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Abstract

We present the first dataset targeted at end-to-
end NLG in Czech in the restaurant domain,
along with several strong baseline models us-
ing the sequence-to-sequence approach. While
non-English NLG is under-explored in general,
Czech, as a morphologically rich language,
makes the task even harder: Since Czech re-
quires inflecting named entities, delexicaliza-
tion or copy mechanisms do not work out-of-
the-box and lexicalizing the generated outputs
is non-trivial.

In our experiments, we present two different
approaches to this this problem: (1) using a
neural language model to select the correct in-
flected form while lexicalizing, (2) a two-step
generation setup: our sequence-to-sequence
model generates an interleaved sequence of
lemmas and morphological tags, which are
then inflected by a morphological generator.

1 Introduction

While most current neural NLG systems do not
explicitly contain language-specific components
and are thus capable of multilingual generation in
principle, there has been little work to test these
capabilities experimentally. This goes hand in hand
with the scarcity of non-English training datasets
for NLG – the only data-to-text NLG set known to
us is a small sportscasting Korean dataset (Chen
et al., 2010),1 which only contains a limited num-
ber of named entities, reducing the need for their
inflection.

Since most generators are only tested on En-
glish, they do not need to handle grammar com-
plexities not present in English. A prime exam-
ple is the delexicalization technique used by most
current generators (e.g., Oh and Rudnicky, 2000;
Mairesse et al., 2010; Wen et al., 2015a,b; Juraska

1http://www.cs.utexas.edu/users/ml/
clamp/sportscasting/

et al., 2018): It is generally assumed that attribute
(slot) values from the input meaning representa-
tion (MR) can be replaced by placeholders during
generation and inserted into the output verbatim.
Delexicalization or an analogous technique, such
as a copy mechanism (Gu et al., 2016; Gehrmann
et al., 2018), is required for most generation scenar-
ios to allow generalization to unseen entity names:
sets of entities are open (potentially infinite and
subject to change) while training data is scarce.
However, the verbatim insertion assumption does
not hold for languages with extensive noun inflec-
tion – attribute values need to be inflected here to
produce fluent outputs (see Figure 1).

This paper presents the following contributions:
• We create a novel dataset for Czech delexical-

ized generation; this extends the typical task of
data-to-text NLG by requiring attribute value
inflection (Section 2). We choose Czech as
an example of a morphologically complex lan-
guage (Cotterell et al., 2018) with a large set
of NLP tools readily available (e.g. Popel and
Žabokrtský, 2010; Straková et al., 2014; Straka
and Straková, 2017).

• We present baseline models based on the TGen
sequence-to-sequence (seq2seq) system (Dušek
and Jurčı́ček, 2016), with two novel extensions
to the model for our task (Section 3):

– A model for lexicalization, i.e., selecting the
correct inflected surface form for a slot value,
based on a recurrent neural network language
model (RNN LM);

– A new generation mode, where the seq2seq
generator produces interleaved sequences of
lemmas (base word forms) and morphological
tags that are postprocessed using a morpho-
logical generator.

• Using both automatic and manual evaluation in
Section 4, we show that our extensions improve

http://www.cs.utexas.edu/users/ml/clamp/sportscasting/
http://www.cs.utexas.edu/users/ml/clamp/sportscasting/
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Hledáte vhodnou restauraci na X-good_for_meal ?
Do-you-look-for a-suitable    restaurant      for  [breakfast]

X-name           najdete v  oblasti X-area .
[Baráčnická rychta] you-find   in the-area  [of-Malá Strana]

Chcete najít restauraci, kde se      dobře X-good_for_meal ?
Do-you-want to-find a-restaurant where yourself   well      [you-will-have-breakfast]

X-name            je na X-area .
[Baráčnická rychta] is   in   [Malá Strana]

