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Abstract

Currently, there is little agreement as to how
Natural Language Generation (NLG) systems
should be evaluated, with a particularly high
degree of variation in the way that human eval-
uation is carried out. This paper provides an
overview of how human evaluation is currently
conducted, and presents a set of best practices,
grounded in the literature. With this paper, we
hope to contribute to the quality and consis-
tency of human evaluations in NLG.

1 Introduction

Even though automatic text generation has a long
tradition, going back at least to Peter (1677) (see
also Swift, 1774; Rodgers, 2017), human eval-
uation is still an understudied aspect. Such an
evaluation is crucial for the development of Nat-
ural Language Generation (NLG) systems. With
a well-executed evaluation it is possible to assess
the quality of a system and its properties, and to
demonstrate the progress that has been made on a
task, but it can also help us to get a better under-
standing of the current state of the field (Mellish
and Dale, 1998; Gkatzia and Mahamood, 2015;
van der Lee et al., 2018). The importance of evalu-
ation for NLG is itself uncontentious; what is per-
haps more contentious is the way in which eval-
uation should be conducted. This paper provides
an overview of current practices in human evalua-
tion, showing that there is no consensus as to how
NLG systems should be evaluated. As a result, it
is hard to compare the results published by differ-
ent groups, and it is difficult for newcomers to the
field to identify which approach to take for eval-
uation. This paper addresses these issues by pro-
viding a set of best practices for human evaluation
in NLG. A further motivation for this paper’s fo-
cus on human evaluation is the recent discussion
on the (un)suitability of automatic measures for

the evaluation of NLG systems (see Ananthakr-
ishnan et al., 2007; Novikova et al., 2017; Sulem
et al., 2018; Reiter, 2018, and the discussion in
Section 2).

Previous studies have also provided overviews
of evaluation methods. Gkatzia and Mahamood
(2015) focused on NLG papers from 2005-2014;
Amidei et al. (2018a) provided a 2013-2018
overview of evaluation in question generation; and
Gatt and Krahmer (2018) provided a more general
survey of the state-of-the-art in NLG. However,
the aim of these papers was to give a structured
overview of existing methods, rather than discuss
shortcomings and best practices. Moreover, they
did not focus on human evaluation.

Following Gkatzia and Mahamood (2015), Sec-
tion 3 provides an overview of current evaluation
practices, based on papers from INLG and ACL
in 2018. Apart from the broad range of meth-
ods used, we also observe that evaluation practices
have changed since 2015: for example, there is a
significant decrease in the number of papers fea-
turing extrinsic evaluation. This may be caused
by the current focus on smaller, decontextualized
tasks, which do not take users into account.

Building on findings from NLG, but also statis-
tics and the behavioral sciences, Section 4 pro-
vides a set of recommendations and best practices
for human evaluation in NLG. We hope that our
recommendations can serve as a guide for new-
comers in the field, and can otherwise help NLG
research by standardizing the way human evalua-
tion is carried out.

2 Automatic versus human evaluation

Automatic metrics such as BLEU, METEOR, and
ROUGE are increasingly popular; Gkatzia and
Mahamood’s (2015) survey of NLG papers from
2005-2014 found that 38.2% used automatic met-
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rics, while our own survey (described more fully
in Section 3) shows that 80% of the empirical pa-
pers presented at the ACL track on NLG or at the
INLG conference in 2018 reported on automatic
metrics. However, the use of these metrics for the
assessment of a system’s quality is controversial,
and has been criticized for a variety of reasons.
The two main points of criticism are:

Automatic metrics are uninterpretable. Text
generation can go wrong in different ways while
still receiving the same scores on automated met-
rics. Furthermore, low scores can be caused
by correct, but unexpected verbalizations (Anan-
thakrishnan et al., 2007). Identifying what can
be improved therefore requires an error analysis.
Automatic metric scores can also be hard to in-
terpret because it is unclear how stable the re-
ported scores are. With BLEU, for instance, li-
braries often have their own BLEU score imple-
mentation, which may differ from one another,
thus affecting the scores (this is recently addressed
by Post, 2018). Reporting the scores accompanied
by confidence intervals, calculated using bootstrap
resampling (Koehn, 2004), may increase the sta-
bility and therefore interpretability of the results.
However, such statistical tests are not straightfor-
ward to perform.

Automatic metrics do not correlate with hu-
man evaluations. This has been repeatedly ob-
served (e.g. Belz and Reiter, 2006; Reiter and
Belz, 2009; Novikova et al., 2017).1 In light of
this criticism, it has been argued that automated
metrics are not suitable to assess linguistic prop-
erties (Scott and Moore, 2007), and Reiter (2018)
discouraged the use of automatic metrics as a (pri-
mary) evaluation metric. The alternative is to per-
form a human evaluation.

