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Abstract

We present a dependency tree linearization
model with two novel components: (1) a
tree-structured encoder based on bidirectional
Tree-LSTM that propagates information first
bottom-up then top-down, which allows each
token to access information from the entire
tree; and (2) a linguistically motivated head-
first decoder that emphasizes the central role
of the head and linearizes the subtree by in-
crementally attaching the dependents on both
sides of the head. With the new encoder and
decoder, we reach state-of-the-art performance
on the Surface Realization Shared Task 2018
dataset, outperforming not only the shared
tasks participants, but also previous state-of-
the-art systems (Bohnet et al., 2011; Pudup-
pully et al., 2016). Furthermore, we analyze
the power of the tree-structured encoder with a
probing task and show that it is able to recog-
nize the topological relation between any pair
of tokens in a tree.

1 Introduction

Surface realization is a natural language genera-
tion task that searches for the natural linear order
of words given an unordered syntax tree. Often,
the task is accompanied by predicting word inflec-
tion, as in two previous surface realization shared
tasks (Belz et al., 2011, 2018). As morphologi-
cal inflection prediction is in itself a separate task
(Cotterell et al., 2016), we mainly focus on the lin-
earization in this paper.

Syntactic linearization has been extensively
studied in the literature. Earlier work mostly fo-
cuses on grammar-based approaches using dif-
ferent syntactic formalisms (Elhadad and Robin,
1992; Lavoie and Rainbow, 1997; Carroll et al.,
1999). Recently, with the increasing availability of
annotated treebanks, statistical methods gain pop-
ularity (Langkilde and Knight, 1998; Bangalore
and Rambow, 2000; Filippova and Strube, 2009).
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Among the most successful statistical lineariza-
tion systems, Bohnet et al. (2010) employ the
divide-and-conquer strategy and use beam search
to incrementally find the best linearization for
each subtree; Liu et al. (2015) propose a transi-
tion system akin to dependency parsing that pro-
duces a sentence that respects the given tree con-
straints, which is later improved by Puduppully
et al. (2016) with look-ahead features. Both ap-
proaches rely on rich feature templates to cap-
ture the structural information from the input and
score the (partial) output sequence, and use the
perceptron to learn the parameters. Both lineariz-
ers achieve state-of-the-art performance on the
Surface Realization Shared Task 2011 data (Belz
etal., 2011) as part of a pipeline or joint system for
the full task including deep semantic generation
and word inflection (Bohnet et al., 2011; Pudup-
pully et al., 2017). However, to the best of our
knowledge, the two linearizers alone have never
been directly compared. Also, they have not been
tested on the data from the recent shared task (Belz
et al., 2018), where they could have served as very
strong baselines to put recent developments into
context.

Song et al. (2018) are the first to use a neu-
ral model for syntactic linearization; they adapt
the neural dependency parsing model by Chen
and Manning (2014) to predict transitions for lin-
earization, which essentially replaces the percep-
tron with an MLP for the transition system in Liu
et al. (2015). However, their adoption of neural
models only takes advantage of the token-level
representation such as word embeddings, while
the structural information is still not well modeled.

Recently, many neural models are proposed to
represent graph structures, cf. Zhou et al. (2018)
for an overview. Among them, Tree-LSTM, in
particular the Child-Sum variation (Tai et al.,
2015), has been proposed to model (unordered)
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dependency trees. It differs from the sequen-
tial LSTM (Hochreiter and Schmidhuber, 1997)
in that it aggregates the hidden states of multi-
ple dependents by summation. It is in turn im-
proved by adding the attention mechanism to the
hidden states (Zhou et al., 2016), so that each de-
pendent influences the head representation to dif-
ferent degrees. Miwa and Bansal (2016) propose a
bidirectional extension that traverses the tree both
bottom-up and top-down to allow the tokens ac-
cess information from their descendants as well as
ancestors. We adopt and combine their proposed
models to represent the tree structure in our task,
while improving the bidirectional extension by us-
ing the output of the bottom-up pass as the input
for the top-down pass, so that each token can ac-
cess information from all other tokens.