Malá Strana NNFS1-----A----

Malé Strany NNFS2-----A----

Malé Straně NNFS3-----A----

Malou Stranu NNFS4-----A----

Malé Straně NNFS6-----A----

Malou Stranou NNFS7-----A----

needs locative

needs genitive

Malé Straně

Malé Strany

Baráčnická rychta NNFS1-----A----

Baráčnické rychty NNFS2-----A----

Baráčnické rychtě NNFS3-----A----

Baráčnickou rychtu NNFS4-----A----

Baráčnické rychtě NNFS6-----A----

Baráčnickou rychtou NNFS7-----A----

Baráčnická rychta

Baráčnickou rychtu

needs nominative

needs accusative

snídaně NNFS1-----A----

snídaně NNFP1-----A----

snídaně NNFS2-----A----

snídaní NNFP2-----A----

snídani NNFS3-----A----

snídaním NNFP3-----A----

snídani NNFS4-----A----

snídaně NNFP4-----A----

snídani NNFS6-----A----

snídaních NNFP6-----A----

snídaní NNFS7-----A----

snídaněmi NNFP7-----A----

snídaňový AAMS1----1A----

snídaňový AAIS1----1A----

snídaňová AAFS1----1A----

snídaňové AANS1----1A----

snídaňoví AAMP1----1A----

snídaňové AAIP1----1A----

(37 more…)
snídaňového AAIS2----1A----

snídaňové AAFS2----1A----

snídaňového AANS2----1A----

snídaňových AAMP2----1A----

snídaňovými AANP7----1A----

snídat Vf--------A----

nasnídáte VB-P---2P-AA---

nasnídat Vf--------A----

nasnídali VpMP---XR-AA---

posnídáte VB-P---2P-AA---

posnídat Vf--------A----

posnídali VpMP---XR-AA---

snídani

?confirm(good_for_meal=breakfast)

inform(name='Baráčnická rychta', area='Malá Strana')

needs accusative noun

nasnídáte

needs a verb in
2nd person plural future

Figure 1: Example of delexicalized generation in Czech. Input MRs are shown in bold blue, corresponding target
(delexicalized) outputs in bold black, with “X-” marking slot value placeholders. English glosses are shown below
each word in gray. Appropriate inflected forms to be filled into slot placeholders are shown in bold green, with
lists of all possible forms along with their morphological tags (Hajič, 2004). Note that the surface form for “X-
good for meal” can even have different parts-of-speech (left column: noun, middle: adjective, right: verb forms).

over the base model, but do not solve the task
completely.

We propose improvements for future work in Sec-
tion 6. Our dataset and all experimental code are
released on GitHub.2

2 Dataset

Our goal was to create a dataset comparable in
size and domain to existing English data-to-text
NLG datasets used in experiments with neural sys-
tems. Since there are few to none Czech speakers
on crowdsourcing platforms (Pavlick et al., 2014;
Dušek et al., 2014), we were not able to use them
for data collection. Recruiting freelance transla-
tors seemed easier than training annotators; there-
fore, we turned to localizing and translating an
existing dataset instead of creating a new one from
scratch. We chose the restaurant dataset of Wen
et al. (2015b) due to its manageable, yet non-trivial
size and the familiarity of the domain (cf. Mairesse
et al., 2010; Dušek et al., 2019). The original
dataset contains 5,192 MR-sentence pairs, where
MRs come in the form of dialogue acts (DAs). A
DA consists of DA type (e.g., request, confirm, in-
form) and a list of slots (attributes) and their values
(e.g., name, price range, address, area). There are
8 different DA types and 12 slots in the dataset. All
slots except the binary kids allowed are delexical-
ized during generation (cf. Figure 1).

2Dataset: https://github.com/UFAL-DSG/cs_
restaurant_dataset, code: https://github.
com/UFAL-DSG/tgen.

Ananta – feminine noun, inflected (nom: Ananta, gen:
Ananty, dat, loc: Anantě, acc: Anantu, inst:
Anantou)

BarBar – masculine inanimate noun, inflected (nom, acc:
BarBar, gen, dat, loc: BarBaru, inst: Bar-
Barem)

Café Savoy – neuter noun, not inflected

Mı́sto – neuter noun, inflected (nom, acc: Mı́sto, gen:
Mı́sta, dat: Mı́stu, loc: Mı́stě, inst: Mı́stem)

U Konšelů – prepositional phrase, not inflected

Figure 2: Examples of restaurant names from the local-
ized data with different morphosyntactic behavior (nom
= nominative, gen = genitive, dat = dative, acc = ac-
cusative, loc = locative, inst = instrumental).

2.1 Localizing the Data
We first needed to localize the dataset, replacing the
original setting of San Francisco with a Czech one.
In particular, we aimed at using domestic entity
names (DA slot values) that need to be inflected
since foreign names are often kept uninflected in
Czech, using less fluent and conspicuous grammat-
ical constructions to avoid inflection.3

We localized the following slots in both DAs
and texts from the dataset: restaurant names, areas,
food types, street addresses, and landmarks. We

3This is not to say that we avoided using any foreign words
in the localization process. Since foreign restaurant names are
quite common in Czechia, we also included some of them in
the localized data.

https://github.com/UFAL-DSG/cs_restaurant_dataset
https://github.com/UFAL-DSG/cs_restaurant_dataset
https://github.com/UFAL-DSG/tgen
https://github.com/UFAL-DSG/tgen
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used a list of randomly chosen restaurant names
from the Prague city center as well as lists of
Prague neighborhoods, streets, and landmarks. The
resulting sentences contain mostly factually inac-
curate, yet meaningful utterances about restaurants
in Prague.