There are arguably still good reasons to use au-
tomatic metrics: they are a cheap, quick and re-
peatable way to approximate text quality (Reiter
and Belz, 2009), and they can be useful for er-
ror analysis and system development (Novikova
et al., 2017). We would not recommend using

1In theory this correlation might increase when more ref-
erence texts are used, since this allows for more variety
in the generated texts. However, in contrast to what this
theory would predict, both Doddington (2002) and Turian
et al. (2003) report that correlations between metrics and hu-
man judgments in machine translation do not improve sub-
stantially as the number of reference texts increases. Simi-
larly, Choshen and Abend (2018) found that reliability issues
of reference-based evaluation due to low-coverage reference
sets cannot be overcome by attainably increasing references.

human evaluation for every step of the develop-
ment process, since this would be costly and time-
consuming. Furthermore, there may be automatic
metrics that reliably capture some qualitative as-
pects of NLG output, such as fluency or stylistic
compatibility with reference texts. But for a gen-
eral assessment of overall system quality, human
evaluation remains the gold standard.

3 Overview of current work

This section provides an overview of current hu-
man evaluation practices, based on the papers pub-
lished at INLG (N=51) and ACL (N=38) in 2018.
We did not observe noticeable differences in eval-
uation practices between INLG and ACL, which
is why they are merged for the discussion of the
bibliometric study. 2

3.1 Intrinsic and extrinsic evaluation

Human evaluation of natural language generation
systems can be done using intrinsic and extrinsic
methods (Sparck Jones and Galliers, 1996; Belz
and Reiter, 2006). Intrinsic approaches aim to
evaluate properties of the system’s output, for in-
stance, by asking participants about the fluency of
the system’s output in a questionnaire. Extrinsic
approaches aim to evaluate the impact of the sys-
tem, by investigating to what degree the system
achieves the overarching task for which it was de-
veloped. While extrinsic evaluation has been ar-
gued to be more useful (Reiter and Belz, 2009), it
is also rare. Only three papers (3%) in the sam-
ple of INLG and ACL papers presented an extrin-
sic evaluation. This is a notable decrease from
Gkatzia and Mahamood (2015), who found that
nearly 25% of studies contained an extrinsic eval-
uation. Of course, extrinsic evaluation is the most
time- and cost-intensive out of all possible evalu-
ations (Gatt and Krahmer, 2018), which might ex-
plain the rarity, but does not explain the decline
in (relative) frequency. That might be because of
the set-up of the tasks we see nowadays. Extrinsic
evaluations require that the system is embedded
in its target use context (or a suitable simulation
thereof), which in turn requires that the system ad-
dresses a specific purpose. In practice, this often
means the system follows the ‘traditional’ NLG

2For the ACL papers, we focused on the following tracks:
Machine Translation, Summarization, Question Answering,
and Generation. See Supplementary Materials for a detailed
overview of the investigated papers and their evaluation char-
acteristics
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Criterion Total Criterion Total

Fluency 13 Manipulation check 3
Naturalness 8 Informativeness 3
Quality 5 Correctness 3
Meaning preservation 5 Syntactic correctness 2
Relevance 5 Qualitative analysis 2
Grammaticality 5 Appropriateness 2
Overall quality 4 Non-redundancy 2
Readability 4 Semantic adequacy 2
Clarity 3 Other criteria 25

Table 1: Criteria used for human evaluation from all papers.
Separate counts for ACL and INLG 2018 are in the appendix.

pipeline (Reiter and Dale, 2000), encompassing
many of these pipeline sub-tasks to go from input
data to complete output texts (Mellish et al., 2006;
Gatt and Krahmer, 2018). Such systems were a
mainstay of NLG literature until recently (e.g.,
Harris, 2008; Gatt and Portet, 2010; Reiter et al.,
2003), but the field has shifted towards focusing on
only one or a few of the sub-tasks from the NLG
pipeline (e.g. text planning, surface realization, re-
ferring expression generation), with a concomitant
focus on text output quality, for which an intrin-
sic evaluation may be sufficient. However, we are
starting to see a swing back towards a full pipeline
approach with separate neural modules handling
sub-tasks (Castro Ferreira et al., 2019), which may
also cause a resurgence of extrinsic evaluation.