In most linearization models, the incremental
generation algorithm follows the left-to-right se-
quential order. However, in the linguistic study,
the head position often plays a central role in de-
scribing the constraints and optimization of word
orders (Gibson, 1998; Liu, 2010; Futrell et al.,
2015). In the linearization models that employ
left-to-right generation, such word order proper-
ties are only implicitly reflected in the features,
if at all. Inspired by the above-mentioned study
on head-oriented word order constraints, we adopt
an improved linearization algorithm, in which we
generate the sequence starting from the head and
expanding to both directions. The head-first gener-
ation order can easily capture the constraints, since
it naturally separates the decision into two aspects:
(1) which side of the head to append the depen-
dent and (2) which dependent to attach closer to
the head, which exactly correspond to the two as-
pects of the word order constraints, namely (1) the
direction of the dependent and (2) the distance of
dependent to the head. The algorithm is some-
what similar to He et al. (2009), which also em-
phasizes the central role of the head by first pre-
dicting for each dependent which side of the head
it is placed. However, they exhaustively score all
permutations, which could be intractable for sub-
trees with too many dependents, while we use in-
cremental beam-search to guarantee the efficiency.

In this context, our contribution in this work is
threefold: (1) we incorporate the tree-based repre-
sentation to the linearization models; (2) we im-
prove the linearization algorithm with plausible
linguistic intuition; and (3) we conduct a compre-
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Figure 1: Overview of the pipeline and an example of
the process from an unordered dependency tree to the
final sentence.

hensive comparison with several strong baselines
on the recent multilingual linearization shared task
data, and achieve state-of-the-art performance.

2 Model

We use a pipeline system for the surface realiza-
tion task, consisting of three steps: linearization
(§2.1), inflection (§2.2), and detokenization (§2.3).

Figure 1 gives an overview of the pipeline along
with an example from the input tree to output text.
The input is an unordered dependency tree. We
first linearize the tree to obtain an ordered se-
quence of tokens; then inflect each lemma into the
corresponding word form given the morphologi-
cal information; and finally contract some words
into one token and remove the empty space around
some punctuation marks, obtaining the output Por-
tuguese text “esta cheia destes tesouros.” (it is full
of these treasures).

To encode the tokens with tree-structured in-
formation, we use a bidirectional attentive Tree-
LSTM model improved upon previous work
(§2.1.1).  We use a head-first decoding algo-
rithm with beam search to order each subtree
(§2.1.2), trained with latent generation order and
augmented loss (§2.1.3). For the full surface real-
ization task, we then use a hybrid rule-based and
seq2seq model to inflect the word forms (§2.2). Fi-
nally, we construct an automaton to contract the
tokens and use an off-the-shelf detokenizer to re-
move extra space in the text (§2.3).

In this paper, we mainly focus on the tree-based
representation and the linearization algorithm; the
inflection and detokenization models are rather
simple, but also reasonably good.



2.1 Linearization

2.1.1 Tree-Structured Encoder

We first encode each individual token in the tree
by concatenating the embeddings of the lemma,
universal part-of-speech (UPOS) tag, and depen-
dency label, denoted v°. We then encode the tree-
level information so that each token is aware of
other tokens in the tree.

To propagate the information bottom-up from
the dependents to their heads, we use a Child-Sum
Tree-LSTM model (Tai et al., 2015) that sums up
the hidden states of the dependents and passes
them to the head. To differentiate the importance
of each dependent, we apply an attention on the
hidden states following Zhou et al. (2016). The
output of the LSTM is the bottom-up vector for
each token, denoted as v'.

Following Miwa and Bansal (2016), we apply a
top-down pass to propagate information from the
head to the dependents. Since each dependent has
only one head, unlike the bottom-up pass, we use
a standard sequential LSTM to encode the paths
from the root to each leaf node. For each node,
we feed its bottom-up vector v! into the hidden
state of its head to obtain the hidden state for the
current node, and the output is the top-down vec-
tor v¥. Miwa and Bansal (2016) perform the two
passes independently, i.e., both LSTMs take v°
as input and produce v' and v as outputs, sim-
ilar to the standard sequential bidirectional LSTM
(Graves and Schmidhuber, 2005). However, two
independent passes can not pass the information
of all tokens to all other tokens in the tree, since
each token only gets information from its ances-
tors and descendants, it is thus not aware of its
siblings, which is crucial for the linearization.