The localized lists are quite short, with just 15
different restaurant names and a similar number
of landmarks, streets, and neighborhoods. While
much longer lists would be needed for a real-world
scenario, this is sufficient to cover most common
classes of names with different inflection patterns
and/or syntactic behavior (see Figure 2).

2.2 Translation
We recruited six translators and asked them to trans-
late all unique texts in the localized dataset. They
were given the following instructions:
• translate the utterances in isolation,

• use fluent, spoken-style Czech,

• strive to preserve the facts but not necessarily all
nuances of the original,

• use varying synonyms (as long as they belong
to casual, fluent Czech), including for entity
names or slot values (such as price ranges or
meal types),

• inflect entity names as needed,

• use formal address (or plural) when addressing
the user, and use the female form in the first
person for self-references.4

All rules but the last one aim at obtaining a varied
and fluent dataset; the last rule strives for consis-
tency. Note that the translators were not given the
input DAs – these carry no more information than
the corresponding English sentences, and we as-
sume that they would only confuse the translators
and could hurt the fluency of the results.

2.3 Consistency Checks and Deduplication
We checked the translated Czech texts for the pres-
ence of all required slot values. We took the fol-
lowing iterative, partially automatic approach:
1. Create a list of possible inflected surface forms

for all slot values in the dataset. We used
4Czech grammar requires a selection between formal an

informal address whenever using a verb in the 2nd person
(Naughton, 2005, p. 134ff.). For verbs with past tense or con-
ditional and in any person, gender must be selected (Naughton,
2005, p. 140ff.). Here we opted for a feminine form when-
ever the system addresses itself, and formal address (mostly
homonymous with plural) when addressing the user.

the morphological generator of Straková et al.
(2014) to inflect the surface forms automatically
and manually checked for errors.

2. Given a DA and a translated sentence, check
(using an automatic script) that the sentence con-
tains surface forms for all slots in the DA.

3. Given a sentence found by the script to miss a
value, check if it contains an alternative surface
form not included in the list from Step 1. If so,
add this alternative surface form to the list.

4. If the translated sentence does not contain any
mention of the DA value, fix the translation.

5. Repeat from Step 2 until there are no missing
DA value mentions in the whole set.

Note that these checks result not only in greater
consistency of the dataset, but also in a list of pos-
sible surface realizations for all slot values in the
dataset. We store this list including morphological
information provided by the tagger (with manually
corrected errors), and we use it for lexicalization
(see Section 3).5

2.4 Duplicate Sentence Handling
If the exact lexicalization is not taken into account,
the original dataset of Wen et al. (2015b) contains a
lot of duplicate texts – the total number of DA-text
pairs is 5,192, but only 2,648 are unique. There-
fore, we chose to only translate unique texts, in
order to speed up the translation process and lower
the costs, albeit at a cost of a lower-quality result.
We ensured that the translations preserve the same
number of unique sentences by modifying any du-
plicate translations, manually replacing selected
words or phrases with synonyms.

After the dataset was translated, we expanded
it to obtain the same number of instances and the
same distribution of different DAs as in the original.
Given a delexicalized DA, a list of corresponding
translated sentences, and the target number of cor-
responding sentences to match the original set, we
sampled additional copies of the existing transla-
tions to match the number of originals. To esti-
mate probabilities of the individual translations for
the sampling, we used a 5-gram LM6 trained on
lemmatized and delexicalized translations (see Fig-
ure 3 for details). We obtained LM scores for all

5We treat multiword slot values as single tokens in our
surface form list. We assign them a morphological tag that fits
the whole expression best, e.g., a noun tag for noun phrases.

6We used the implementation in the KenLM toolkit
(Heafield, 2011).
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mı́t
Mám
I have

pro
pro
for

ty
Vás
you

vhodný
vhodnou
a suitable

restaurace
restauraci
restaurant

.

.

.

jeho
Jejı́
Its

název
název
name

být
je
is

X-name
Kočár z Vı́dně
Kočár z Vı́dně

a
a
and

moci
můžete
you can

se
si
yourself

dát
dát
give

X-food
českou
Czech

kuchyně
kuchyni
cuisine

.

