning repre-
sentations for the latter enables some success in
handling out-of-vocabulary words.

2.2 Extractive summarization

In summarization, contrary to the abstractive ap-
proach where output summaries are generated
from scratch (Yogan et al., 2016), the extractive
method relies on sentence salience detection to
retain a minimal subset of the most informative
sentences in the original text (Gupta and Lehal,
2010). VSM approaches have been widely uti-
lized in sentence modelling for this task, with a
variety of methods for determining term weights
based on word frequency, probability, mutual in-
formation or tf-idf features, sentence similarity, as
well as a variety of feature combination methods
(Mori, 2002; McCargar, 2004; Nenkova and Van-
derwende, 2005; Galley et al., 2006; Lloret and
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Palomar, 2009). Other popular handcrafted fea-
tures used are syntactic / grammar information
such as part-of-speech tags, as well as sentence-
wise features such as sentence position and length.
Finally, similarity scores to title, centroid clusters
and predefined keywords can be used to score /
rank sentences towards salience identification and
extraction (Neto et al., 2002; Yogan et al., 2016).

Other works adopt a topic-based approach, us-
ing topic modelling techniques towards sentence
salience detection. For example, the work in
(Aries et al., 2015) builds topics via a cluster-
ing process, using a word and sentence-level vec-
tor space model and the cosine similarity mea-
sure. Clustering techniques have been applied to
this end, for sentence grouping and subsequent
salience identification (Radev et al., 2000).

Graph methods have also been exploited; In
(Lawrie et al., 2001), the authors adopt a graph-
based probabilistic language model towards build-
ing a topic hierarchy for predicting representative
vocabulary terms. The MUSE system (Litvak and
Last, 2013) combines graph-modelling with ge-
netic algorithms towards sentence modelling and
subsequent ranking, while the work in (Mihalcea
and Tarau, 2004) builds sentence graphs using a
variety of feature bags and similarity measures and
proceeds to extract central sentences via multiple
iterations of the TextRank algorithm.

2.3 Semantic enrichment

Semantic information has been broadly exploited
towards aiding NLP tasks, using resources such
as Wordnet (Miller, 1995), Freebase (Bollacker
et al., 2008), Framenet (Baker et al., 1998) and
others. Such external knowledge bases have seen
widespread use, ranging from early works on ex-
panson of rule-based discrimination techniques
(Scott and Matwin, 1998), to synonym-based fea-
ture extraction (Rodriguez et al., 2000) and large-
scale feature generation from WordNet synset re-
lationships edges for SVM classification (Mansuy
and Hilderman, 2006).

In extractive summarization, semantic informa-
tion has been used as a refinement step in the sen-
tence salience detection pipeline. For example, in
(Dang and Luo, 2008), the authors utilize Word-
Net synsets as a keyphrase ranking mechanism,
based on candidate synset relevance to the text.
Other approaches (Vicente et al., 2015) use seman-
tic features from Wordnet and named entity extrac-



tion, followed by a PCA-based post-processing
step for dimensionality reduction. Wordnet is also
utilized in (Li et al., 2017) where the authors use
the resource for sentence similarity extraction, us-
ing synset similarity on the word level and treating
the resulting scores as additional features for sum-
marization and citation linkage.

Our approach bears some similarities with the
work of (Vicente et al., 2015), extending the inves-
tigation to additional post-processing techniques
to PCA, examining post-processing application
strategies, and adopting deep neural word embed-
dings as the lexical representation, while ground-
ing on a number of baselines. In the following
section, we will describe our approach in detail,
including text representation, semantic feature ex-
traction, training and evaluation.

3 Proposed Method

3.1 Problem definition

We formulate the task of automatic summariza-
tion as a classification problem. Given a document
consisting of N sentences D = {s1,52,...Sn}
and a ground truth (extractive) summary of size
k, G = {91,92,-.-9k}, gi € D, a classification-
based extractive summarization system F' se-
lects salient sentences P = {p1,p2,...pr} via
F(D) = P, such that P is as close to G as pos-
sible. In this work, F'(-) is a data-driven machine
learning model, built by exploiting statistical fea-
tures in the input text.