3.2 Properties of text quality

Many studies take some notion of ‘text quality’ as
their primary evaluation measure, but this goal is
not easy to assess, since text quality criteria dif-
fer across tasks (see Section 4.1 for further dis-
cussion). This variety, suggesting a lack of agree-
ment, is clear from Table 1. Except for fluency,
and for naturalness and quality which were used
for a shared task, most criteria are infrequent; the
numerous ‘other criteria’ are those which are used
only once. At the same time, there is probably sig-
nificant overlap. For instance, naturalness is some-
times linked to fluency, and informativeness to ad-
equacy (Novikova et al., 2018). In short, there is
no standard evaluation model for NLG. Further-
more, there is significant variety in naming con-
ventions.

3.3 Sample size and demographics

When looking at sample size, it is possible to
distinguish between expert-focused and reader-
focused evaluation. 14 papers (28%) used an

Scale Count

Likert (5-point) 14
Preference 10
Likert (2-point) 6
Likert (3-point) 5
Other Likert (4,7,10-point) 5
Rank-based Magnitude Estimation 5
Free text comments 1

Table 2: Types of scales used for human evaluation

expert-focused approach, meaning that between 1
and 4 expert annotators evaluated system output.
13 papers (26%) employed a larger-scale reader-
focused method in which 10 to 60 readers judged
the generated output. We found a median of 4
annotators. However, these numbers might not
reflect reality: only 55% of papers specified the
number of participants and an even smaller num-
ber (18%) reported the demographics of their sam-
ple. Only 12.5% of the papers with a human eval-
uation reported inter-annotator agreement, using
Krippendorff’s α, Fleiss’ κ, Weighted κ or Co-
hen’s κ. Agreement in most cases ranged from
0.3 to 0.5, but given the variety of metrics and
the thresholds used to determine acceptable agree-
ment, this range should be treated with caution.

3.4 Design
Apart from participant sample size, an important
issue that impacts statistical power is the number
of items (e.g. generated sentences) used in an eval-
uation. Among papers that reported these num-
bers, we observed a median of 100 items used for
human evaluation in INLG and ACL papers. The
number of items however ranged between 2 and
5,400, illustrating a sizable discrepancy. In 83%
of papers that reported these figures, all annotators
saw all examples. Only 12.5% of papers reported
other aspects of evaluation study design, such as
the order in which items were presented, randomi-
sation and counterbalancing methods used (e.g. a
latin square design), or whether criteria were mea-
sured at the same time or separately.

3.5 Number of questions and types of scales
In addition to the diversity in criteria used to mea-
sure text quality (see Section 3.2), there is a wide
range of rating methods that are used to measure
those criteria. Do note that Likert and rating scales
are treated indistinctly here (for a distinction, see
Amidei et al., 2019). The 5-point Likert scale is
the most popular option, but preference ratings are
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a close second (see Table 2). Other types of rat-
ing methods are much less common. Rank-based
Magnitude Estimation, a continuous metric, was
only found among shared task papers, and only
one paper reported using free-text comments.

We also investigated the number of ratings used
to measure a single criterion (e.g. a paper may use
two ratings to measure two different aspects of flu-
ency). Only 34% of papers with a human evalua-
tion reported the number of ratings to measure a
criterion. These numbers ranged from 1 to 4 rat-
ings for a criterion, with 1 rating being the most
common.

3.6 Statistics and data analysis

A minority (33%) of papers report one or more
statistical analyses for their human evaluation to
investigate if findings are statistically significant.
The types of statistical analyses vary greatly: there
is not one single test that is the most common. Ex-
amples of tests found are Student’s T test, Mann-
Whitney U test, and McNemar’s test. Theoreti-
cally, such statistical tests should be performed to
test a specific hypothesis (Navarro, 2019). How-
ever, not all papers using a statistical test report
their hypotheses. And conversely, some papers
reporting hypotheses do not perform a statistical
test. 19% of all papers explicitly state their hy-
potheses or research questions.

4 Best practices

This section provides best practices for carrying
out and reporting human evaluation in NLG. We
(mostly) restrict ourselves to intrinsic evaluation.

4.1 Text quality and criteria

Renkema (2012, p. 37) defines text quality in
terms of whether the writer (or: NLG system) suc-
ceeds in conveying their intentions to the reader.
He outlines three requirements for this to be
achieved: (i) the writer needs to achieve their goal
while meeting the reader’s expectations; (ii) lin-
guistic choices need to match the goal; and (iii)
the text needs to be free of errors.

If successfully conveying communicative inten-
tion is taken to be the main overarching criterion
for quality, then two possibilities arise. One could
treat quality as a primitive, as it were, evaluating
it directly with users. Alternatively—and more in
line with current NLG evaluation practices—one
could take text quality to be contingent on individ-

ual dimensions or criteria (for various studies of
such criteria, see Dell’Orletta et al., 2011; Falken-
jack et al., 2013; Nenkova et al., 2010; Pitler and
Nenkova, 2008, inter alia).

