
Proceedings of The 12th International Conference on Natural Language Generation, pages 268–278,
Tokyo, Japan, 28 Oct - 1 Nov, 2019. c©2019 Association for Computational Linguistics

268

Revisiting the Binary Linearization Technique for Surface Realization

Yevgeniy Puzikov1, Claire Gardent2, Ido Dagan3, Iryna Gurevych1

1 Ubiquitous Knowledge Processing Lab (UKP-TUDA) and Research Training Group AIPHES,
Department of Computer Science, Technische Universität Darmstadt, Germany

2 CNRS / LORIA Nancy, France
3 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel

https://www.ukp.tu-darmstadt.de
gardent@loria.fr
dagan@cs.biu.ac.il

Abstract
End-to-end neural approaches have achieved
state-of-the-art performance in many natu-
ral language processing (NLP) tasks. Yet,
they often lack transparency of the underly-
ing decision-making process, hindering error
analysis and certain model improvements. In
this work, we revisit the binary linearization
approach to surface realization, which exhibits
more interpretable behavior, but was falling
short in terms of prediction accuracy. We show
how enriching the training data to better cap-
ture word order constraints almost doubles the
performance of the system. We further demon-
strate that encoding both local and global pre-
diction contexts yields another considerable
performance boost. With the proposed mod-
ifications, the system which ranked low in the
latest shared task on multilingual surface re-
alization now achieves best results in five out
of ten languages, while being on par with the
state-of-the-art approaches in others. 1

1 Introduction

Natural Language Generation (NLG) is the task of
generating natural language utterances from var-
ious data representations. In this work we con-
sider lemmatized dependency trees as input and
focus on the process of transforming a dependency
tree into a linearly-ordered grammatical string of
morphologically inflected words – the setup which
is most commonly known as surface realization
(SR) (Langkilde-Geary, 2002; Belz et al., 2011).

Most surface realization approaches fall into
two main groups: feature-based incremental
generation pipelines and end-to-end neural ap-
proaches. To predict a correct token sequence,

1https://github.com/UKPLab/
inlg2019-revisiting-binlin

the former methods start with an empty hypothe-
sis and extend it by ranking possible continuation
candidates. These systems use manually-crafted
feature sets and lack a principled way of incorpo-
rating global context. Neural models, on the other
hand, usually encode the whole input to pass the
information to the decoder which then generates
the output sequence. The two main limitations
of these approaches are their reliance on large
amounts of training data and less interpretable be-
havior compared to feature-based methods.

This work builds upon BINLIN, a binary lin-
earization technique proposed by Puzikov and
Gurevych (2018). It is a hybrid approach which
uses a feature-based neural word ordering module
and a sequence-to-sequence morphological inflec-
tion component. In terms of prediction accuracy,
BINLIN falls short compared to end-to-end neural
approaches, but has an advantage of being more
intuitive and interpretable. It also supports sep-
arate analysis of the syntactic ordering and mor-
phological inflection steps of the surface lineariza-
tion process. From a research perspective, this of-
fers greater control over the problem-solving pro-
cedure.

In this work we extend BINLIN along two or-
thogonal directions. First, we propose a way to
enrich the training data, which largely compen-
sates for the small size of the datasets used in the
task. Second, we propose a new input encoding
strategy which incorporates both local and global
prediction contexts. These modifications bridge
the performance gap between BINLIN and end-
to-end black-box approaches, while retaining its
interpretability advantages.

https://www.ukp.tu-darmstadt.de
https://github.com/UKPLab/inlg2019-revisiting-binlin
https://github.com/UKPLab/inlg2019-revisiting-binlin

269

Data split Language
ar cs en es fi fr it nl pt ru

Train 6,016 66,485 12,375 14,289 12,030 14,529 12,796 12,318 8,325 48,119
Dev 897 9,016 1,978 1,651 1,336 1,473 562 720 559 6,441
Test 676 9,876 2,061 1,719 1,525 416 480 685 476 6,366

Table 1: Number of sentences in SR’18 datasets (Mille et al., 2018).

2 Task Description

The NLP community organized two Surface Re-
alization Shared Tasks (in 2011 and 2018) which
aimed at developing a common representation that
could be used by a variety of NLG systems as in-
put (Belz et al., 2011). They used almost identi-
cal task definitions, but different datasets. We fo-
cus on the latest task (SR’18 (Mille et al., 2018)),
because the former was confined to using En-
glish data only, while the latter included Arabic,
Czech, Dutch, English, Finnish, French, Italian,
Portuguese, Russian and Spanish Universal De-
pendencies (UD, version 2.0) treebanks. 2

SR’18 offered two different input data represen-
tations:

Shallow Track: unordered dependency trees con-
sisting of lemmatized nodes with part-of-
speech (POS) tags and morphological infor-
mation, as found in the UD annotations.

Deep Track: same as above, but having func-
tional words and morphological features re-
moved and syntactic edge labels mapped into
predicate-argument semantic relation labels.