.

.

‘I have a suitable restaurant for you. Its name is Kočár z Vı́dně and you can have Czech cuisine.’

Figure 3: Lemmatized and delexicalized form of the translations for LM scoring. Top: lemmatized and delexical-
ized Czech used for the LM; middle: original Czech sentence including lexicalization; bottom: English word-by-
word gloss. An English translation is shown below the example.

English Czech
Number of instances 5,192 5,192
Unique delexicalized instances 2,648 2,752
Unique delexicalized DAs 248 248
Unique lemmas (in delexicalized set) 399 532
Unique word forms (in delexicalized set) 455 962
Average lexicalizations per slot value 1 3.84

Table 1: Statistics of our translated Czech dataset and
a comparison to the English original of Wen et al.
(2015b). The average lexicalizations per slot value
shows the number of different surface lexical forms per
slot value, as it appears in the dataset. Numerals were
disregarded when computing this value.

translations, used softmax to obtain a probability
distribution, and sampled additional copies from
this distribution. This ensures that translations us-
ing more frequent phrasing are more likely to be
used multiple times in the set.

We then relexicalized the sampled copies: We
randomly changed DA slot values and replaced
their surface forms in the text using the surface
forms list, checking for roughly corresponding
morphology. Since the morphological informa-
tion used by this approach was rather crude (e.g.,
noun/adjective gender was not taken into account),
disfluencies ensued in some cases. Therefore,
we manually corrected all relexicalized sentences,
changing inflection or wording where needed.

2.5 Dataset Statistics
The final Czech set contains the same number of
instances as the English original, copies the DA
distribution of the original, and contains a slightly
higher number of unique delexicalized sentences
due to post-expansion corrections (see Section 2.4).
A statistics of the dataset size is shown in Table 1,
with a comparison to the original English set. We
can see that while the number of unique word lem-
mas (disregarding restaurant and place names) is
slightly higher in the Czech set, the number of
unique inflected word forms is more than twice as

Part Train Dev Test
Unique delexicalized DAs 144 51 53
Total number of instances 3,569 781 842

Table 2: Dataset split statistics.

high. It is also clear that using slot values verba-
tim in the text is not possible in the Czech set as
the number of possible lexical realizations for each
value is much higher than one.

2.6 Data Split
The original dataset of Wen et al. (2015b), which
used a sequential 3:1:1 split into training, develop-
ment and test parts, suffered from a lot of overlap
in terms of delexicalized DAs between the sections.
This means that a system can perform quite well
on this dataset and still be unable to generalize to
unseen DAs (Lampouras and Vlachos, 2016). To
make testing systems’ generalization capabilities
possible on our Czech dataset, we opted for a dif-
ferent data split. We roughly keep the same 3:1:1
size proportion (see Table 2), but we make sure
no delexicalized DA appears in two different parts.
On the other hand, we ensure that most DA types
(inform, confirm etc.) are represented in all data
parts, so the system has access to all general types
of sentences during training.7

3 Model

We use TGen (Dušek and Jurčı́ček, 2016) in our ex-
periments, which is a freely available NLG system
based on the seq2seq model with attention (Bah-
danau et al., 2015).

The seq2seq model consists of the encoder, the
decoder, and the attention model. Both the encoder
and decoder are recurrent neural networks (RNN)

7This is impossible to achieve for the goodbye and ?req-
more DA types (i.e., goodbyes and asking if the user needs
anything else). These DA types never appear with slots and
thus only have one corresponding DA. We keep the corre-
sponding instances in the training set.
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with LSTM cells (Hochreiter and Schmidhuber,
1997). The encoder takes the input DA as a se-
quence of triples “DA type – slot – value”8 and
produces a sequence of hidden states. The last hid-
den state is used to initialize the decoder, all hidden
states serve as input into the attention model. The
attention model produces their weighted combi-
nation for each decoder step using a 1-layer fully
connected network. The decoder generates output
tokens one-by-one using the previously generated
token and the attention model as inputs.

In addition to the basic seq2seq model, TGen
adds beam search and a reranker for the candi-
date outputs on the generation beam that checks if
the input semantics is preserved. The reranker en-
codes a candidate output using an LSTM RNN and
produces a binary classification of DA types and
slot-value pairs present. The number of differences
against the input DA is used as penalty.