Therefore, our model performs the bottom-up
pass first, and uses its output v as the input for
the top-down pass to obtain v*. In this way, all
tokens in the tree can be accessed by other tokens,
since any two tokens have a common ancestor, and
the information of one token can be first passed up
to the common ancestor, then down to the other
token. Figure 2 illustrates the information flow
of our bidirectional model, where the red dotted
arrows indicate the bottom-up pass, and the blue
dashed arrows indicate the top-down pass. We
highlight how node 8 influences node 4. Its rep-
resentation vg is first propagated up to the lowest

common ancestor vg, then goes down to vﬁ.
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Figure 2: An illustration of the information flow in
the encoder, where the red dotted arrows represent the
bottom-up pass and the blue dashed arrows represent
the top-down pass. The solid arrows illustrate the in-
formation flow from node 8 to node 4.

2.1.2 Head-First Decoder

We adopt the general divide-and-conquer strategy
as in Bohnet et al. (2010), by first linearizing each
subtree and then combining the ordered subtrees
into a full sentence. Instead of generating the
sequences from left to right as in Bohnet et al.
(2010), we generate the sequence from inside out,
i.e., we initialize the sequence with the head, and
expand outwards by appending the dependents to
the left or the right end of the sequence.

This new generation order is motivated by
the linguistic research on word order constraints,
which largely focuses on the relative direction and
distance of the dependent to the head (Gibson,
1998; Liu, 2010; Gulordava, 2018).

Following Bohnet et al. (2010), we use beam
search to find the best sequence for each subtree
incrementally, see the pseudocode in Algorithm 1.

We initialize the agenda with a sequence which
contains only the head (line 3-4). A sequence
is represented by two LSTMs, both initialized
with the head representation, which corresponds
to the left expansion and right expansion of the se-
quence.

At each step, for each sequence in the agenda,
we use a pointer network (Vinyals et al., 2015)
to calculate the unnormalized attention score be-
tween the left LSTM state and all the remaining
tokens as the scores of attaching each token to the
left (ATTEND; in line 10', where v; is the vector
representation of the token t), and we do the same
for the right (line 14). We then create a new se-

"We actually calculate all attachment scores in one go, we
distribute them in the loop only for readability



quence for each possible attachment (line 9 and
13, where & denotes concatenation), and the score
of each new sequence is incremented by the at-
tachment score (line 10 and 14). We also update
the corresponding LSTM state of that sequence by
adding the representation of the attached depen-
dent as input (line 11 and 15). The new sequences
are then added into the agenda for the next step
(line 12 and 16).

If the number of new sequences in the new
agenda is larger than the beam size, we sort the
sequences and keep only the highest scoring ones
for further expansion (line 19-20), and we take the
highest scoring full sequence as the linearization
of the subtree (line 22). Finally, when each subtree
is linearized, we combine them into a full sentence
as the output (line 24).

Algorithm 1 Head-first linearization
1: forall h € T do

2: Tp={h} U dependents(h) > subtree of head h
3: seq = [h] > initial sequence
4: agenda = [seq] > initial agenda
5: while [seq| < |Tx| do
6: for all seq € agenda do
7: beam = []
8: forallt € Ty \ seqdo > remaining tokens
9: seq; =t @ seq > attach left
10: seq;.score; += ATTEND;(seq.state;, vi¢)
11: seq;.state; = seq.state;.addInput(vy)
12: beam.append(seq;)
13: seqr =seq Pt > attach right
14: seqr.score, += ATTEND..(seq.state,, Vi)
15: seqr.state, = seq.state,..addInput(vy)
16: beam.append(seq;-)
17: end for
18: end for
19: SORTBYSCORE(beam)
20: agenda = N-BEST(beam, beam-size)
21: end while
22: S» = N-BEST(agenda, 1) > best sequence for Ty,
23: end for
24: S = COMBINESUBTREES(S1, So, ..., Sp)
25: return S

We can easily modify the algorithm to left-to-
right and right-to-left generation orders. Since the
generation only goes in one direction, we only use
one LSTM state to score the expansion, and the
initial sequence is an empty sequence.