We focus on the Shallow Track, because it cov-
ers more languages than the Deep Track (only
three), and is therefore more interesting to study
the problem of word ordering and morphological
inflection as two steps of the surface realization
process. The task can be considered as operating
under low-resource scenario: Table 1 shows that
the treebanks are rather small, which poses a chal-
lenge for training complex neural models.

3 Related Work

The two best-performing approaches in the task
of generating sentences from dependency trees
have been feature-based incremental text genera-
tion (Bohnet et al., 2010; Liu et al., 2015; Pudup-
pully et al., 2016; King and White, 2018) and

2http://universaldependencies.org/

techniques performing more global input-output
mapping (Castro Ferreira et al., 2018; Elder and
Hokamp, 2018). The former approaches traverse
the input tree, encode nodes using sparse manu-
ally defined feature sets as input representations
and generate a sentence by extending a candidate
hypothesis with an input word that has the high-
est score among other input words that have not
yet been processed. These approaches rely on
the observation that natural language production
has a preference for shorter dependencies (Gib-
son, 2000; White and Rajkumar, 2012; King and
White, 2018), which facilitates building sentences
incrementally.

The second approach linearizes an input graph
structure and treats the resulting sequence as the
source string and the corresponding sentence as
the target. Since the introduction of encoder-
decoder (Cho et al., 2014) and sequence-to-
sequence (seq2seq) (Sutskever et al., 2014) neu-
ral architectures, this line of work has gained a lot
of popularity due to the method’s simplicity: the
input string is encoded into a dense vector and a
sentence is being generated token-by-token from
the encoded input representation. From an NLP
perspective, one of the main research problems in
this paradigm has become the choice of the graph
encoding strategy. The most popular method is
linearizing it into a sequence of tokens and en-
coding using a variant of a recurrent neural net-
work (RNN) (Gardent et al., 2017; Castro Ferreira
et al., 2017; Konstas et al., 2017). Another promi-
nent approach is using graph-to-text neural net-
works (Song et al., 2018; Trisedya et al., 2018).
These methods have shown good results across
various tasks, but in the context of surface realiza-
tion they produced somewhat mixed results: the
former ones were successfully used only when be-
ing trained on large amounts of data (Elder and
Hokamp, 2018), while the latter ones have been
only evaluated on the SR’11 Deep Track data and,
while performing better than RNN-type encoders,
fell short behind feature-based methods (Marcheg-

http://universaldependencies.org/

270

Property Approaches
Neural Feature-based

Data efficiency 7 3

Rich context representation 3 7

Interpretability 7 3

Language coverage 3 7

Table 2: High-level comparison of the two most promi-
nent approaches to surface realization.

giani and Perez-Beltrachini, 2018).
Each of these approaches has their advantages

and limitations (Table 2). Feature-based systems
employ carefully crafted feature templates created
using expert knowledge, which makes these ap-
proaches more interpretable and data efficient, but
difficult to port to other domains or languages.
The expressiveness of data representation in these
systems is largely determined by the complex-
ity of the feature set, which is another limitation
of feature-based approaches. These systems are
rather slow to train, since feature extraction is de-
fined over a dynamically changing context.

Deep learning, on the other hand, offers a uni-
fied language-agnostic framework to train accu-
rate models when abundant training data is avail-
able; they are also fast to train (although hyper-
parameter tuning routines can take a significant
amount of time). However, neural models are
less interpretable than their sparse-feature coun-
terparts. Also, low-resource scenario still poses
a great challenge to complex neural models. The
ADAPT system that achieved the best results in
SR’18 task on English data (Elder and Hokamp,
2018) used a data augmentation technique which
allowed it to leverage 50 times more data than
originally provided by the organizers of the work-
shop. The authors identified the lack of sufficient
training data as the major obstacle to training high-
performing neural models and mentioned that the
system trained only on the original dataset failed
to deliver sensible outputs. These results are sup-
ported by the work done in other NLP fields. For
example, in the machine translation community
researchers have found that neural models have
a much slower learning curve with respect to the
amount of training data, which usually manifests
itself as worse quality in low-resource settings, but
better performance in high-resource cases (Koehn
and Knowles, 2017). In morphological inflection,
when trained on small datasets, seq2seq models
with additional external (noisy) alignments per-

form much better than similar systems which learn
the alignment information from scratch (Aharoni
and Goldberg, 2017).

The success of the encoder-decoder paradigm
has given birth to a prominent research trend of
finding various ways of utilizing the abundant data
on the web. While looking for ways to acquire
more data for training even larger models is a
promising research topic, an orthogonal direction
is pursuing the question of how to design and train
more data-efficient models. Our work focuses
on this latter point and attempts to address it via
data analysis and algorithm design. Taking this
into consideration, we build upon the work done
by Puzikov and Gurevych (2018), and attempt to
improve their method based on the results of our
error analysis.