3.1 Basic Extensions
We added two features fairly standard in seq2seq-
based models but absent from TGen:
• Bidirectional encoder (Bahdanau et al., 2015) –

the input sequence is encoded in both directions
and the resulting hidden states are joined. We
added this for both the main seq2seq generator
and the reranker.

• Dropout (Hinton et al., 2012) – this zeroes out
certain connections within the network with a
given probability during the training process; it
serves as regularization feature. We use this in
the main generator only.

We use these extensions in all our setups as they
improved results in our preliminary experiments.

3.2 Lemma-tag Generation Mode
Dušek and Jurčı́ček (2016) experiment with gen-
erating syntactic trees and realizing them using an
external surface realizer; they report slightly worse
performance than generating tokens directly.

In order to fight data sparsity coming from the
rich morphology of Czech, we decided to explore
the middle ground between syntactic trees and full
word-form generation: generating base forms (lem-
mas) and morphological tags that indicate how the
form should be inflected. We train TGen to simply
generate an interleaved sequence of lemmas and
tags (see Figure 4), which are then postprocessed

8DA type is repeated for each slot-value pair.

using the dictionary-based morphological genera-
tor of Straková et al. (2014) to obtain the inflected
word forms.

In the lemma-tag mode, the set of possible output
tokens is reduced compared to direct token gener-
ation, but the postprocessing step is much simpler
than using a full syntactic surface realizer. More-
over, the generated morphological tags following
slot placeholders can be used to limit the scope of
possible surface forms during lexicalization (see
Section 3.3).

This approach is inspired by similar approaches
in phrase-based MT (Bojar, 2007; Toutanova et al.,
2008; Fraser, 2009) and was developed in parallel
to recent similar experiments with two-step neu-
ral MT (Nadejde et al., 2017; Tamchyna et al.,
2017). We compare the lemma-tag generation
mode against the TGen default direct word-form
generation mode in our experiments.

3.3 Lexicalization
We experiment with three different approaches for
selecting the surface form for a DA slot value place-
holder from a set of applicable ones – two very
straightforward baselines requiring no training and
our proposed solution based on a neural LM:
• Random baseline. This selects a surface form

at random. This approach is certainly not suit-
able for a real application, we only use it for
comparison.

• Most frequent baseline. Here, the applicable
surface form that occurs overall most frequently
in the training data is selected. This represents a
stronger baseline than the random method.

• RNN-based language model. Our main solution
attempts to choose the best surface form using a
bidirectional LSTM RNN-based LM (Mikolov
et al., 2010), trained to predict a token probability
distribution given all previous and all following
tokens. During decoding, the RNN LM estimates
the probabilities of all applicable surface forms,
and we select the most probable surface form for
the output.
When selecting a surface form during direct

word-form generation, all possible forms for the
given slot value are considered. In the lemma-tag
mode (Section 3.2), only forms matching the mor-
phological tag following the slot placeholder are
considered (cf. Figure 4) – first the ones matching
perfectly, with backoffs to coarse part-of-speech or
all possible forms.
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hledat
search

VB-P---2P-AA---
verb, 2nd person present formal

vhodný
suitable

AAFS4----1A----
adjective, fem sg acc

restaurace
restaurant

NNFS4-----A----
noun, fem sg acc

na
for

RR--4----------
preposition, acc

X-good for meal
slot placeholder

NNFS4-----A----
noun, fem sg acc

?
?

Z:-------------
final punctuation

Figure 4: Example interleaved lemma-tag sequence for the input DA ?confirm(good for meal=breakfast), the first
output from Figure 1 (acc = accusative, fem = feminine, sg = singular; cf. (Hajič, 2004) for tagset details). Note that
the morphological tag for the slot placeholder is included and can be used during lexicalization (cf. Section 3.3).

3.4 Lexicalized Input DAs
Some slot values in our dataset may require certain
morphosyntactic structure of their neighborhood.
This is the case for restaurant counts: Czech cardi-
nal numerals 2-4 behave as adjectives, while higher
numerals behave as nouns and take the counted
quantity as genitive object. The correct nomina-
tive forms when counting restaurants are then “2
restaurace”, but “5 restauracı́” (Naughton, 2005,
p. 113ff.). Another example are area names requir-
ing different prepositions for location – the correct
form for “in Malá Strana” is “na Malé Straně”, but
for “in Karlı́n”, it is “v Karlı́ně” (Naughton, 2005,
p. 202).

Therefore, inspired by Sharma et al. (2017), we
test using fully lexicalized input DAs with the main
generator to check if it learns to produce more
appropriate structure for concrete values (while
still producing delexicalized output).9 We compare
this setup against the default with delexicalized
DAs.