The three different decoders tend to make dif-
ferent mistakes, since they have different starting
points and could prune off the correct path in dif-
ferent ways. Therefore it is beneficial to com-
bine the three decoders to vote for the best se-
quence. Concretely, we first shift the scores of the
sequences in each beam so that the minimum score
is 0 (implying that the absent sequences have neg-
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ative scores), then combine the sequences from the
three beams by summing up the scores for identi-
cal sequences, and finally choose the highest scor-
ing sequence in the combined beam as output.

2.1.3 Training with Beam Search

The head-first linearization introduces spurious
ambiguity, since there may be two correct attach-
ments (on the left or the right end of the sequence)
at each step. Enforcing a canonical sequence of
attachments would yield suboptimal performance.
We view the order of attaching the dependents
(i.e. whether to attach left or right dependent first)
as latent variables, while the created sequence as
the real target. We adopt the training method in
Bjorkelund and Kuhn (2014): at every step after
pruning the beam, we check if there is still at least
one gold partial sequence in the beam. If not, then
we calculate the hinge loss between the highest
scoring gold sequence and all incorrect sequences
in the beam?.

We also follow the delayed LaSO strategy in
Bjorkelund and Kuhn (2014): after all gold par-
tial sequences fall out of the beam and a loss is
incurred, we continue training by putting the gold
sequence back into the beam, until reaching the
full sequence. This is shown to be more sample ef-
ficient than the early-update strategy (Collins and
Roark, 2004), since it allows the model to train on
the full sequence, even if the gold path falls out of
the beam early.

The standard hinge loss updates the gold se-
quence against the incorrect ones by enforcing a
margin (typically 1), which punishes all incorrect
sequences equally. However, not all incorrect se-
quences are equally bad in terms of the BLEU
score, therefore, maintaining a larger margin for
worse sequences could improve the performance.

We cannot directly use BLEU score as the mar-
gin, since it is calculated on the sentence level,
while we are training on the subtree level, and
the sequences in the training are often incomplete
due to early-stop. Therefore, we use the inversion
number as the surrogate loss for the BLEU score.

For a partial sequence, we first append the rest
of the tokens to both ends of the sequence in
the optimal way, then calculate the number of
swaps in a bubble-sort to the gold sequence, and

Perceptron-based training only updates against the high-
est scoring incorrect sequences, in contrast, we update against
all incorrect sequences, which converged much faster and
more stable in the preliminary experiments.



take the squared root as the loss’. For exam-
ple, if we have a predicted partial sequence of
(1,2,4,6,7), and the remaining tokens are {3,5},
then we first obtain the best available full sequence
(3,1,2,4,6,7,5), then calculate the number of
swaps in a bubble-sort, which is 4, and the loss
value is thus 2.

2.2 Inflection

We use a simple hybrid approach for the inflection
task. We first extract all inflection patterns from
the training data: given the combination of lemma,
UPOS, and morphological features, if there is a
word form appearing more than once and has over
99% certainty, then we keep it as a rule.

For the tokens not covered by the rules, we use
a seq2seq model to predict the inflection similar
to Kann and Schiitze (2016), but with a major dif-
ference. Instead of the inflected word, we predict
the edit script that modifies the lemma to the word
as the output sequence. The alphabet of the edit
script includes all the characters in the treebank
and three special symbols: v to copy one input
character, X to delete one input character, and $
to finish generation. For example, to inflect the
Portuguese verb “falar” to “falando”, the output
sequence is “vvv v Xndo$”. The advantage of
predicting edit scripts instead of words is that the
copy action avoids the mistake of generating in-
correct but similar characters.