3.2 Text representation

We use a variety of approaches for representing
the textual component of a sentence. First, we em-
ploy Continuous Bag-of-Words (CBOW) variant
of the popular word2vec model (Mikolov et al.,
2013b), which builds vector representations of a
word using a statistical language model that pre-
dicts the word based on its surrounding context.
More formally, given a center word in a sentence,
w. and and a set of 2k context words around
it Weontext = [wc—k coey We—1, Wet1, - - - 7wc+k,’]7
CBOW tries to optimize the conditional proba-
bilistic neural language model P(w.|weontext)-
We train embeddings from scratch with this
method, optimizing with the cross-entropy loss,
ending up with a vector representation for each
word in the dataset. We subsequently produce the
final, sentence-level representation by averaging
the vectors corresponding to words in a sentence.
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In addition to embedding training, we examine the
performance of pre-trained Fastext (Joulin et al.,
2016) embeddings, produced by a model that
captures subword information via character em-
beddings, enabling handling of out-of-vocabulary
words. Additionally, we employ direct sentence-
level modelling alternatives via the doc2vec (Le
and Mikolov, 2014) extension of word2vec, as
well as a sentence-level TF-IDF baseline.

3.3 Semantic representation

In order to capture and utilize semantic infor-
mation in the text, we use the WordNet seman-
tic graph (Miller, 1995), a lexical database for
English, often used as an external information
source for machine learning research in classifi-
cation, summarization, clustering and other tasks
(Hung and Wermter, 2004; Elberrichi et al., 2008;
Liu et al., 2007; Morin and Bengio, 2005; Bellare
et al., 2004; Dang and Luo, 2008; Pal and Saha,
2014). In Wordnet, semantic relations between
concepts are captured in a semantic graph of syn-
onymous sets (synsets), as well as multiple types
of relations of lexical / semantic nature, such as
ike hypernymy and hyponymy (is-a graph edges),
meronymy (part-of relations, and others). We
employ WordNet as an enrichment mechanism,
extracting frequency-based features from corpus
words. Specifically, we mine semantic concepts
from each word in the text, arriving at a sparse
high-dimensional bag-of-concepts for each docu-
ment. This vector is concatenated to the lexical
representation. To deal with the curse of dimen-
sionality (Hastie et al., 2005) of this approach, we
apply dimensionality reduction via PCA (Jolliffe,
2011), LSA (Deerwester et al., 1990) or K-Means
(Lloyd, 1982). We apply each transformation on
two settings; first, the semantic information chan-
nel is reduced, then concatenated with the sen-
tence embedding vector. Alternatively, we apply
the reduction on the concatenated, enriched vector
itself.

4 [Experiments

4.1 Datasets

We use the english version of the Multiling
2015 single-document summarization dataset (Gi-
annakopoulos et al., 2015; Conroy et al., 2015)
! for our experimental evaluation. The dataset is

'http://multiling.iit.demokritos.gr/
pages/view/1516/multiling-2015
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feature ‘ train ‘ test ‘
document sentences 233 | 184.9
document summary sentences | 77.9 | 13.5
document words 25.5 | 22.8
samples 6990 | 5546

Table 1: Details of the Multiling 2015 single-
document summarization dataset. All values
are averages accross documents, except from the
number of samples.

built from wikipedia content, consisting of articles
paired with a number of human-authored sum-
maries. For each of 40 languages, 30 documents
and summary sets are provided.

In this work, we focus on the English version
of the dataset, due to our reliance on word em-
bedding features, which are predomninantly avail-
able for the English language. In addition, we
apply two preprocessing steps. First, we refor-
mat the ground truth towards an extractive sum-
marization setting, since the provided summaries
are written from scratch. Specifically, we anno-
tate source sentences with an extractive summa-
rization binary label [ € {0,1} (e.g. 1 if it is
a member of the extractive summary and O oth-
erwise). This is accomplised via the following
steps. First, for each provided summary sentence
p;, we rank source sentences s € S with respect to
the n-gram overlap with p;, after stopword filter-
ing and excluding already positively-labelled sen-
tences s; € S : l; = 1,49 # j. The top-ranked
source sentence is matched to the ground truth
summary sentence, and considered to be a member
of the extractive summary. Secondly, in an effort
to address the severe imbalance that results from
the modifications of previous step (i.e. class 0 be-
ing 13 to 14 times more populous than class 1), we
oversample positively labelled sentences for each
document, arriving at a 2 : 1 negative to positive
ratio, at most.