4 Experiments

4.1 Experimental Setup
We test all combinations of the features described
in Section 3:
• Direct token vs. lemma-tag generation

• Random / most-frequent / RNN LM lexicalizer

• Delexicalized vs. lexicalized input DAs
We train the resulting 12 model variants using

the Adam optimizer (Kingma and Ba, 2015) to
minimize cross entropy on the training set; this
approach is used for all parts of the system: the
main seq2seq generator, the reranker, and the RNN
LM lexicalizer. After each training data pass, we
validate the models and keep the best-performing
parameters. We use BLEU score (Papineni et al.,

9We exploit the fact that the number of possible values for
different slots in the dataset is relatively small (cf. Section 2);
morphosyntactic classes of the values would need to be used
if the number of values was higher.

2002), classification error, and LM perplexity as
the respective validation criteria. We set hyperpa-
rameters based on TGen defaults for other datasets
and a few experiments on the development set.10

Training the baseline lexicalizers is trivial: the
random baseline does not require any training, it
simply uses the list of possible surface forms; the
most frequent baseline just memorizes surface form
frequencies in the training data.

To reduce the effect of random initialization, we
train five runs using different random seeds and use
results of all of them for evaluation. In addition,
we fix the random seeds so that identical seq2seq
generators and rerankers are used in setups that
only differ in the lexicalization method.

4.2 Metrics
We use the suite of word-overlap-based automatic
metrics from the E2E NLG Challenge (Dušek et al.,
2019),11 supporting BLEU (Papineni et al., 2002),
NIST (Doddington, 2002), ROUGE-L (Lin, 2004),
METEOR (Lavie and Agarwal, 2007) and CIDEr
(Vedantam et al., 2015). Although multiple texts
often correspond to the same delexicalized DA, we
treat each instance individually both in training and
testing since the particular slot values influence
the shape of the whole sentence (see Sections 2.4
and 3.4). This means that only a single reference
output per instance is available to be used with
automatic metrics (see Section 4.3).

10 The main generator uses embedding and LSTM cell size
200, learning rate 0.005, dropout rate 0.5, and batch size 20.
At least 50 and up to 1000 training data passes are used, with
early stopping if the top 10 validation BLEU scores do not
change for 50 passes. Beam size 20 is used for decoding.

The reranker uses embedding and LSTM cell size 50, no
dropout, learning rate 0.001, and batch size 20. Training runs
for 100 passes, performance is validated starting with pass 10.
The reranker is validated both on training and development
data; classification error on the development set is given 10
times more weight than training set error.

The RNN LM lexicalizer uses the same parameters as the
reranker, with training for 50 passes maximum and validation
(on development data only) starting after the first pass.

11https://github.com/tuetschek/
e2e-metrics

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics
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Input DAs Generator mode Lexicalizer BLEU NIST METEOR ROUGE-L CIDEr SER

Delexicalized

Word forms
Random 15.51‡ 3.7352 18.60 35.00 1.3922 00.70
Most frequent 20.28‡ 4.5192 22.69 40.92 1.9399 00.70
RNN LM 20.74∗ 4.5096 22.61 40.72 1.9924 00.70

Lemma-tag
Random 19.66† 4.4884†‡ 22.19 41.42 1.8844 01.85
Most frequent 21.21†‡ 4.6900†‡ 23.07 42.62 2.0983 01.85
RNN LM 21.96∗†‡ 4.7720∗†‡ 23.32 42.95 2.1783 01.85

Lexicalized

Word forms
Random 14.70 3.7595 18.29 35.64 1.3712 02.30
Most frequent 19.73 4.5618 22.45 41.71 1.9473 02.30
RNN LM 20.48∗ 4.6060∗‡ 22.55 41.66 2.0192 02.30

Lemma-tag
Random 18.92† 4.3501† 21.76 40.55 1.8014 03.08
Most frequent 19.44 4.4453 22.22 41.26 1.8801 03.08
RNN LM 20.42∗ 4.5460∗ 22.56 41.73 1.9796 03.08

Table 3: Automatic metrics results. See Section 4.2 for metrics; scores are averaged over 5 different random ini-
tializations, all scores except for NIST and CIDEr are percentages. ∗ = significantly better than the corresponding
most frequent baseline lexicalizer, † = significantly better than the corresponding word forms mode, ‡ = signifi-
cantly better than the corresponding (de)lexicalized input DAs. Significance was assessed using pairwise bootstrap
resampling (Koehn, 2004), p < 0.01.