4 Approach Description

Before explaining our work, we briefly recap how
BINLIN works. It is a pipeline system which gen-
erates a sentence from a dependency tree in two
stages:

1. Syntactic ordering: convert dependency tree
into a binary tree, then traverse the latter to
obtain a sequence of lemmas.

2. Morphological inflection: conjugate each
lemma into a surface form.

Figure 1 shows a schematic view of the first
stage. It relies on the procedure which first runs a
breadth-first search (BFS) algorithm on the input
dependency tree to obtain (head, children) node
groups, corresponding to subtrees of depth one.
The head of each subtree is used to initialize a
binary tree. Then a binary classifier is used to
make decisions of positioning the child nodes to
the right/left of the head node. Once all the chil-
dren have been inserted, the construction of a bi-
nary tree for the subtree under consideration is fin-
ished and the algorithm moves on to the next sub-
tree.

BINLIN uses a multi-layer perceptron model
with a logistic regression function on top to pre-
dict the probability of node nj being positioned to
the right (y = 1) or left (y = 0) of node ni in a
binary tree:

p(y = 1) = g([xi;xj]; θ) =
1

1 + eθ·[xi;xj]
(1)

271

like

apple

Gala fresh juicy

I

like

apple I

apple

Gala fresh juicy

like

I apples

juicy

fresh apples

Gala

like

2

I

1

juicy

4

fresh

3

apples

6

Gala

5

(III)(II)(I) (IV)

Figure 1: High-level overview of the BINLIN algorithm. Decompose the dependency tree (1) into subtrees of depth
one (2), then convert subtrees into equivalent binary trees (3), and merge them. In-order traversal of the merged
binary tree (4) produces a sequence of lemmas “I like fresh juicy Gala apple”.

Here, xi and xj are feature representations of
ni and nj , and θ denotes parameters of the neural
network. The decision-making rule is defined by
setting a threshold on the output of g(·):

decision =

{
right, if p(y = 1) ≥ 0.5,

left, otherwise.

The algorithm converts local subtrees into bi-
nary trees in a bottom-up manner until it reaches
the root node. At this point, all dependency nodes
have been processed. The constructed local bi-
nary trees are merged and the resultant binary tree
can be linearized by in-order traversal. Finally,
a morphological inflection component, applying a
character-level seq2seq model with a hard atten-
tion mechanism (Aharoni and Goldberg, 2017), is
used to predict a surface form for each lemma in
the sequence.

The error analysis of the system outputs pro-
vided in (Puzikov and Gurevych, 2018) has shown
that the majority of BINLIN’s mistakes are caused
by the incorrect ordering of lemmas, which is
why we focus on the syntactic ordering component
and leave the morphological inflection module the
same as in the original system.

We argue that there are several directions by
which BINLIN could be improved: the way the
training data is created and the input encoding
schema. In what follows we describe the changes
that we made to the original system; the corre-
sponding performance improvements are reported
in Section 5.

4.1 Modification 1: Training Data
Preparation

The first modification we made was improving the
way training data for the binary classifier is cre-
ated. When making training examples, the BIN-
LIN system considers (ni, nj) node pairs extracted
from subtrees of depth one. For example, in the
case of the “I like apple” subtree from Figure 1,
one of the training examples the system would add
is (“like”, “I”, left), since the word “I” in the sen-
tence is positioned to the left of its head “like”.

This procedure seems to be based on the as-
sumption that the system learns position-invariant
word order representations, i.e., if the system
learns that node nj should be positioned to the
right of ni, it will also be able to deduce that ni
should be inserted to the left of nj . However, it
is known that neural networks in general do not
have this reasoning ability, and to circumvent this
issue, researchers use various data augmentation
techniques. For example, in the image processing
domain it is common to create additional training
images through random rotation, shifts, shear and
flips, etc.

In a similar fashion, we propose to enrich the
training set with training examples which we call
“symmetric”: for each (ni, nj , label) triple orig-
inally considered by BINLIN, we add (nj , ni,
op label) with node positions flipped and having
the opposite label. Reusing our previous example:
in addition to (“like”, “I”, left), we would add the
(“I”, “like”, right) triple to the training set. We
run this procedure on all training examples, which
effectively doubles the size of the training data.

272

. . .

xi

. . .

xj

. . .

. . .

. . .

(1) x = [xi;xj]

(2) h1 = W1x

(3) h2 = lrelu(W2h1)

(5) h3 = lrelu([h2; c])

(6) o = sigm(h3)

. . .

+

...
...

...
...

. . .

(4) c = lrelu(
∑M

k=1 αkxk)

local context global context

Figure 2: Schematic view of the neural network architecture used as a classifier for the syntactic ordering compo-
nent of our system.

4.2 Modification 2: Encoding Strategy

Figure 2 shows the schematic view of the em-
ployed binary classifier; the original BINLIN sys-
tem would consider the part marked as local con-
text, while the remaining global context part is our
proposed enhancement.

