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Abstract
In this work, we examine whether it is possi-
ble to achieve the state of the art performance
in paraphrase generation with reduced vocabu-
lary. Our approach consists of building a con-
volution to sequence model (Conv2Seq) par-
tially guided by the reinforcement learning,
and training it on the subword representation
of the input. The experiment on the Quora
dataset, which contains over 140,000 pairs
of sentences and corresponding paraphrases,
found that with less than 1,000 token types,
we were able to achieve performance that ex-
ceeded that of the current state of the art.

1 Introduction and Background

The past few years have seen the surge of interest
among NLP researchers in applying deep learn-
ing to the end-to-end generation of paraphrases:
where the goal is to create a sentence semantically
close to but distinct in style from the source sen-
tence, without a recourse to some linguistically
motivated devices as was often the case with the
work a decade ago (Barzilay and Lee, 2003; Power
and Scott, 2005; Duboué and Chu-Carroll, 2006;
Zhao et al., 2009).

Among the more recent efforts that are of rele-
vance to this work are (Gupta et al., 2017; Iyyer
et al., 2018; Wieting et al., 2017; Li et al., 2018),
each of which employs the deep learning one way
or another to address particular aspects of para-
phrase generation. (Iyyer et al., 2018) was con-
cerned with generating paraphrases in a controlled
fashion so that the outputs adhere to a certain syn-
tactic requirement specified by the user. (Wiet-
ing et al., 2017), meanwhile, worked on creating
a high quality paraphrase corpus through back-
translation and argued that they brought the qual-
ity of paraphrases close to that of those manu-
ally written. (Gupta et al., 2017) was the first at-
tempt to bring the variational auto-encoder (VAE),

wildly popular in computer vision, to bear on the
current issue. The idea is to cast paraphrase gener-
ation as a problem of sampling a hidden encoding
from VAE that retains some similarity to the input
sentence. (Li et al., 2018) is a paper most closely
related to this one. It features Monte Carlo pol-
icy gradient and Inverse Reinforcement Learning,
which achieved record setting results on the Quora
dataset. Broadly, this paper falls in line with (Li
et al., 2018), except that we aim at pushing their
results even further by letting reinforcement learn-
ing work with the lean vocabulary enabled by the
subword encoding.

2 Approach

While we work with a convolution to sequence
architecture as provided by Facebook at Github
(Fairseq),1 we made a few changes to the criterion
(loss) part of the model in order to accommodate
the policy gradient variety of reinforcement learn-
ing (PRL). What it does is to allow the model to
randomly explore the vocabulary space for each
decoded output of the model, in search of a word
sequence that results in a higher BLEU score. The
goal of PRL is to nudge the model toward words
that lead to a higher cumulative gain over a long
run in terms of BLEU, not just those that result
in an immediate reward in the form of the cross
entropy. Formally, PRL aims to maximize the fol-
lowing quantity:

U(θ) = log π(τ ; θ)R(τ)

i.e., an expected return from taking a trajectory
τ (word sequence) under π, a policy parameter-
ized with θ. Note that a policy here is under-
stood as a stochastic function that indicates how

1In particular, one called ‘fconv iwslt de en,’ which
is part of fconv.py found at https://github.com/
pytorch/fairseq

 https://github.com/pytorch/fairseq
 https://github.com/pytorch/fairseq
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likely a particular word occurs following the pre-
vious one, which is equivalent to a language model
P (wt | w0, . . . , wt−1). R(τ) is a reward function
that determines how much reward will be given for
a particular path pursued.

Formally, R is defined as:

R(τ) =
∑T

t Rt(wt) where:

Rt(wt) = rt +
∑T−1

i=t+1 λRi(wi)

t represents a time step at which each word ap-
pears in the trajectory of length T . rt represents
a reward for the entire trajectory τ against the tar-
get, and λ a decay coefficient, which is set at 1.0
for our case. Note that U(θ) amounts to an ex-
pected reward under the policy π. Importantly, we
do not use a baseline for R, as we did not find it
much of use in our experiment, which is consonant
with (Wu et al., 2018), who reported that its use led
to no improvement in neural machine translation.
Crucially, however, we will make use of multiple
reinforcement objectives: a bigram based BLEU
and seqratio, a string similarity metric based on
Levenshtein distance.2

The loss function for the present model now
looks like:

L = V(f(u), t) +R(τ) ∗ V(f(u), τ)

where V is a cross-entropy loss, f(u) is an out-
put of Conv2Seq applied to the input u, and t a
target. In training, R alternates between BLEU
and seqratio3 as it moves from one mini-batch to
another. Of note is that we have not employed any
particular scheduling tactic for training, in contrast
to (Ranzato et al., 2015), who initially trained the
model on the ground truth and let it slowly de-
viate from the optimal policy. More in line with
the present approach is (Paulus et al., 2017), who
worked with a mixed learning objective which at-
tempts to maximize the probability of generating
a target given the input, while searching for an
optimal policy, except that they rewarded actions
that would encourage the generation of fluent text,
not those that might improve an evaluation metric
such as BLEU.