The edit script is in a way also similar to Bohnet
et al. (2010), but they predict the full edit scripts
as one tag, which results in a very large tag set for
many morphologically rich languages, and makes
it difficult to learn and to generalize.

We use a bidirectional LSTM to encode the
characters of the lemma and the morphological
tags as a sequence. Each character embedding is
concatenated with a binary feature that indicates
whether the corresponding input character is cur-
rently the target of the edit operation. Initially, the
indicator for the first character is set to 1 and the
rest are 0. A decoder LSTM with attention is then
used to predict the edit operations. The input to
the decoder LSTM state is the concatenation of the
tree-structured token representation as in §2.1.1,
the attended input vector, and the embedding of
the last produced character. If the predicted ac-

3Since the complexity of bubble-sort is O(n?), we make
it linear to avoid unstable loss values.

“In the case of copy, we use the embedding of the copied
character instead of the copy symbol v

283

tion is copy(v') or delete(X), the indicator on the
input is then advanced by one step, and if the pre-
diction is adding a character, the indicator does not
move.

2.3 Detokenization

Since the surface realization shared task is eval-
uated on the generated text instead of tokens, a
detokenization step is needed to compare with
other participant systems. We first contract the
tokenized words into one token, for example in
Portuguese, the preposition “de” and determiner
“estes” are contracted into one token “destes” in
the text.

We extract the contraction cases from the train-
ing set, and construct an automaton to contract the
tokens. Concretely, we read the tokens one by one,
and when a token matches the initial state of the
automaton, we store the token into a buffer and
advance the automaton. If it reaches the end state,
we replace the tokens in the buffer with the corre-
sponding contracted token, otherwise we add the
tokens in the buffer into the output sequence.

The final step is to remove the spaces surround-
ing certain punctuation marks, e.g., the period at
the end of the sentence. We use a rule-based off-
the-shelf tool MosesDetokenizer>, which yields
satisfactory results, compared to some other simi-
lar alternatives.

3 Experiments

3.1 Data and Baselines

We conduct the experiments on the datasets from
the previous Surface Realization Shared Task
2018 (SR18) (Belz et al., 2018), which includes
10 (mostly European) languages from the Univer-
sal Dependencies (Nivre et al., 2016).

We compare our system with two state-of-the-
art linearization systems Bohnet et al. (2010) and
Puduppully et al. (2016), referred to as B10 and
P16. We run their linearization systems as is, us-
ing lemma, UPOS and dependency labels as fea-
tures. We also use the same features in our system
for comparison. To evaluate the linearization step
alone, we calculate BLEU score based on lemma.

We also compare to the best performing systems
in the SR18, where the final BLEU score is re-
ported on the detokenized text. We execute our

Shttps://pypi.org/project/
mosestokenizer/
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full pipeline of linearization, inflection, and deto-
kenization and evaluate with the official evalua-
tion script. We also apply our inflection and deto-
kenization steps on the predicted linearization of
B10 and P16, so that they can also be compared to
other systems.

3.2 Implementation Details

Our model is implemented with the DyNet Library
(Neubig et al., 2017), and is available at the first
author’s website®. We use the embedding sizes
of 64, 32 and 32 for lemma, UPOS and depen-
dency labels, respectively, and the dimension for
the token representation is 128. The hidden states
of both bottom-up and top-down encoder LSTMs,
as well as the decoder LSTMs, have dimension of
128. The decoder beam size is 32. The linearizer
is quite efficient among neural models, training a
medium sized treebank takes about 2 hours on a
single CPU core.

3.3 Linearization

We first compare each step in our pipeline to the
available baselines. For linearization, we test our
models with the same tree encoding and different
decoding orders (left-to-right (L2R), right-to-left
(R2L), head-first (H2LR), as well as voting among
the three (Vote). The results are shown in Table 1.

Among the two baseline systems, B10 performs
more than 4 BLEU points higher than P16, we
believe the reason is that the subtree-level beam
search in B10 allows it to explore almost all pos-
sible permutations for most of the subtrees’, while
P16 directly orders the full sentence, which can
only explore a fraction of the full search space
even with a very large beam size. Understandably,
the P16 model is designed to linearize words with
partial or even no syntactic information, there-
fore the knowledge of subtrees cannot be assumed.
However, in the scenario with full syntactic infor-
mation available, B10 is clearly a better model.