Given a pair of nodes (ni, nj), we first need to
extract their features. BINLIN uses a local fea-
ture representation of each node, which includes
the node itself and graph context in the close prox-
imity – its head and an immediate child. Formally
speaking, each node nk is represented as a vector
xk ∈ RFd, where F denotes the number of ex-
tracted features and d is the embedding size. In
other words, each dense node representation xk is
a concatenation of the embeddings for each fea-
ture in the feature set F. The embedding matrix is
denoted as E ∈ Rd×|V |, where V is the vocabulary
of unique lemmas, POS tags and dependency edge
labels, observed in the training data.

The extracted dense feature representations xi
and xj for the two nodes are (1) concatenated to
form the input to the classifier, (2) projected onto
a lower-dimensional space via a linear transforma-
tion, (3) squeezed further via another linear trans-
formation followed by applying the Leaky ReLu
function (Maas et al., 2013). The last layer of the
BINLIN classifier consists of one node, followed
by the sigmoid function.

As mentioned in the previous subsection, in
some cases knowing a wider context is crucial for
making the correct decision. We decided to en-
rich the feature representation with a global con-
text which encodes all the nodes in the subtree un-
der consideration. We compute it as (4) a weighted
sum of the feature representations of these nodes,

similar to the attention mechanism of Bahdanau
et al. (2015).

We also experimented with the feature set trying
to figure out what provides a stronger supervision
signal for the binary classifier. The best feature
configuration is the same as in the original system
with the exception of two additional node features:
the number of the node’s children and the length
of the path from the node to the root of the depen-
dency tree.

5 Experiments

The official SR’18 data preserved one-to-one cor-
respondence between sentences and dependency
trees, but the alignment between lemmas and sur-
face word forms was omitted, which complicated
extracting training data pairs.

Following BINLIN’s authors, we used the origi-
nal UD data files for training all our models (the
files contain the same dependency trees as the
shared task data, but the order of the tokens is not
scrambled and each surface form is aligned with
the respective lemma). For a fair comparison with
other approaches, system evaluation was done us-
ing the official SR’18 data. We used English UD
treebank for system development, the evaluation
was done on all ten treebanks.

All neural network components were imple-
mented using PyTorch (Paszke et al., 2017). No
pretrained embedding vectors or other external re-
sources were used for the experiments. The ex-
act hyper-parameter values for each system com-
ponent are provided in Appendix A.1.

The syntactic and morphological components
were trained separately using the Adam (Kingma
and Ba, 2015) optimizer with a learning rate of
0.001. We used a batch size of 600 for the syn-

273

Language
ar cs en es fi fr it nl pt ru

Left/right labels (%) 32/68 57/43 62/38 56/44 57/43 57/43 57/43 61/39 56/44 47/53

Node pair
head-dep 96.27 90.26 96.14 92.67 89.21 95.14 94.26 91.51 97.29 92.85
dep-dep 82.81 82.78 87.64 83.85 81.43 85.12 84.98 82.52 85.6 85.56

Table 3: The distribution of left/right labels in the training data and the accuracy of predicting a node’s relative
position with the binary classifier. Two cases are considered: predicting the position of a dependent w.r.t. its head
(head-dep), and a sibling (dep-dep).

BLEU EDIST NIST

BINLIN 24.92 35.91 9.55
+ data enrichment 48.47 62.04 10.72
+ new encoder 50.67 64.05 10.82
+ new features 51.15 64.78 10.82

Upper bound 65.31 85.52 11.38

Table 4: Cumulative improvements from the modifica-
tions to the syntactic ordering procedure that we pro-
pose in this work, computed on the English portion of
the SR’18 development set.

tactic component and 200 for the morphological
component. Both modules were trained for a fixed
number of epochs (ten for the syntactic component
and 15 for the morphological one).

Since we left the morphological module intact,
in Section 5.1 we report evaluation results only for
the syntactic ordering component.

5.1 Syntactic Ordering

Before evaluating the syntactic ordering module,
we conducted a preliminary study in which we
tried to validate the dependency locality hypoth-
esis and answer the following question: Is it pos-
sible to accurately predict the relative position of
a dependent with respect to its head?

Table 3 shows the distribution of left/right target
labels in the training data and the accuracy of pre-
dicting the node’s relative position with our sys-
tem’s binary classifier (all proposed modifications
applied), both for head-dependent and dependent-
dependent node pairs. The latter pairs are relations
between sibling nodes in the respective subtree,
since at each prediction step the system operates
on dependency subtrees of depth one. Note that
modeling such relations is a harder task, since sib-
lings in dependency trees do not directly share any
grammatical information. However, the surround-
ing context seems to be enough to make high-
accuracy predictions, which supports the depen-

dency locality hypothesis.
We trained the syntactic ordering component

and performed its automatic metric evaluation
by computing BLEU (Papineni et al., 2002)3,
NIST (Doddington, 2002) and normalized string
edit distance (EDIST) scores between the refer-
ences and system outputs. Note that system out-
puts contain ordered lemmas, not surface forms,
while the references are correctly ordered se-
quences of inflected surface forms given in the
CONLL file.