Another important idea that underlies the cur-
rent approach is the notion of subword, whose
members include anything from a single letter or

2https://github.com/ztane/
python-Levenshtein.git

3It is the averaged sum of lengths of common substrings,
with the range of 0 (least similar) to 1 (most similar).

symbol to a full-fledged word. When reviewing er-
rors incurred in an earlier experiment, we came to
realize that the majority of them were caused by
the model’s inability to handle out-of-vocabulary
words (OOVs). The observation led us to ex-
plore the use of subword as a way to represent
text, which turned out to be quite effective, re-
ducing OOVs, and boosting the over-all perfor-
mance. A particular approach we adopt here is one
by (Kudo, 2018). It works by replacing a sentence
with a string of reasonably likely textual fragments
(or subwords), which may or may not correspond
to a meaningful linguistic expression. Under the
subword scheme, OOVs are less likely to occur
because any word that is not part of the vocabu-
lary will be broken up into or replaced with those
that are part of the dictionary. If anything, one
can revert to representing a word as a string of al-
phabets which are always kept in the dictionary
(Kudo, 2018).

To recap, two key ideas that drive the current
approach are: the adoption of a learning objec-
tive informed by multiple reinforcement objec-
tives in addition to the ground truth and the use
of subwords to ensure that the model knows ev-
ery word it sees in the input. For the sake of
convenience, we refer to the present approach
as RIPER (Reduced InPut Model Enhanced with
Reinforcement Learning).

3 Experiment Setup

In the experiment, we made use of the Quora
duplicate dataset (QRA), which contains 404,302
pairs of questions and their near duplicates that ap-
peared on the Quora’s online forum,4 out of which
we extracted some 140,000 pairs marked as a du-
plicate for use in training and testing. We follow
the same setup as one used in (Li et al., 2018),
which involves dividing the corpus into 100K for
training, 3K for validation and 30K for testing.
In addition to QRA, we tested the approach on
the ParaNMT-50M dataset (Wieting and Gimpel,
2017) (PMT).5 PMT is a fairly large corpus built
by back-translating what is translated into Czech
with machine translation, into English again us-
ing machine translation. We report all the results

4https://www.kaggle.com/c/
quora-question-pairs

5 The corpus we used here contains paraphrase pairs ran-
domly sampled from one of its variants called Para-nmt-5m-
processed where staggering 5,370,128 pairs of sentences are
found.

https://github.com/ztane/python-Levenshtein.git
https://github.com/ztane/python-Levenshtein.git
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
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Table 1: Corpus Statistics (in sentences)

TRAIN VALID TEST
PMT 600,000 5,000 5,000
QRA 100,000 3,000 30,000

Table 2: Results on PMT and QRA in BLEU.

VOC. MODEL PMT QRA

subword

V8K 0.414 0.447
V8K− 0.411 0.444
V4K 0.412 0.448
V4K− 0.397 0.448
V1K 0.392 0.453
V1K− 0.391 0.442

word

BSE+ 0.312 0.295
BSE 0.395 0.406
VAE 0.154 0.295
R-RL – 0.418
NMT 0.328 0.399
RbM-SL – 0.435
RbM-IRL – 0.431

in the bigram based BLEU which we used for
reinforcement learning. We also looked at how
the present framework would fare against some
of the prior approaches tackling the same prob-
lem. In this work, we are focusing on some of
the more recent attempts, VAE-SVG-eq (Gupta
et al., 2017), RbM-SL and its variant, RbM-IRL
(Li et al., 2018), along with other more conven-
tional approaches. The former is based on the vari-
ational auto-encoder (Kingma and Welling, 2013)
while RbM-SL draws essentially on Monte Carlo
Policy Gradient, enhanced with reward reshaping
(Ng et al., 1999). RbM-IRL differs from RbM-SL
in that it makes use of inverse reinforcement learn-
ing whose goal is to reconstruct a reward func-
tion by directly exposing the model to the optimal
state/action transition taken by human.

We report results for VAE-SVG-eq from run-
ning the third party implementation.6 As for the
latter models (RbM-SL/IRL). we repeat what was
published as there is no code available to repro-
duce runs. We note that for the subword encoding,
we have taken advantage of the code published as
a part of (Kudo, 2018) on Github.7

6https://github.com/ale3otik/
paraphrases-generator

7https://github.com/google/
sentencepiece

4 Results and Discussion

Table 2 summarizes major results. To start, V8K,
V4K and V1K are all RIPER models that feed on
subwords with dictionaries of sizes 8,000, 4,000,
and 1,000, respectively. Note that all of them
are derived from the Conv2Seq model, which we
call BSE and serves as a baseline.8 To see the
effect of reinforcement, we created some varia-
tions on RIPER which differed from the origi-
nals in that they were decoupled from the rein-
forcement capability. To highlight the difference,
we mark them with a minus sign. Thus ‘V1K−’
denotes a V1K with the reinforcement removed.
Similarly for V4K and V8K. Furthermore, we had
another model, created by extending BSE with
the reinforcement, denoted here by BSE+, which
works at the word level. VAE is a third party
implementation of VAE-SVG-eq. NMT is an-
other baseline derived from OpenNMT-py, a se-
quence to sequence machine translation model,9

which we used with the default settings.10 R-
RL corresponds to a pointer generator network
empowered with reinforcement learning based on
ROUGE (Ranzato et al., 2015). We took its score
on QRA from (Li et al., 2018). VOC. indicates the
kind of vocabulary the models use: ‘word’ means
that they use tokens as identified by a tokenizer
while ‘subword’ indicates that they work on word
fragments as produced by (Kudo, 2018). In the
following, we take RbM-SL as the state of the art
(SOTA).