Input DAs Generator mode Lexicalizer S R F I L F+I+L Σ

Delexicalized
Word forms Most frequent 8 0 5 11 57 73 81

RNN LM 8 0 5 11 25 41 49

Lemma-tag
Most frequent 12 2 5 11 45 61 75
RNN LM 12 2 5 11 6 22 36

Lexicalized
Word forms Most frequent 14 5 14 6 34 54 73

RNN LM 14 5 14 6 10 30 49

Lemma-tag
Most frequent 15 4 6 4 34 44 63
RNN LM 15 4 6 4 4 14 33

Table 4: Manual evaluation results on 100 sampled sentences – absolute numbers of different types of errors (S =
semantic errors, R = repetition, F = fluency problems except lexicalization, I = impossible to lexicalize correctly
with the given value, L = lexicalization errors). All error types are exemplified in Figure 5.

In addition to word-overlap metrics, we use the
slot error rate (SER; Wen et al., 2015b) to evalu-
ate semantic accuracy of the outputs. This metric
counts slot placeholders in the output before lexical-
ization and compares them to slots in the input DA.
It reliably measures the amount of missed/added
content in all delexicalized slots (cf. Section 2), but
the non-delexicalized binary kids allowed slot is
ignored.

4.3 Results
The automatic metrics scores for all setups are
shown in Table 3. In terms of generator mode, us-
ing lemma-tag generation significantly12 improves
word-overlap metrics over direct token generation
in the delexicalized input setting. However, it also
leads to an increased SER. The RNN LM brings a
significant12 improvement over both baselines in
all setups; the very low performance of the random
baseline only documents that inflection indeed mat-
ters for slot values. The lexicalized input DAs did
not bring improvement over the delexicalized set-

12BLEU and NIST differences are statistically significant
(p < 0.01) according to bootstrap resampling (Koehn, 2004).

ting – lexicalized setups seem to perform slightly
worse in terms of both word-overlap metrics and
SER.

4.4 Manual Error Analysis
To obtain a deeper insight into the results and ac-
count for automatic metrics’ inaccuracy (Novikova
et al., 2017; Reiter, 2018), we performed a detailed
manual error analysis on a sample of 100 outputs
produced by all systems except the ones with ran-
dom baseline lexicalizers, which clearly perform
poorly. This was a blind annotation of semantic
and fluency errors; it is not a preference rating. We
categorized multiple error types; the results are
shown in Table 4.

The analysis confirmed that lexicalized input
DAs cause more semantic errors (both missed slots
and repetition). On the other hand, the outputs
were more fluent in this setting, which is not appar-
ent with automatic metrics. Lemma-tag generation
also improves fluency overall, at the cost of in-
creasing the number of semantic errors. The RNN
LM lexicalizer leads to significant reduction of lex-
icalization errors compared to the most frequent
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Input DA inform(food=Turkish, name=“Green Spirit”, price range=expensive)

Sy
st

em
s

Delex. input DAs, any mode
Most frequent
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drahé
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turecká
Turkish

restaurace
restaurant

.

Delex. input DAs, any mode
RNN LM

Green Spirit je
is

drahá
expensive

turecká
Turkish

restaurace
restaurant

.

Lex. DAs, word forms
Most frequent

Green Spirit je
is

drahé
expensive

turecká
Turkish

restaurace
restaurant

Lex. DAs, word forms
RNN LM

Green Spirit je
is

drahá
expensive

turecká
Turkish

restaurace
restaurant

Lex. DAs, lemma-tag
Most frequent

Green Spirit je drahé
expensive

restaurace
restaurant
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which

podává
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turecká
Turkish

jı́dla
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.

Lex. DAs, lemma-tag
RNN LM

Green Spirit je
is

drahá
expensive

restaurace
restaurant

, která
which

podává
serves

turecká
Turkish

jı́dla
meals

.

Input DA inform(area=dont care, count=218, food=dont care, price range=dont care, type=restaurant)

Sy
st

em
s(
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y
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liz

er
) Delex. input DAs

Word forms mode
Pokud

if
vám
you

nezáležı́
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druhu
type
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of-food

, našla jsem
I-found

218
::::::
restaurace
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v
in

různých
various

cenových
price

skupinách
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. (missing area)

Delex. input DAs
Lemma-tag mode

Pokud
if

vám
you

nezáležı́
don’t-care

na
about
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type

jı́dla
of-food

, našla jsem
I-found
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v
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price

skupinách
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. (missing area)

Lex. input DAs
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come
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if
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don’t-care

na
about

druhu
type
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of-food
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you

nezáležı́
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.