Table 4 shows the contribution of each of the
modifications that we propose in this work; the re-
sults are computed on the English SR’18 devel-
opment set. We also show the maximum metric
scores that an ideal syntactic ordering component
would get, i.e. an upper bound on its performance.
We computed it by retrieving oracle lemma se-
quences and computing metric scores against the
corresponding references. This evaluation was
done on English data only, since it was used for
system development.

5.2 Full Pipeline
We further add the morphological inflection com-
ponent and evaluate the full pipeline on the SR’18
test data. Table 5 shows the metric scores achieved
by the best SR’18 systems (OSU (King and
White, 2018) and TILBURG (Castro Ferreira et al.,
2018)), BINLIN and the version of BINLIN with
the proposed modifications (BINLIN+). We ex-
cluded the scores achieved by the ADAPT sys-
tem, since the system was only evaluated when
trained with additional data and such a compari-
son would not be fair. In order to better assess the
performance gains that we obtained from the pro-
posed modifications, the syntactic ordering com-
ponent of BINLIN+ was trained ten times with
different random seeds; we report both the mean
scores and standard deviation.

3Following the SR protocol, we use the smoothed version
and report results using 4-grams (BLEU-4).

274

Metric System Language
ar cs en es fi fr it nl pt ru

BLEU

OSU 25.65 – 66.33 65.31 37.52 38.24 – 25.52 – –
TILBURG – – 55.29 49.47 – 52.03 44.46 32.28 30.82 –
BINLIN 16.20 25.05 29.60 32.15 23.26 20.53 23.55 22.69 24.59 34.34
BINLIN+ 29.07 ± 0.20 54.49 ± 0.26 64.70 ± 0.76 63.86 ± 0.50 37.38 ± 0.59 43.40 ± 1.33 41.17 ± 0.51 50.28 ± 0.53 49.01 ± 0.60 62.88 ± 0.36

NIST

OSU 7.15 – 12.02 12.74 9.56 8.0 – 7.33 – –
TILBURG – – 10.85 11.11 – 9.85 9.11 8.04 7.55 –
BINLIN 6.94 10.74 9.53 10.19 9.34 7.21 7.6 8.63 7.52 13.05
BINLIN+ 7.53 ± 0.01 13.65 ± 0.03 12.03 ± 0.05 12.59 ± 0.03 9.83 ± 0.06 8.78 ± 0.11 8.63 ± 0.03 10.30 ± 0.02 9.21 ± 0.05 14.43 ± 0.02

EDIST

OSU 34.37 – 68.59 59.75 47.99 44.84 – 34.22 – –
TILBURG – – 60.32 48.47 – 51.16 46.67 37.20 40.75 –
BINLIN 18.03 24.30 36.83 27.55 28.53 23.41 27.66 26.32 32.50 31.77
BINLIN+ 38.11 ± 0.60 54.00 ± 0.34 66.77 ± 0.77 59.00 ± 0.46 49.58 ± 0.65 45.17 ± 1.10 48.50 ± 0.86 52.50 ± 0.65 59.70 ± 0.78 62.80 ± 0.54

Table 5: Final results computed on the SR’18 test data. BINLIN+ results include mean scores and standard
deviation (scores averaged across ten models trained with different random seed values). Cells with dashes denote
cases for which the respective systems have not submitted any output in the shared task.

As can be seen from the table, our modifications
bridge the gap between the top-scoring systems
and BINLIN. BINLIN+ is the best-performing
system for five out of ten languages.

6 Error Analysis

In order to better understand the most common er-
rors made by the BINLIN+ system, we manually
examined its predictions on the development set.
We were focusing predominantly on the syntactic
ordering component in its best configuration (i.e.
with all the proposed modifications). In what fol-
lows we describe the most prominent error types.

Punctuation. Generally speaking, the position
of punctuation marks is determined not by a spe-
cific dependency relation, but rather by discourse-
level characteristics of the sentence, since their
primary goal is to help the reader interpret text by
means of delimiting the contents, dividing it into
easy-to-process pieces. Oftentimes there are lex-
ical markers (“so”, “because”, “although”) which
signal that, for example, a comma should be in-
serted before or after a phrase:

• I like chocolate, because it is sweet.

• Bryan, you’re in, right?

However, in UD annotation punctuation marks
are considered as dependents of the subtree root.
The binary classifier fails to encode discourse in-
formation, since it mainly looks for local patterns
in head-dependent relations. A more global tech-
nique of input encoding might alleviate this issue.

Contractions. Spanish, Czech, French, Por-
tuguese, Arabic and Italian treebanks contain an-
notation of multi-word expressions (MWE). Ta-
ble 6 shows the number of unique MWE encoun-
tered in the training portion of the UD treebanks.

Language
ar pt it es cs fr

3010 447 361 300 18 12

Table 6: Number of multi-word expressions (MWE) in
UD treebanks for the languages included in the SR’18
task (only languages with MWE are shown).