The choice between these two options turns out
to be a point of contention. Highly correlated
scores on different quality criteria suggest that
human annotators find them hard to distinguish
(Novikova et al., 2017). For this reason, some re-
searchers directly measure the overall quality of a
text. However, Hastie and Belz (2014) note that an
overall communicative goal is often too abstract a
construct to measure directly. They argue against
this practice and in favour of identifying separate
criteria, weighted according to their importance in
contributing to the overall goal.

The position taken by Hastie and Belz (2014)
implies that, to the extent that valid and agreed-
upon definitions exist for specific quality crite-
ria, these should be systematically related to over-
all communicative success. Yet, this relationship
need not be monotonic or linear. For example, two
texts might convey the underlying intention (in-
cluding the intention to inform) equally success-
fully, while varying in fluency, perhaps as long as
some minimal level of fluency is satisfied by both.
In that case, the relationship would not be mono-
tonic (higher fluency may not guarantee success
beyond a point). A further question is how the
various criteria interact. For instance, it is conceiv-
able that under certain conditions (e.g. summaris-
ing high-volume, heterogeneous data in a short
span of text), readability and adequacy are mutu-
ally conflicting goals beyond a certain point (e.g.
because adequately conveying all information will
result in more convoluted text which is harder to
understand).

Ultimately, the criteria to be considered will de-
pend on the task. For example, in style transfer,
manipulation checks are important to determine
whether the style has been transferred correctly,
while also ensuring meaning preservation. These
criteria are not necessarily important for a sys-
tem that generates weather reports from numeri-
cal data, where accuracy, fluency, coherence and
genre compatibility might be more prominent con-
cerns. By contrast, coherence and fluency would
not be important criteria for the PARRY chatbot
(Colby et al., 1971) which attempts to simulate the
speech of a person with paranoid schizophrenia.

As we have shown, the criteria used for NLG
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evaluation are usually treated as subjective (as in
the case of judgments of fluency, adequacy and
the like). It is also conceivable that these cri-
teria can be assessed using more objective mea-
sures, similar to existing readability measures
(e.g., Ambati et al., 2016; Kincaid et al., 1975;
Pitler and Nenkova, 2008; Vajjala and Meurers,
2014), where objective text metrics (e.g. aver-
age word length, average parse tree height, aver-
age number of nouns) are used in a formula, or as
features in a regression model, to obtain a score
for a text criterion. Similarly, it may be possible
to use separate subjective criteria as features in a
regression model to calculate overall text quality
scores. This would also provide information about
the importance of the subjective criteria for over-
all text quality judgments. However, such research
on the relationship between subjective criteria and
objective measures is currently lacking for NLG.

One obstacle to addressing the difficulties iden-
tified in this section is the lack of a standard-
ised nomenclature for different text quality cri-
teria. This presents a practical problem, in that
it is hard to compare evaluation results to previ-
ously reported work; but it also presents a theo-
retical problem, in that different criteria may over-
lap or be inter-definable. As Gatt and Belz (2010)
and Hastie and Belz (2014) suggest, common and
shared evaluation guidelines should be developed
for each task, and efforts should be made to stan-
dardise criteria and naming conventions. In the
absence of such guidelines, care should be taken
to explicitly define the criteria measured and high-
light possible overlaps between them.

4.2 Sample size, demographics and
agreement

Expert- versus reader-focused Section 3.3
made a distinction between expert-focused and
reader-focused evaluation. With an expert-focused
design, a small number of expert annotators is
recruited to judge aspects of the NLG system.
A reader-focused design entails a typically larger
sample of (non-expert) participants. Lentz and
De Jong (1997) found that these two methods can
be complementary: expert problem detection may
highlight textual problems that are missed by gen-
eral readers. However, this strength is mostly
applicable when a more qualitative analysis is
used, whereas most expert-focused evaluations in
our sample of papers used closed-ended questions

with Likert scales.
Evidence suggests that expert readers approach

evaluation differently from general readers, inject-
ing their own opinions and biases (Amidei et al.,
2018b). This might be troublesome if a system is
meant for the general population, as expert opin-
ions and biases might not be representative for
those of non-experts. This is corroborated by
Lentz and De Jong (1997), who found that expert
judgments only predict the outcomes of reader-
focused evaluation to a limited extent. Experts
are also susceptible to considerable variance, so
that automatic metrics are sometimes more reli-
able (Belz and Reiter, 2006). Thus, the conclusion
of Belz and Reiter (2006) in favour of large-scale
reader-focused studies, rather than expert-focused
ones, seems well-taken.