After these steps, we end up with the final ver-
sion of the dataset which is described in detail in
table 1. Having a sentence-level label for sum-
mary meronymy, we can thus produce the final
summary by concatenating the positively classi-
fied sentences. It should be noted that via this
setting, evaluating candidate summaries with the
dataset provided ground truth summaries implies
a minimum performance penalty. This is reported
in the results in the succeeding section 4.3.
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4.2 Setup

We train embeddings with the word2vec CBOW
variant using gensim (Rehurek and Sojka, 2011).
We run the algorithm for 50 epochs, on a 10-word
window, mantaining a minimum word frequency
threshold of 2 occurences in the training text. We
produce 50-dimensional embeddings via this pro-
cess. In addition, we use the publicly available 2,
300-dimensional pre-trained fastext embeddings
for the corresponding configuration.

To setup the deep neural classifier, we run a grid
search on the number of layers (ranging from 1 to
5) and layer size (ranging from 64 to 2048) for a
multilayer perceptron architecture, using a 5-fold
validation scheme. This process illustrated a 5-
layer architecture of 512-neuron layers as the best
performing, and is the one we adopt for all subse-
quent experiments. This architecture is trained for
80 epochs, reducing the learning rate on an adap-
tive learning rate reduction policy and mantaining
an early-stopping protocol of 25 epochs.

Using this learning framework, we test each
candidate configuration using a 5-fold validated
scheme, reporting mean measure values as the
overall result. For all measures, the cross-fold
variance stayed below 10e — 4 and is omitted. The
Keras machine learning library 3 is used for build-
ing and training the neural models.

4.3 Results and discussion

Tables 2 and 3 present experimental results for the
evaluation of semantic augmentation on word2vec
and fastext embeddings, respectively. Each con-
figuration is evaluated in terms of micro and macro
F1 score (mi-F and ma-F columns, respectively),
with respect to classification performance of the
oversampled dataset (as detailed in 4.1). In ad-
dition, we measure Rouge-1 and Rouge-2 scores
of the final composed summary (stiched together
from positively classified input sentences) with re-
spect to the hand-written ground truth summary
provided in the dataset. Since the difference be-
tween the latter two guarantees a minimum error
(see 4.1), we report the best possible performance
in the gt configuration, depicting performance for
each evaluation measure when sentence classifica-
tion is perfect. In addition, via the prob config-
uration we report a probabilistic baseline classi-
fier, which decides based on the label distribution

https://fasttext.cc/
*https://keras.io/


https://fasttext.cc/
https://keras.io/

in the training data. Moreover, token frequency-
based baselines — namely bag-of-words (BOW)
and TF-IDF (Salton and Buckley, 1988) — are re-
ported in the BOW and TF-IDF rows. Lexical-
only and semantically-augmented baseline runs
are reported as x and x—sem respectively, where
x € [w2v, fastext]. Finally, the effect of each
post-processing method on the semantically aug-
mented baseline is illustrated, where a configura-
tion of +conf—N denotes a vector post-processing
method conf that produces N-dimensional vec-
tors. The resulting vector dimension that is fed to
the classfier is reported in the column dim, and the
different semantic augmentation post-processing
methods are denoted by tc — i.e. first transform
the semantic channel, then concatenate to the em-
bedding — and ct — i.e. concatenate the seman-
tic vector to the lexical embedding, then apply the
transformation.

Regarding word2vec trained embedings (table
2), we can see that introducing semantic infor-
mation improves macro F1, Rouge-1, Rouge-
2 performance. Compared with the bag-based
baselines, we observe the word2vec CBOW em-
beddings yielding worse micro F1 performance
than both bag approaches, but considerably bet-
ter Rouge scores. In addition, the semantically
enriched w2v configuration outperforms the bag
approaches in macro-F1 score and the examined
Rouge measures.