In QRA, we see that RIPERs are doing well
across the board, beating all the rest, which in-
cludes the SOTA. It is remarkable that V1K out-
runs others, with as little as 1K tokens. On PMT,
V8K comes out a winner. The fact that RIPERs
did well on two reasonably large datasets and even
outperformed the SOTA, drives home the utility of
vocabulary reduction through the subword trick.
The results also show that reinforcement learning
benefitted to some degree from the reduced vocab-
ulary, a point underscored by the fact that BSE+

fell visibly behind BSE both on PMT and on QRA,
which can only be explained as the result of hav-
ing a large action space it had to deal with. By
contrast, the use of subwords, with the concomi-
tant reduction in search space, led V1K to reach

8Refer to footnote 1 for details
9https://github.com/OpenNMT/OpenNMT-py

10In particular, we enabled options related to the copying
functionality, -copy attn and -reuse copy attn

https://github.com/ale3otik/paraphrases-generator
https://github.com/ale3otik/paraphrases-generator
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/OpenNMT/OpenNMT-py
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Table 3: Generated Paraphrases (V8K/PMT)

source target generated
she staggered , went to one knee , and
was up again almost at once .

she staggered , dropped to her knee , but
she got up again .

she staggered , went to one knee and stood
up again .

i stopped by your room , you know , be-
cause i recognized your name .

yes , i was in your room because i know
your name and ...

i stopped by your room because i recog-
nized your name .

moving to his command post , he barked
, “ get me visual ! ”

he headed for his command post and
barked , “ let go of the picture ! ”

he ’s moving to his command post , he
barked , “ get me visual ! ”

at the point when we were developing
this , nobody knew that there were drugs
over there .

by the time we torched it , no one knew
there were drugs in it .

at the point when we got this , no one knew
there were drugs .

Table 4: Generated Paraphrases (V1K/QRA)

source target generated
why there is a ban of 500 and 1000 notes
?

what are the pros and cons of banning
500 and 1000 rupee notes in india ?

what are the ill effects of demonetization
of 500 and 1000 rupees notes ?

what is ultimate purpose of life ? what purpose do you find in life ? what is the purpose of life if not money ?

what can i do to improve my english
speaking ?

how can i improve my english pronunci-
ation ?

how can i improve my english pronuncia-
tion ?

what is the best laptop in 50000 in india
?

what could be the best laptop in budget
upto 50k ?

which is the best laptop to buy under rs
50000 ?

why were the 500 and 1000 rupee notes
demonetized ?

what is the logic behind scrapping of 500
and 1000 rupee notes by the indian gov-
ernment ?

why did the indian government demonetize
the current 500 and 1000 rupee notes ?

Table 5: The number of tokens in the vocabulary

PMT QRA
V8K 7,981 (4.8%) 7,992 (27.9%)
V4K 3,983 (2.3%) 3,994 (14.0%)
V1K 994 (0.5%) 995 (3.5%)
BSE 166,899 28,615

as high as 0.453 on QRA while leaving behind its
word based cousin at 0.295. Across the results,
there is a general tendency for the subword based
models to improve through reinforcement, while
those dependent on words suffer the steep decline.

Table 5 shows how much reduction is achieved
through the subwording. V1K on QRA works with
less than 4% of the vocabulary used by BSE, and
on PMT as little as 0.5%. One thing we should
point out is that on PMT, we have the maximum
score with V4K, while on QRA, the best result
comes from V1K. Its performance appears to peak
when run on 3 to 5% of the vocabulary. The ques-
tion of how broadly the observation holds is an in-
teresting one, though it is not clear what the an-
swer would be at this point.

We conclude the section by leaving the reader
with some paraphrases RIPERs generated (Ta-

ble 4), to give an intuitive sense of how we are
doing.

5 Conclusions

In this paper, we introduced a fairly straightfor-
ward yet novel approach to paraphrase generation
we call RIPER, which leverages a recent develop-
ment in the subword encoding and a policy gra-
dient variety of reinforcement learning. The ex-
periments with two large datasets PMT and QRA
have shown unequivocally that RIPER works. One
key takeaway is the idea of coupling the subword
encoding with reinforcement learning (RL). The
application of RL to NLP has been generally per-
ceived as a difficult one (Irpan, 2018). One reason
is the enormity of search space due to ever grow-
ing vocabulary the model works with. The sub-
word encoding is a nice trick which may mitigate
the problem, and could lead to a wider adoption of
RL in NLP.
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