An additional factor to consider is the types of
‘general’ or ‘expert’ populations that are accessi-
ble to NLG researchers. It is not untypical for eval-
uations to be carried out with students, or fellow
researchers (recruited, for instance, via SIGGEN
or other mailing lists). This may introduce sam-
pling biases of the kind that have been critiqued
in psychology in recent years, where experimental
results based on samples of WEIRD (Western, Ed-
ucated, Industrialised, Rich and Developed) popu-
lations may well have given rise to biased models
(see, for example, Henrich et al., 2010).

Evaluator agreement The varying opinions of
judges are also reflected in low Inter-Annotator
Agreement (IAA), where adequate thresholds also
tend to be open to interpretation (Artstein and Poe-
sio, 2008). Amidei et al. (2018b) argue that, given
the variable nature of natural language, it is unde-
sirable to use restrictive thresholds, since an osten-
sibly low IAA score could be due to a host of fac-
tors, including personal bias. The authors there-
fore suggest reporting IAA statistics with confi-
dence intervals. However, narrower confidence
intervals (suggesting a more precise IAA score)
would normally be expected with large samples
(e.g., 1000 or more comparisons McHugh, 2012),
which are well beyond most sizes reported in our
overview (§ 3.4).

When the goal of an evaluation is to identify po-
tential problems with output texts, a low IAA, in-
dicating variety among annotators, can be highly
informative (Amidei et al., 2018b). On the other
hand, low IAA in evaluations of text quality can
also suggest that results should not be extrapolated
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to a broader reader population. An additional con-
sideration is that some statistics (such as κ; see
McHugh, 2012) make overly restrictive assump-
tions, though they have the advantage of account-
ing for chance agreement. Thus, apart from re-
porting such statistics, it is advisable to also re-
port percentage agreement, which is easily inter-
pretable (McHugh, 2012).

Sample size For expert-focused evaluations,
good advice is provided by Van Enschot et al.
(2017): difficult coding tasks (which most NLG
evaluations are) require three or more annotators
(though preferably more; see Potter and Levine-
Donnerstein, 1999), more straightforward tasks
can do with two to three. In the case of large-
scale studies, Brysbaert (2019) recently stated that
most studies with less than 50 participants are un-
derpowered and that for most designs and analy-
ses 100 or more participants are needed. With the
introduction of crowdsourcing such numbers are
obtainable, at least for widely-spoken languages
(though see van Miltenburg et al. 2017 for a coun-
terexample). Furthermore, the number of partici-
pants necessary can be decreased by having multi-
ple observations per condition per participant (i.e.,
having participants perform more judgments).

Whatever the sample size, a minimum good
practice guideline is to always report participant
numbers, with relevant demographic data (i.e.,
gender, nationality, age, fluency in the target lan-
guage, academic background, etc), in order to en-
hance replicability and enable readers to gauge the
meaningfulness of the results.

4.3 Number of questions and types of scales

As shown in Section 3.5, Likert scales are the
prevalent rating method for NLG evaluation, 5-
point scales being the most popular, followed by
2-point, and 3-point scales. While the most appro-
priate number of response points may depend on
the task itself, 7-point scales (with clear verbal an-
choring) seem best for most tasks. Most of the ex-
perimental literature’s findings found that 7-point
scales maximise reliability, validity and discrim-
inative power (for instance, Miller, 1956; Green
and Rao, 1970; Jones, 1968; Cicchetti et al., 1985;
Lissitz and Green, 1975; Preston and Colman,
2000). These studies discourage smaller scales,
and adding more response points than 7 also does
not increase reliability according to these studies.

While Likert scales are the most popular scale

within the NLG domain (and probably in many
other domains), the use of this scale has been re-
ceiving more and more criticism. Recent studies
have found that participant ratings are more reli-
able, consistent, and are less prone to order ef-
fects when they involve ranking rather than Lik-
ert scales (Martinez et al., 2014; Yannakakis and
Martı́nez, 2015; Yannakakis and Hallam, 2011).
Similarly, for the development of an automatic
metric for NLG, Chaganty et al. (2018) found that
annotator variance decreased significantly when
using post-edits as a metric instead of a Likert
scale survey. Finally, Novikova et al. (2018) com-
pared Likert scales for NLG system evaluation to
two continuous scales: a vanilla magnitude esti-
mation measure and a rank-based magnitude esti-
mation measure. The researchers found that both
magnitude estimation scales delivered more reli-
able and consistent text evaluation scores.