In general, we observe that micro-F1 scores ap-
pear to be less reliable measures in this setting,
given the considerable large class imbalance of
the dataset. This is apparent in the baseline w2v
and w2v-sem baseline runs, however the effect
is most pronounced in k-means configurations for
dimensions greater than 50, where the best micro-
F1 score is encountered, but the performance of all
other metrics is degenerate. This is understand-
able, since cases where the classifier completely
relies on the majority class (0, or “non-summary
sentences” in our case), it can converge to a state
characterized by a total lack of positively classi-
fied sentences. This in turn produces zero rouge
scores and sub-chance macro-averaged F1 scores,
which is the case observed for these configura-
tions. The best-performing configuration turns out
to be LSA with 500-dimensional vectors, with re-
gard to Rouge-1 and Rouge-2 scores, with the 100-
dimensional PCA configuration performing best in
terms of macro F1.

67

Regarding comparison between the two post-
processing strategies, we can observe that t ¢ ap-
pears to be working slightly better when measur-
ing micro-F1 scores, but in terms of macro-F1
and Rouge scores, concatenating prior to post-
processing works considerably better. This is not
surprising, as the transformation of the bimodal
vector into a common, shared space can be ex-
pected to be a far more efficient fusion of the lex-
ical and semantic channels, compared to simple
concatenation.

Regarding fastext-based runs, a similar base-
line performance is observed. Bag-based base-
lines achieve best micro-F1 score, but inferior re-
sults in all other measures. Similarly to word2vec,
the lexical-only fastext run achieves better F1
scores, however the semantically enriched em-
bedding fares far better in terms of Rouge-1 and
Rouge-2 performance. Likewise, similar behav-
ior is observed with regard to post-processing
and concatenation order and the usefulness of the
micro-F1 score compared to the other measures.
Notably, the 50-dimensional LSA performs well
with the tc strategy, while an analogous degen-
erate behaviour is evident with the K-means con-
figurations. As in the word2vec run, the 500-
dimensional LSA produces the best macro-F1 and
Rouge scores.

Comparing the word2vec and fastext-based
runs, we can observe the word2vec configurations
(trained on the target dataset from scratch) achieve
better Rouge-1 and Rouge-2 scores than the pre-
trained fastext embeddings, on the best configura-
tions of both baseline and best performing post-
processed configurations (500-dimensional LSA).

In light of these results, we return to the re-
search questions stated in the beginning of this
document.

e Can the introduction of semantic informa-
tion in the network input improve extrac-
tive summarization performance?

It appears that the introduction of semantic
information can introduce benefits to the ex-
tractive summarization pipeline. This is illus-
trated by the Rouge scores, which are consid-
erably improved in the augmented configura-
tions, for both embeddings examined. On the
contrary, micro / macro-F1 results are either
not significantly affected or can even deterio-
rate. However, as discussed above, we argue
that the severe class imbalance of the dataset



config dim mi-F ma-F Rouge-1 Rouge-2

gt N/A 1.000 1.000 0414 0.132
prob N/A 0.871 0.501 0.051 0.009
BOW 15852 0.9254 0.5131 0.094 0.017
TF-IDF 15852 0.9260 0.5122 0.085 0.015
w2v 50 0.923 0.508 0.151 0.027
w2v-sem 10292 0.906 0.519 0.260 0.048
config dim tc ct tc ct tc ct tc ct
+1sa-50 100 | 0.9225 | 0.9214 | 0.5223 | 0.5222 | 0.166 | 0.195 | 0.030 | 0.036
+lsa-100 150 | 0.9202 | 0.9207 | 0.5164 | 0.5217 | 0.188 | 0.202 | 0.038 | 0.038
+lsa-250 300 | 09197 | 0.9165 | 0.5198 | 0.5289 | 0.181 | 0.246 | 0.037 | 0.040
+lsa-500 550 | 0.9218 | 0.9053 | 0.5190 | 0.5337 | 0.159 | 0.305 | 0.030 | 0.059
+pca-50 100 | 0.9208 | 0.9101 | 0.5195 | 0.5329 | 0.193 | 0.242 | 0.039 | 0.049
+pca-100 150 | 0.9207 | 0.9141 | 0.5206 | 0.5349 | 0.178 | 0.234 | 0.036 | 0.047
+pca-250 300 | 09217 | 0.9146 | 0.5217 | 0.5250 | 0.171 | 0.237 | 0.035 | 0.044
+pca-500 550 | 0.9223 | 0.9107 | 0.5202 | 0.5254 | 0.161 | 0.255 | 0.032 | 0.049
+kmeans-50 100 | 0.9089 | 0.9257 | 0.5267 | 0.4821 | 0.252 | 0.018 | 0.056 | 0.005
+kmeans-100 150 | 0.9028 | 0.9272 | 0.5107 | 0.4811 | 0.133 | 0.000 | 0.028 | 0.000
+kmeans-250 || 300 | 0.9272 | 0.9272 | 0.4811 | 0.4811 | 0.000 | 0.000 | 0.000 | 0.000
+kmeans-500 || 550 | 0.9272 | 0.9272 | 0.4811 | 0.4811 | 0.000 | 0.000 | 0.000 | 0.000