We then compare our model to B10. The L2R
linearizer generates the hypothesis in the same
way as B10, and it uses a much smaller beam with
the size of 32. It achieves 1 BLEU point higher
than B10, which demonstrates the advantage of the
more expressive tree-based representation.

*https://www.ims.uni-stuttgart.de/
institut/mitarbeiter/xiangyu/

"They use beam size of 1000, which can cover all possible
permutations of up to 6 tokens (6! = 720).
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The H2LR order performs better than L2R and
R2L, which could be explained in multiple as-
pects. One explanation is our motivation that gen-
erating from the head could better reflect word or-
der constraints. The other explanation is that train-
ing with latent generation order allows the model
to make easier decision first, similar to the easy-
first parser by Goldberg and Elhadad (2010).

Finally, when combining the three decoders to-
gether by voting, it achieves 2 BLEU points higher
than B10. There are two main reasons for this im-
provement: (1) multitask-style training helps regu-
larize the parameters, and (2) different generation
directions tend to prune the correct sequences at
different locations, and the mistake in one direc-
tion might be saved by the other two.

B10 P16 L2R  R2L  H2LR Vote
ar 81.78 77.07 82778 8248 8279  83.37
cs 74.74 7093 7352 7189 7416  75.17
en 82.83 78.80 8492 8395 84.01 8548
es 81.84 7433 8282 8253 8299  83.69
fi 69.95 63.74 68.69 69.58 70.15 71.08
fr 8438 81.74 85.04 8524 8545 85.66
it 82.60 7741 83.03 8328 82.66 84.51
nl 67.82 6256 71.68 70.54 7225 @ 72.49
pt 8046 76.52 81.48 81.13 8210 81.80
ru 8340 8296 8539 8551 8545 87.11
avg 7898 74.61 7994 79.61 8020 81.04

Table 1: Linearization on the development set, where
we compare different generation orders (L2R, R2L,
H2LR and Voting) with Bohnet et al. (2010) and
Puduppully et al. (2016).

3.4 Inflection

Table 2 shows the inflection performance with
different models: the first model predicts edit
script as a tag (EditTag); the second model pre-
dicts the character sequence of the inflected word
(CharSeq); the third model predicts the edit scripts
as sequences of actions (EditSeq); and the last one
uses the same model as the third, but first applies
the extracted rules if available (+rule). The results
are compared to the reported inflection accuracy
in Puzikov and Gurevych (2018) (P18), which is
adapted from Aharoni and Goldberg (2017).
Among our first three models, EditTag performs
the lowest, mainly because of the very large tag
sets in many languages (the sizes vary from around
300 for English to over 10000 for Finnish and Rus-
sian), which prevents effective learning and gen-
eralization. The CharSeq model performs much
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P18  EditTag CharSeq EditSeq +rule
ar 93.07 88.02 95.57 95.33 95.01
cs 99.53 97.52 97.01 97.98 98.92
en 98.11 98.57 97.95 98.33 98.51
es 99.59 98.11 98.59 99.27 99.47
fi 95.46 82.54 92.16 93.13 95.06
fr 95.56 90.83 95.85 97.39 97.78
it 97.44 92.87 96.84 98.05 98.49
nl 95.68 93.38 94.53 94.57 95.36
pt 99.30 93.05 98.45 98.71 99.22
ru 98.22 94.58 95.86 96.42 97.47
avg  97.20 92.95 96.28 96.92 97.53

Table 2: Inflection on the development set, where

we compare our different models with Puzikov and
Gurevych (2018): tagging edit scripts (EditTag), gen-
erating character sequences (CharSeq), generating edit
script sequences (EditSeq), and apply the extracted
rules (+rules).

better than the EditTag, especially on the lan-
guages with very large edit scripts tag sets. The
EditSeq model performs better than the character
seq2seq model, mainly because the copy mecha-
nism avoids many noisy generation errors. Some
typical mistakes by CharSeq we find in English are
“traveling” — “braveling” and “children” — “thil-
dren”, where some characters in the input lemma
are confused with a similar one. Some typical mis-
take by the EditSeq are “kidding” — “kiding” and
“clashes” — “clashs”, where some necessary char-
acters in the output are omitted.