All these studies seem to suggest that ranking-
based methods (combined with continuous scales)
are the preferred method. However, there are two
critical remarks to be made on this. Firstly, a draw-
back of ranking-based methods is that the num-
ber of judgments increases substantially as more
systems are compared. To mitigate this, Novikova
et al. (2018) illustrated that the TrueSkillTM algo-
rithm (Herbrich et al., 2007) can be implemented.
This algorithm uses binary comparisons to reliably
rank systems, which greatly reduces the amount of
data needed for multiple-system comparisons.

Another point of criticism is that studies com-
paring Likert scales to other research instruments
mostly look at single-rating constructs, that is, ex-
periments where a single judgment is elicited on
a given criterion. While constructs measured with
one rating are also the most common in NLG re-
search, this practice has been criticized. It is un-
likely that a complex concept (e.g. fluency or ade-
quacy) can be captured in a single rating (McIver
and Carmines, 1981). Furthermore,a single Likert
scale often does not provide enough points of dis-
crimination: a single 7-point Likert question has
only 7 points to discriminate on, while 5 7-point
Likert questions have 5 * 7 = 35 points of discrim-
ination. A practical objection against single-item
scales is that no reliability measure for internal
consistency (e.g., Cronbach’s alpha) can be calcu-
lated for a single item. At least two items or more
are necessary for this. In light of these concerns,
Diamantopoulos et al. (2012) advocate great cau-
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tion in the use of single-item scales, unless the
construct in question is very simple, clear and one-
dimensional. Under most conditions, multi-item
scales have much higher predictive validity. Us-
ing multiple items may well make the reliabil-
ity of Likert scales on a par with that of rank-
ing tasks; this, however, has not been empirically
tested. Also, do note that the use of multiple-item
scales versus single-item scales affects the type of
statistical testing needed (for an overview and ex-
planation, see Amidei et al., 2019).

In sum, we advise to use either multiple-item
7-point Likert scales, or a (continuous) ranking
task. The latter should be used in combination
with TrueSkillTM when multiple systems are com-
pared. As Aroyo and Welty (2014) note, disagree-
ment in the responses can be due to three factors:
the item, the worker, and the task. Therefore, it
is necessary to pilot the rating task before deploy-
ing it more widely, and to analyze disagreement
on the annotator level, to see whether individual
annotators are causing discrepancies in the ratings
for different items.

Alternative evaluation instruments should not
be ruled out either. Ever since a pilot in 2016 (Bo-
jar et al., 2016a), recent editions of the Confer-
ence on Machine Translation (WMT), have used
Direct Assessment, whereby participants com-
pare an output to a reference text on a contin-
uous (0-100) scale (Graham et al., 2017; Bojar
et al., 2016b), similar to Magnitude Estimation
(Bard et al., 1996). Zarrieß et al. (2015) used a
mouse contingent reading paradigm in an evalua-
tion study of generated text, finding that features
recorded using this paradigm (e.g. reading time)
provided valuable information to gauge text qual-
ity levels. It should also be noted that most met-
rics used in NLG are reader-focused. However,
in many real-world scenarios, especially ‘creative’
NLG applications, NLG systems and human writ-
ers work alongside each other in some way (see
Maher, 2012; Manjavacas et al., 2017). With such
a collaboration in mind, it makes sense to also
investigate writer-focused methods. Having par-
ticipants edit generated texts. Then processing
these edits using post-editing distance measures
like Translation Edit Rate (Snover et al., 2006),
might be a viable method to investigate the time
and cost associated with using a system. While
more commonly seen in Machine Translation, au-
thors have explored the use of such metrics in

NLG (Bernhard et al., 2012; Han et al., 2017; Sri-
pada et al., 2005).

Finally, some remarks on qualitative evaluation
methods are in order. Reiter and Belz (2009) note
that free-text comments can be beneficial to diag-
nose potential problems of an NLG system. Fur-
thermore, Sambaraju et al. (2011) argue the added
value of content analysis and discourse analysis
for evaluation. Such qualitative analyses can find
potential blind spots of quantitative analyses. At
the same time, the subjectivity that is often inher-
ent in studies based on discourse analysis, such as
Sambaraju et al. (2011) would need to be offset by
data from larger-scale, quantitative studies.

4.4 Design

Few papers report exact details of the design
of their human evaluation experiments, although
most indicate that multiple systems were com-
pared and annotators were shown all examples.
This suggests that within-subjects designs are a
common practice.