Table 2: Experimental results on the MultiLing 2015 MSS dataset using 50-dimensional word2vec em-
beddings. Bold values indicate maxima across rows for that column. Underlined values correspond an
improvement over the counterpart configuration (t ¢ versus ct, or x versus x—sem).

config dim mi-F ma-F Rouge-1 Rouge-2

gt N/A 1.000 1.000 0414 0.132
prob N/A 0.871 0.501 0.051 0.009
BOW 15852 0.9254 0.5131 0.094 0.017
TF-IDF 15852 0.9260 0.5122 0.085 0.015
fastext 300 0.923 0.517 0.156 0.029
fastext-sem 10542 0.919 0.516 0.204 0.043
config dim tc ct tc ct tc ct tc ct
+lsa-50 350 | 0.9167 | 0.9214 | 0.5231 | 0.5195 | 0.206 | 0.182 | 0.038 | 0.032
+1sa-100 400 | 0.9200 | 0.9212 | 0.5196 | 0.5224 | 0.171 | 0.189 | 0.032 | 0.036
+1sa-250 550 | 0.9237 | 0.9134 | 0.5221 | 0.5370 | 0.145 | 0.278 | 0.031 | 0.053
+lsa-500 800 | 0.9243 | 0.9083 | 0.5201 | 0.5373 | 0.128 | 0.296 | 0.025 | 0.056
+pca-50 350 | 0.9186 | 0.9145 | 0.5205 | 0.5319 | 0.182 | 0.234 | 0.036 | 0.045
+pca-100 400 | 0.9208 | 0.9160 | 0.5187 | 0.5369 | 0.160 | 0.230 | 0.037 | 0.044
+pca-250 550 | 0.9233 | 0.9146 | 0.5210 | 0.5286 | 0.189 | 0.229 | 0.038 | 0.045
+pca-500 800 | 0.9239 | 0.9096 | 0.5223 | 0.5261 | 0.152 | 0.255 | 0.032 | 0.047
+kmeans-50 350 | 0.8995 | 0.9238 | 0.4928 | 0.4833 | 0.071 | 0.022 | 0.018 | 0.006
+kmeans-100 || 400 | 0.8903 | 0.9272 | 0.4897 | 0.4811 | 0.071 | 0.000 | 0.018 | 0.000
+kmeans-250 || 550 | 0.9272 | 0.9272 | 0.4811 | 0.4811 | 0.000 | 0.000 | 0.000 | 0.000
+kmeans-500 | 800 | 0.9272 | 0.9272 | 0.4811 | 0.4811 | 0.000 | 0.000 | 0.000 | 0.000

Table 3: Experimental results on the MultiLing 2015 MSS dataset using 300-dimensional fasttext em-
beddings. Bold values indicate maxima across rows for that column. Underlined values correspond an
improvement over the counterpart configuration (t ¢ versus ct, or x versus x—sem).
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makes these measures less indicative of sys-
tem performance, compared to Rouge.

Does the semantic augmentation process
benefit via dimensionality reduction post-
processing methods?