The most common case marked as MWE in the
UD treebanks is that of contractions which occur
when two adjacent words are merged into one. For
example, in French the article “les” contracts with
the preposition “à” into a compound article “aux”.
English UD annotation does not contain contrac-
tions, which is why when developing BINLIN+
we did not encounter this issue.

Our system predicts the relative position of the
contraction elements and attempts to conjugate
them separately, but does not perform token merg-
ing. The following is an example of a contraction
in French:

• Un autel à Jupiter est érigé à l’emplacement
de le Temple.

• Un autel à Jupiter est érigé à l’emplacement
du Temple.

The first line is what BINLIN+ would predict;
the second is what the correct output should be.
We suspect that this is the main reason for the
performance gap that exists between BINLIN+
and the best-performing approaches on Spanish,
French and Italian data.

A possible remedy to this limitation could be
modeling syntactic ordering and morphological
inflection jointly, but this exploration is out-of-
scope for this work. As a quick fix, we added a

275

Metric System Language
cs fr it

BLEU
BinLin+ 54.50 43.90 40.84
- w/ MWE 54.78 49.26 52.11

NIST
BinLin+ 13.63 8.85 8.61
- w/ MWE 13.67 9.46 9.78

EDIST
BinLin+ 54.00 46.20 47.57
- w/ MWE 54.07 49.45 53.25

Table 7: The result of adding a post-processing step
of merging MWE tokens for Czech, French and Italian
SR’18 test data.

post-processing step to the outputs of our system 4,
whereby we stitch adjacent contraction items into
one token. We focused on Czech, French and
Italian treebanks, since these languages have very
simple contraction cases which we extracted with-
out any knowledge of the respective grammar
rules (see Appendix A.2).

Table 7 shows an improvement over all three
languages, which suggests that this is indeed a
promising direction to investigate in detail, and a
more principled treatment of contractions would
boost the performance of the system even further.

7 Limitations and Future Work

The proposed modifications increase the perfor-
mance of the baseline BINLIN system signifi-
cantly, closing the performance gap relative to
the state-of-the-art methods to surface realization.
Unlike feature-based approaches, the system does
not require exhaustive enumeration of the feature
templates and is much faster to train. On top of
that, it follows a human-designed algorithm, rely-
ing on a neural model only to make binary classi-
fication decisions which are more transparent than
the inner workings of end-to-end neural models.
This offers an additional benefit of interpretabil-
ity and easier debugging. Unlike seq2seq mod-
els that occasionally hallucinate content or gener-
ate incomprehensible outputs, our system remains
faithful to its inputs, since it builds outputs by re-
arranging input elements and conjugating them.

However, the approach has its limitations. We
outline them below and plan to address them in
the future.

Zero-Markov assumption. The system does
not rely on its past predictions when making a cur-

4For the syntactic component that we trained with ten dif-
ferent random seeds, we chose one variant randomly.

rent decision. This is a simplifying assumption
that sped up system development, but at this point
it is a constraint that limits the approach’s poten-
tial.

Formalism specificity. Unlike seq2seq mod-
els which can process any input, the approach
works only on tree inputs. When changing the
input structure one would have to come up with
a new graph-to-tree conversion technique. One
reassuring fact is that as of now the annotation
consistency of available meaning representations
is rather low (considering inter-annotator agree-
ment scores), which means that text-based repre-
sentations like dependencies is the best option one
could hope to use in real-life applications.

Dependent-dependent classification bottle-
neck. As can be seen from Table 3, ordering chil-
dren nodes in a dependency tree is a much harder
task, compared to deciding on the position of a
child node w.r.t. its head. Most likely this is due
to the fact that dependency annotation is not suffi-
cient to make a correct decision, while predicting
the order between children nodes might be eas-
ier if we change the optimization objective. The
masked language modeling approach used in (Liu
et al., 2015; King and White, 2018) is very promis-
ing in this regard and we plan to investigate it in
the future.

8 Conclusion

In this work we extended the binary linearization
technique for generating sentences from depen-
dency trees. The modifications are motivated by
the results of the error analysis of the baseline sys-
tem and, when applied, significantly improve its
accuracy. The resultant system reaches competi-
tive performance in a multilingual setting, while
preserving more interpretable behavior and higher
data efficiency than the competitors.

Acknowledgments

This work was supported by the German Research
Foundation through the German-Israeli Project
Cooperation (DIP, grant DA 1600/1-1 and grant
GU 798/17-1) and the DFG-funded research train-
ing group “Adaptive Preparation of Information
form Heterogeneous Sources” (AIPHES, GRK
1994/1). The first author of the paper is supported
by the FAZIT Foundation scholarship and the Ger-
man Federal Ministry of Education and Research
(BMBF) as part of the Software Campus program

276

under the promotional reference 01IS17050.
We thank Henry Elder and Anastasia Shimorina

for the insightful discussions and our colleagues
Michael Bugert, Yang Gao, Ji-Ung Lee and Jonas
Pfeiffer who provided suggestions that greatly as-
sisted our research.