Within-subjects designs are susceptible to order
effects: over the course of an experiment, anno-
tators can change their responses due to fatigue,
practice, carryover effects or other (external) fac-
tors. If the order in which the output of systems
are presented is fixed, differences found between
systems may be due to order effects rather than
differences in the output itself. To mitigate this, re-
searchers can implement measures in the task de-
sign. Practice effects can be reduced with a prac-
tice trial in which examples of both very good (flu-
ent, accurate, grammatical) and very bad (disflu-
ent, inaccurate, ungrammatical) outputs are pro-
vided before the actual rating task. This allows
for the participants to calibrate their responses, be-
fore starting with the actual task. Carryover effects
can be reduced by increasing the amount of time
between presenting different conditions (Shaugh-
nessy et al., 2006). Fatigue effects can be re-
duced by shortening the task, although this also
means more participants are necessary since fewer
observations per condition per participant means
less statistical power (Brysbaert, 2019). Another
way to tackle fatigue effects sometimes seen in
research is to remove all entries with missing
data, or to remove participants that failed ‘atten-
tion checks’ (or related checks e.g. instructional
manipulation checks, or trap questions) from the
sample. However, the use of attention checks is
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subject to debate, with some researchers point-
ing out that after such elimination procedures, the
remaining cases may be a biased subsample of
the total sample, thus biasing the results (Anduiza
and Galais, 2016; Bennett, 2001; Berinsky et al.,
2016). Experiments show that excluding partici-
pants that failed attention checks introduces a de-
mographic bias, and attention checks actually in-
duce low-effort responses or socially desirable re-
sponses (Clifford and Jerit, 2015; Vannette, 2016).

Order effects can also be reduced by present-
ing the conditions in a systematically varied or-
der. Counterbalancing is one such measure. With
counterbalancing, all examples are presented in
every possible order. While such a design is the
best way to reduce order-effects, it quickly be-
comes expensive. When annotators judge 4 ex-
amples, 4! = 24 different orders should be investi-
gated (this, however, can be partially mitigated by
grouping items randomly into sets, and counter-
balancing the order of sets rather than individual
items). In most cases, randomising the order of ex-
amples should be sufficient. Another possibility is
to use a between-subjects design, in which the sub-
jects only judge the (randomly ordered) outputs of
one system. When order effects are expected and a
large number of conditions are investigated, such
a design is preferable (Shaughnessy et al., 2006).

Novikova et al. (2018) found that the presenta-
tion of questions matters. When evaluating text
criteria, answers to questions about different cri-
teria tend to correlate when they are presented si-
multaneously for a given item. When participants
are shown an item multiple times and questioned
about each text criterion separately, this correla-
tion is reduced.

4.5 Statistics and data analysis

Within behavioral sciences, it is standard to evalu-
ate hypotheses based on whether findings are sta-
tistically significant or not (typically, in published
papers, they are), although a majority of NLG pa-
pers do not report statistical tests (see Section 3.6).
However, there is a growing awareness that statis-
tical tests are often conducted incorrectly, both in
NLP (Dror et al., 2018) and in behavioral sciences
more generally (e.g., Wagenmakers et al., 2011).
Moreover, one may wonder whether standard null-
hypothesis significance testing (NHST) is applica-
ble or helpful in human NLG evaluation.

In a common scenario, NLG researchers may

want to compare various versions of their own
novel system (e.g. with or without output varia-
tion, or relying on different word embedding mod-
els, to give just two more or less random exam-
ples) to compare them to each other, to some other
(‘state-of-the-art’) systems, and/or with respect to
one or more baselines. Notice that this quickly
gives rise to a rather complex statistical design
with multiple factors and multiple levels. Ironi-
cally, with every system or baseline that is added
to the evaluation, the comparison becomes more
interesting but the statistical model becomes more
complex, and power issues become more press-
ing (Cohen, 1988; Button et al., 2013). However,
statistical power—the probability that the statisti-
cal test will reject the null hypothesis (H0) when
the alternative hypothesis (H1, e.g., that your new
NLG system is the best) is true—are seldom (if
ever) discussed in the NLG literature.

A related issue is that clear hypotheses are of-
ten not stated (see Section 3.6). Of course, re-
searchers generally assume that their system will
be rated higher than the comparison systems. But
they will not necessarily assume that they will per-
form better on all dependent variables. Moreover,
they may have no specific hypotheses about which
variant of their own system will perform best.

In fact, in the scenario sketched above there
may be multiple (implicit) hypotheses: new sys-
tem better than state-of-the-art, new system bet-
ter than baseline, etcetera. When testing multiple
hypotheses, the probability of making at least one
false claim (incorrectly rejecting a H0) increases
(such errors are known as false positives or Type I
errors). Various remedies for this particular prob-
lem exist, one being an application of the simple
Bonferroni correction, which amounts to lowering
the significance threshold α—commonly .05, but
see for example Benjamin et al. (2018) and Lakens
et al. (2018)—to α/m, where m is the number of
hypotheses tested. This procedure is not systemat-
ically applied in NLG, although the awareness of
the issues with multiple comparisons is increasing.