Finally, the combination of the EditSeq model
and extracted rules performs the best. On the de-
velopment sets, the token coverage of the rules
ranges from about 60% to 90% for different lan-
guages, with over 99% accuracy, which means the
majority of the inflection can be produced reliably
and efficiently by simply looking up in a dictio-
nary. The hybrid approach even outperforms the
very strong baseline, although the seq2seq model
alone is slightly weaker than the baseline, we be-
lieve this simple trick could also benefit other in-
flection models.

3.5 Detokenization

As the final step, we evaluate the performance
of the detokenization, which includes contracting
words and attaching punctuation. We use gold lin-
earization and inflection as the input.

We separate the evaluation into two parts: for
contraction, we evaluate the token-based BLEU
score against the gold contraction on the UD de-
velopment set; for the punctuation attachment, we
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use the gold contracted word and evaluate with the
official text-based BLEU score. We also evaluate
the combined results where both contraction and
detokenization are predicted.

Table 3 shows the results of these four scenar-
10s. The first column contains the results of sim-
ply separating all tokens with empty spaces. The
BLEU score is around 55 even when the lineariza-
tion and inflection are all correct, which shows
the over-proportionally large impact of the deto-
kenization in the shared task evaluation.

Our detokenizer works reasonably well for most
of the languages, except for Arabic, where both
contraction and detokenization results are rather
poor. We will investigate this issue in the future
work, it could potentially be addressed with a edit
seq2seq model similar to the inflection task but on
the sentence level.

contraction None  Pred Gold Pred
punctuation None Gold Pred  Pred
ar 39.03 7777 8698 65.78

cs 59.85 99.81 97.39 97.38

en 63.71 99.15 91.38 91.38

es 6697 99.23 99.65 98.95

fi 5948 99.78 98.39 98.39

fr 51.12  99.92 98.53 98.46

it 4466 9696 98.82 95.31

nl 6929 9997 99.89 99.89

pt 4395 96.84 9435 91.26

ru 4929 9994 9774 97.74

avg 5474 9694 9631 9345

Table 3: Detokenization on the development set, where
the contraction and punctuation steps are gold, pre-
dicted, or not used.

3.6 Final Results

We choose the best variant for each step in the
pipeline for the full experiment, where we com-
pare with the results from other participants in the
shared task, as well as the linearizers of Bohnet
et al. (2010) and Puduppully et al. (2016) com-
bined with our inflection and detokenization mod-
els as additional baselines for the shared task.

Table 4 shows the performance of the full
pipeline on the test sets. B10 and P16 are the lin-
earizers by Bohnet et al. (2010) and Puduppully
et al. (2016) combined with our inflection and
detokenization model, ST18 are the best results for
each language in the shared task (King and White,
2018; Puzikov and Gurevych, 2018; Ferreira et al.,
2018; Elder and Hokamp, 2018). The last column
contains the results of our system.



It is apparent that both B10 and P16 have higher
performance than the other systems by a large
margin. The advantage of our linearizer also car-
ries over to the full pipeline, it scores 2 BLEU
points higher than the best baseline.

B10 P16 ST18  Ours
ar 4250 3648 25.65 43.68
cs 64.75 5887 25.05 6542
en 70.75 65.86 69.14 72.67
es 7475 56.50 65.31 77.77
fi 56.13 49.68 37.52 56.53
fr 66.62 52.12 52.03 68.75
it 69.09 47.14 4446 7198
nl 56.39 5096 3228 60.17
pt 66.13 4934 30.82 66.16
ru 7240 71.58 3434 76.10
avg 6395 5385 41.66 6592

Table 4: Final results on the test set, where we compare
our model to two baselines (B10 and P16) and the best
system in the shared task for each language (ST18).