References

Roee Aharoni and Yoav Goldberg. 2017. Morpholog-
ical Inflection Generation with Hard Monotonic At-
tention. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2004–2015, Van-
couver, Canada.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations (ICLR 2015), San Diego, CA, USA.

Anja Belz, Mike White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The First
Surface Realisation Shared Task: Overview and
Evaluation Results. In Proceedings of the Genera-
tion Challenges Session at the 13th European Work-
shop on Natural Language Generation, pages 217–
226, Nancy, France.

Bernd Bohnet, Leo Wanner, Simon Mille, and Ali-
cia Burga. 2010. Broad Coverage Multilingual
Deep Sentence Generation with a Stochastic Multi-
level Realizer. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics,
pages 98–106, Beijing, China.

Thiago Castro Ferreira, Iacer Calixto, Sander Wubben,
and Emiel Krahmer. 2017. Linguistic realisation as
machine translation: Comparing different MT mod-
els for AMR-to-text generation. In Proceedings of
the 10th International Conference on Natural Lan-
guage Generation, pages 1–10, Santiago de Com-
postela, Spain.

Thiago Castro Ferreira, Sander Wubben, and Emiel
Krahmer. 2018. Surface realization shared task 2018
(SR18): The Tilburg university approach. In Pro-
ceedings of the First Workshop on Multilingual Sur-
face Realisation, pages 35–38, Melbourne, Aus-
tralia.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations Using RNN Encoder-
decoder for Statistical Machine Translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar.

George Doddington. 2002. Automatic Evaluation of
Machine Translation Quality Using N-gram Co-
occurrence Statistics. In Proceedings of the Sec-
ond International Conference on Human Language
Technology Research, pages 138–145, San Fran-
cisco, CA, USA.

Henry Elder and Chris Hokamp. 2018. Generating
high-quality surface realizations using data augmen-
tation and factored sequence models. In Proceed-
ings of the First Workshop on Multilingual Surface
Realisation, pages 49–53, Melbourne, Australia.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain.

Edward Gibson. 2000. The dependency locality the-
ory: a distance-based theory of linguistic complex-
ity. Image, Language, Brain: Papers from the First
Mind Articulation Project Symposium.

David King and Michael White. 2018. The OSU real-
izer for SRST ‘18: Neural sequence-to-sequence in-
flection and incremental locality-based linearization.
In Proceedings of the First Workshop on Multilin-
gual Surface Realisation, pages 39–48, Melbourne,
Australia.

Diederik Kingma and Jimmy Ba. 2015. Adam: a
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR), San Diego, USA.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39, Vancouver.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gen-
eration. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 146–157, Vancou-
ver, Canada.

Irene Langkilde-Geary. 2002. An Empirical Verifi-
cation of Coverage and Correctness for a General-
purpose Sentence Generator. In Proceedings of
the 2nd International Natural Language Genera-
tion Conference, pages 17–24, Harriman, New York,
USA.

Yijia Liu, Yue Zhang, Wanxiang Che, and Bing Qin.
2015. Transition-based Syntactic Linearization. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 113–122, Denver, Colorado.

http://aclweb.org/anthology/P17-1183
http://aclweb.org/anthology/P17-1183
http://aclweb.org/anthology/P17-1183
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://www.aclweb.org/anthology/W11-2832
http://www.aclweb.org/anthology/W11-2832
http://www.aclweb.org/anthology/W11-2832
http://dl.acm.org/citation.cfm?id=1873781.1873793
http://dl.acm.org/citation.cfm?id=1873781.1873793
http://dl.acm.org/citation.cfm?id=1873781.1873793
https://doi.org/10.18653/v1/W17-3501
https://doi.org/10.18653/v1/W17-3501
https://doi.org/10.18653/v1/W17-3501
https://www.aclweb.org/anthology/W18-3604
https://www.aclweb.org/anthology/W18-3604
http://www.aclweb.org/anthology/D/D14/D14-1179.pdf
http://www.aclweb.org/anthology/D/D14/D14-1179.pdf
http://www.aclweb.org/anthology/D/D14/D14-1179.pdf
http://www.mt-archive.info/HLT-2002-Doddington.pdf
http://www.mt-archive.info/HLT-2002-Doddington.pdf
http://www.mt-archive.info/HLT-2002-Doddington.pdf
https://www.aclweb.org/anthology/W18-3606
https://www.aclweb.org/anthology/W18-3606
https://www.aclweb.org/anthology/W18-3606
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://www.aclweb.org/anthology/W18-3605
https://www.aclweb.org/anthology/W18-3605
https://www.aclweb.org/anthology/W18-3605
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://www.aclweb.org/anthology/W17-3204
http://www.aclweb.org/anthology/W17-3204
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://aclanthology.info/papers/W02-2103/w02-2103
https://aclanthology.info/papers/W02-2103/w02-2103
https://aclanthology.info/papers/W02-2103/w02-2103
http://www.aclweb.org/anthology/N15-1012

277

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier Nonlinearities Improve Neural Net-
work Acoustic Models. In ICML Workshop on Deep
Learning for Audio, Speech and Language Process-
ing, Atlanta, USA.