The augmentation process can improve with
post-processing methods. This is expected,
since the sparse bag-based semantic vectors
are bound to contain noise and/or redundant
and overlapping information that will affect
the learning model further down the summa-
rization pipeline. For both embeddings ex-
amined, such configurations improve upon
the baseline and achieve the best scores, for
all evaluation measures included.

LSA-based transformations achieve top
Rouge performance for both embeddings
covered, as well as top F1 scores for the
fastext embedding, with its frequency-based
decomposition appearing to work better
than PCA analysis. On the contrary, K-
means clustering mostly failed to capture
underlying semantic content into meaningful
groups, especialy for higher dimensions
examined. Additionally, the post-processing
transformation methods work best mostly
when applied to the concatenated lexical and
semantic vectors, rather than transforming
the semantic information alone and then
conatenating.

Apart from the specific research questions, it
is notable that the large class imbalance has
to be carefully handled, as — even with the
dataset oversampling measures taken — the
sentence classifier can converge into degen-
erate cases, as was the case with the higher
dimensional configurations of K-means.

At this point, we note that since our system
does not account for selected sentence order,
we limit our comparison of each approach
to only the gt configuration, rather than the
human-authored summaries; even for cases
with perfect classification performance, the
results are far from optimal (e.g. Rouge 1,
Rouge 2 scores of 1.0) since there is no guar-
antee that sentence order is preserved in the
extractive ground truth generation, detailed in
4.1. This introduces an upper bound to per-
formance and prevents meaningful compari-
son to related work. Instead, this study illus-
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trates the contribution of semantic informa-
tion to the pipeline, as illustrated above.

As a last note, we compare our results with
respect to the unaltered, human-written sum-
maries —i.e. which are not composed of input
sentences as per the extractive setting, after
reiterate that our preliminary approach does
not take into account sentence order or tar-
get length. First, the gt extractive ground
truth we generated achieves an Rouge-1 and
Rouge-2 score of 0.245 and 0.57 respectively,
effectively serving as an upper bound for
our performance. The best-performing 500-
dimensional LSA configuration for word2vec
trained embeddings performs at 0.196 and
0.015 for Rouge-1 and Rouge-2, respectively,
and 0.191, 0.014 for fasttext. These results
fall short of the system performance levels on
previous MultiLing community tasks (Con-
roy et al., 2015), however the goal of this
investigation was solely to illustrate the util-
ity of the semantic component; future work
(outlined below) plans on addressing this is-
sue and align our results toward related work
comparability.

5 Conclusions

In this work, we investigated the contribution
of semantically enriching word embedding-based
approaches to extractive summarization. Pre-
trained embeddings as well as embeddings trained
from scratch on the target dataset were utilized.
For the semantic channel, frequency-based con-
cept information from Wordnet is extracted, post-
processed with a range of feature transformation
and clustering methods prior or after concatena-
tion with the lexical embeddings. A wide eval-
uation was performed on multiple configuration
combinations and transformation dimensions, us-
ing micro/macro F1 and Rouge-1/Rouge-2 scores.
Initial results show semantic such augmentation
approaches can introduce considerable benefits to
baseline approaches in terms of macro F1, Rouge-
1 and Rouge-2 scores, with micro-F1 deemed in-
adequate for highly imbalanced problems such
as the extractive summarization setting examined
here. LSA-based decomposition works best out of
the variants examined, outperforming PCA and K-
means post-processing in terms of Rouge. In the
future, more sophisticated transformation meth-
ods could be explored, such as encoder-decoder



schemes via recurrent neural networks (Hochre-
iter and Schmidhuber, 1997), dynamically fus-
ing word embeddings into a sentence encoding
and eliminating the need for word averaging in
sentence-level vector generation. Alternatively,
sequence-based classification could be explored in
a similar fashion. Moreover, higher transforma-
tion dimensions could be covered, given the best
configuration examined lied on the highest end of
the exmained range (500) and additional seman-
tic resources can be utilized, via the bag-based ap-
proach used in this study, or by alternative meth-
ods of semantic vector generation (Faruqui et al.,
2014). Finally, the natural next step in our work
would be the application of our semantic aug-
mentation approach with a sentence ranking and
a target length constraint mechanisms, in order to
make the results of pipeline fairly comparable to
related summarization systems.
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