4 Analysis

4.1 Relation Awareness

Our tree-based representation is theoretically able
to propagate information from all other tokens in
the tree. We now test whether it can really make
use of such information.

We design a probing task to test whether the
model can tell the relation between two tokens.
Concretely, we pick two random tokens (¢, t2) in
a tree, and their relation can be described as a tuple
(d1, d2), which are the distances from ¢; and 9 to
their common ancestor. For example in Figure 2,
the relation between token 4 and 8 is (1, 2).

We build a simple MLP on the concatenation
of the representations of both tokens to predict the
relation as a classification task. To avoid data spar-
sity, we only predict d; and do up to 3, and all re-
lations beyond this distance is classified class “too
far”. There are in total 4 X 4 = 16 classes.

We test the token representations with and with-
out tree encoding in two scenarios: (1) train all pa-
rameters which tests whether the encoder architec-
ture is able to learn the relations and (2) only train
the MLP which tests whether the parametrized en-
coder model actually captures such relation.

Table 5 shows the accuracy of the probing task.
Clearly, the representation without tree encoding
can not correctly classify the relation, its accuracy
is higher than chance level because the lexical in-
formation allows it to guess to some extent. The
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| Token  Tree
MLP | 3570 76.75
All 35.84 90.13

Table 5: Relation classification accuracy of the en-
coders with only token information (Token) vs. with
tree information (Tree).

tree-structured encoder has much higher accuracy
than the guessing baseline. Training on all param-
eters achieves higher accuracy than only training
on the MLP, which suggests that the encoder ar-
chitecture is able to memorize the relation of many
tokens, but the linearization task does not actually
require that much information.

4.2 Synergy between Encoder and Decoder

Our model uses the bidirectional Tree-LSTM to
pass information both bottom-up and top-down.
However, it is not yet clear whether having both
directions is necessary, and how much it would in-
fluence the performance of different decoders.

Table 6 shows the average performance of the
four decoders (H2LR, L2R, R2L, and combining
all) combined with four possible encoders: both
directions (Both), only bottom-up (BU), only top-
down (TD), and only token representation without
tree information (None).

When no bottom-up pass is performed (TD and
None), the performance drops by a large margin,
which means that the information about the depen-
dents is very crucial for linearization. In contrast,
skipping the top-down pass has much smaller in-
fluence on H2LR, while L2R and R2L also only
have moderate performance drop.

Interestingly, the drop is much larger for L2R
and R2L from only TD to None. The reason
would be that L2R and R2L decoders treats each
token equally and do not have any indication of
the head if no structural information is used, while
the H2LR decoder starts with the head and builds
the sequence around it based on the head-oriented
word order constraints. Therefore, even when
there is no structural information, the prior in the
H2LR decoder can still make better decisions.
This also supports our intuition on the pivotal role
of the head in the generation process.

Since skipping one of the passes would hurt the
performances of L2R and R2L decoders, and thus
also hurt the vote decoder, we use both passes for
our final model, although the bottom-up pass alone
suffices for the H2LR decoder.



| H2LR L2R R2L Vote

Both | 80.20 7994 79.61 81.04
BU 80.17 7931 7947 80.64
TD 7454 7430 7418 75.18
None | 74.56  71.26 70.89 75.03

Table 6: Performance of combination of linearization
orders and representations on the development set, av-
eraged over 10 treebanks.

5 Conclusion

We present a dependency tree linearization model
with tree-structured encoder and head-first de-
coder, which outperforms the previous state-of-
the-art linearizers. Combined with our morpho-
logical inflection and detokenization model, it
achieves the best performance on the Surface Re-
alization Shared Task 2018 by a substantial mar-
gin. We also show that the previous work by
Bohnet et al. (2010), which our decoding algo-
rithm is based on, is still a very strong baseline.
As future work, we plan to extend the head-first
linearization algorithm to (jointly) generate absent
function words from the deep semantic represen-
tation. It corresponds to the deep track of the sur-
face realization shared tasks, which is also a more
realistic setting for natural language generation.
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