(missing area, price range)

Lex. input DAs
Lemma-tag mode

Mám
I-have

tu
here

218 restauracı́
restaurants

, pokud
if

vám
you
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don’t-care

na
about

. . . . . .druhu
type

cenových
price

skupinách
ranges

. (missing area, food type)

Figure 5: Examples from manual error analysis. Errors are marked with color and underlining: semantic errors,
repetition, . . . . . . . .fluency,

:::::::::
impossible

::
to

::::::::
lexicalize

::::::::
correctly, lexicalization (cf. Table 4). In the top example, the RNN LM

lexicalizer is able to select the correct feminine singular form, while the most frequent baseline selects a neuter
form. In the bottom example, systems with lexicalized input DAs make more semantic errors. The lemma-tag
mode is able to select a more appropriate syntactic structure for the numeral 218.

baseline, especially in combination with lemma-tag
generation (see top example in Figure 5). None of
the systems produce perfect output; they seem to
struggle especially with DAs that are very differ-
ent from the ones found in the training set and/or
occur less frequently (see bottom example in Fig-
ure 5, cf. Section 2.6). We believe that an increased
amount of training data could improve the situa-
tion.

5 Related Work

NLG experiments for non-English languages are
relatively rare and fully trainable approaches even
rarer. Our work is, to our knowledge, the first ap-
plication of neural NLG to a non-English language
for data-to-text generation.

Most works concerned with multiple languages
focus on surface realization. There have been a few
approaches using handcrafted grammars (Bateman,
1997; Allman et al., 2012). The procedural Sim-
pleNLG realizer (Gatt and Reiter, 2009) has also
been ported into multiple languages (Bollmann,
2011; Vaudry and Lapalme, 2013; de Oliveira and
Sripada, 2014; Mazzei et al., 2016; Ramos-Soto
et al., 2017; Cascallar-Fuentes et al., 2018; Chen
et al., 2018; de Jong and Theune, 2018). Further
works using multilingual rule-based surface realiza-

tion pipelines were developed in the context of ma-
chine translation (Aikawa et al., 2001; Žabokrtský
et al., 2008; Dušek et al., 2015). Bohnet et al.
(2010) created the first statistical multilingual re-
alizer based on a pipeline of SVMs, the recent
surface realization challenge (Mille et al., 2018)
then features further fully trainable realizers tested
on multiple languages, including neural models.

In data-to-text generation, the recent work of
Moussallem et al. (2018) is applied to Portuguese,
but is largely rule-based. The works of Chen et al.
(2010) and Kim and Mooney (2010) represent the
only data-to-text end-to-end NLG system with mul-
tilingual experiments known to us; they generate
English and Korean sport commentary sentences
using an inverted (non-neural) semantic parser. Our
dataset is ca. 2.5 times larger and more complex,
given the slot value inflection.

Other works on neural non-English NLG solve in
fact different tasks from ours: Chinese poetry gen-
eration (Zhang and Lapata, 2014; Yi et al., 2017;
Wang et al., 2016), non-task-oriented response gen-
eration in chatbots (Xing et al., 2016, 2017), or
morphological inflection (e.g. Faruqui et al., 2016;
Kann and Schütze, 2016).
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6 Conclusions and Future Work

We presented the first dataset targeted at end-to-
end neural non-English NLG, containing Czech
texts from the restaurant domain. We show that the
task of data-to-text NLG here is harder as slot val-
ues require morphological inflection. We apply to
our data the freely available, state-of-the-art TGen
NLG system (Dušek and Jurčı́ček, 2016) based on
the seq2seq architecture, and we implement two
extensions for Czech: (1) an RNN LM model to
select the correct inflected surface form for slot
values and (2) lemma-tag generation mode, where
the generator produces an interleaved sequences
of base form and morphological tags, which are
postprocessed by a morphological generator. We
also experiment with lexicalized and delexicalized
slot values in generator inputs. Using both auto-
matic metrics and manual analysis, we show that
the RNN LM brings clear benefits. The lemma-tag
mode and lexicalized inputs improve fluency but
hurt semantic accuracy of the outputs. We release
our dataset dataset and all experimental code on
GitHub.13

In future work, we will collect a large unanno-
tated dataset and pretrain the generator (Chen et al.,
2019). We believe that this will lead to increased
output fluency and accuracy. We are also consider-
ing using machine translation to obtain more syn-
thetic training data points.
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