Diego Marcheggiani and Laura Perez-Beltrachini.
2018. Deep graph convolutional encoders for struc-
tured data to text generation. In Proceedings of
the 11th International Conference on Natural Lan-
guage Generation, pages 1–9, Tilburg University,
The Netherlands.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Gra-
ham, Emily Pitler, and Leo Wanner. 2018. The first
multilingual surface realisation shared task (SR’18):
Overview and evaluation results. In Proceedings of
the First Workshop on Multilingual Surface Realisa-
tion, pages 1–12, Melbourne, Australia.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic Differentiation in PyTorch.
In NIPS 2017 Workshop Autodiff, Long Beach, Cal-
ifornia, USA.

Ratish Puduppully, Yue Zhang, and Manish Shrivas-
tava. 2016. Transition-based Syntactic Lineariza-
tion with Lookahead Features. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 488–493, San
Diego, California.

Yevgeniy Puzikov and Iryna Gurevych. 2018. BinLin:
A simple method of dependency tree linearization.
In Proceedings of the First Workshop on Multilin-
gual Surface Realisation, pages 13–28, Melbourne,
Australia.

Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel
Gildea. 2018. A graph-to-sequence model for
AMR-to-text generation. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1616–1626, Melbourne, Australia.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

Bayu Distiawan Trisedya, Jianzhong Qi, Rui Zhang,
and Wei Wang. 2018. GTR-LSTM: A triple encoder
for sentence generation from RDF data. In Proceed-
ings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1627–1637, Melbourne, Australia.

Michael White and Rajakrishnan Rajkumar. 2012.
Minimal dependency length in realization ranking.
In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 244–255, Jeju Island, Korea.

A Appendix

A.1 Hyper-parameter Details
We did not perform any hyper-parameter tuning,
all values were chosen based on our intuition and
what we have observed in the research literature.

Morphological Component. The morpholog-
ical inflection component was implemented us-
ing character-level LSTM networks, a two-layer
bidirectional encoder and a one-layer unidirec-
tional decoder with hidden layer sizes of 200. We
used 200-dimensional randomly-initialized em-
beddings.

We did not lowercase the data, maintained a
fixed size vocabulary of 250 characters, and for
training used only sequences of maximum 30
characters long (both source and target sides).

Syntactic Ordering Component. The syntac-
tic ordering component was implemented using
feed-forward networks; the corresponding hidden
layer sizes were fixed at 100 and 64 dimensions
(weight matrices W1 and W2 from Figure 2). We
used 200-dimensional randomly initialized word-
level case-sensitive embeddings.

https://sites.google.com/site/deeplearningicml2013/relu_hybrid_icml2013_final.pdf?attredirects=0&d=1
https://sites.google.com/site/deeplearningicml2013/relu_hybrid_icml2013_final.pdf?attredirects=0&d=1
https://www.aclweb.org/anthology/W18-6501
https://www.aclweb.org/anthology/W18-6501
https://www.aclweb.org/anthology/W18-3601
https://www.aclweb.org/anthology/W18-3601
https://www.aclweb.org/anthology/W18-3601
http://www.aclweb.org/anthology/P02-1040.pdf
http://www.aclweb.org/anthology/P02-1040.pdf
http://www.aclweb.org/anthology/N16-1058
http://www.aclweb.org/anthology/N16-1058
https://www.aclweb.org/anthology/W18-3602
https://www.aclweb.org/anthology/W18-3602
https://www.aclweb.org/anthology/P18-1150
https://www.aclweb.org/anthology/P18-1150
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://www.aclweb.org/anthology/P18-1151
https://www.aclweb.org/anthology/P18-1151
https://www.aclweb.org/anthology/D12-1023

278

A.2 Contraction Rules
The following tables contain the contraction rules
we used as a post-processing step described in
Section 6. The rules were created by extracting
lines with contractions in the UD CONLL files and
analyzing the contraction patterns.

à le→ au de lequel→ duquel
à les→ aux de lesquels→ desquels
à lequel→ auquel de lesquelles→ desquelles
à lesquels→ auxquels en les→ ès
à lesquelles→ auxquelles vois ci→ voici
de le→ du vois là→ voilà
de les→ des

Table 8: French contraction rules.

di il→ del a l’→ all’
di lo→ dello a le→ alle
di la→ della a i→ ai
di l’→ dell’ a gli→ agli
di i→ dei su il→ sul
di gli→ degli su la→ sulla
di le→ delle su lo→ sullo
a il→ al su gli→ sugli
a lo→ allo con il→ col
a la→ alla con i→ coi

Table 9: Italian contraction rules.

aby by→ aby když by→ kdyby
Aby by→ Aby Když by→ Kdyby

Table 10: Czech contraction rules.