Finally, statistical tests are associated with as-
sumptions about their applicability. One is the in-
dependence assumption (especially relevant for t-
tests and ANOVAs, for example), which amounts
to assuming that the value of one observation ob-
tained in the experiment is unaffected by the value
of other observations. This assumption is difficult
to guarantee in NLP research (Dror et al., 2018),



363

Topic Best practice

General Always conduct a human evaluation (if possible).
Criteria Use separate criteria rather than an overall quality assessment.

Properly define the criteria that are used in the evaluation.
Sampling Preferably use a (large-scale) reader-focused design rather than a (small-scale) expert-focused design.

Always recruit sufficiently many participants. Report (and motivate) the sample size and the demographics.
Annotation For a qualitative analysis, recruit multiple annotators (at least 2, more is better)

Report the Inter-Annotator Agreement score with confidence intervals, plus a percentage agreement.
Measurement For a quantitative study, use multiple item 7-point (preferably) Likert scales, or (continuous) ranking.
Design Reduce order- and learning effects by counterbalancing/random ordering, and properly report this.
Statistics If the evaluation study is exploratory, only report exploratory data analysis.

If the study is confirmatory, consider preregistering and conduct appropriate statistical analyses.

Table 3: List of best practices for human evaluation of automatically generated text.

if only because different systems may rely on the
same training data. In view of these issues, some
have argued that NHST should be abandoned (Ko-
plenig, 2017; McShane et al., 2019).

In our opinion, the distinction between ex-
ploratory and confirmative (hypothesis) testing
should be taken more seriously within NLG. Much
human evaluation of NLG could better be ap-
proached from an exploratory perspective, and in-
stead of full-fledged hypothesis testing it would
be more appropriate to analyse findings with ex-
ploratory data analysis techniques (Tukey, 1980;
Cumming, 2013). When researchers do have clear
hypotheses, statistical significance testing can be a
powerful tool (assuming it is applied correctly). In
these cases, we recommend preregistering the hy-
potheses and analysis plans before conducting the
actual evaluation.3

Preregistration is still uncommon in NLG and
other fields of AI (with a few notable exceptions,
like for instance Vogt et al., 2019), but it ad-
dresses an important issue with human evalua-
tions. Conducting and analysing a human exper-
iment is like entering a garden of forking paths
(Gelman and Loken, 2013): along the way re-
searchers have many choices to make, and even
though each choice may be small and seemingly
innocuous, collectively they can have a substantial
effect on the outcome of the statistical analyses, to
the extent that it becomes possible to present virtu-
ally every finding as statistically significant (Sim-
mons et al., 2011; Wicherts et al., 2016). In human
NLG evaluation, choices may include for instance,
termination criteria (when does the data collection
stop?), exclusion criteria (when is a participant re-
moved from the analysis?), reporting of variables

3For example at osf.io or aspredicted.org

(which dependent variables are reported?), etc. By
being explicit beforehand (i.e., by preregistering),
any flexibility in the analysis (be it intentional or
not) is removed. Preregistration is increasingly
common in medical and psychological science,
and even though it is not perfect (Claesen et al.,
2019) at least it has made research more transpar-
ent and controllable, which has a positive impact
on the possibilities to replicate earlier findings.

Finally, alternative statistical models deserve
more attention within NLG. For example, within
psycholinguistics it is common to look both at
participant and item effects (Clark, 1973). This
would make a lot of sense in human NLG eval-
uations as well, because it might well be that a
new NLG system works well for one kind of gen-
erated item (short active sentences, say) and less
well for another kind (complex sentences with rel-
ative clauses). Mixed effects models capture such
potential item aspects very well (e.g., Barr et al.,
2013), and deserve more attention in NLG. Fi-
nally, Bayesian models are worth exploring, be-
cause they are less sensitive to the aforementioned
problems with NHST (e.g., Gelman et al., 2006;
Wagenmakers, 2007).

5 Conclusion

We have provided an overview of the current state
of human evaluation in NLG, and presented a set
of best practices, summarized in Table 3. This is a
broad topic, and for reasons of space we were not
able to cover all aspects of human evaluation in de-
tail. Nevertheless, we hope that this overview will
serve as a useful reference for NLG practitioners,
and in future work we aim to provide a more ex-
tensive set of best practices for carrying out human
evaluations in Natural Language Generation.

osf.io
aspredicted.org
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