
Proceedings of The 12th International Conference on Natural Language Generation, pages 173–177,
Tokyo, Japan, 28 Oct - 1 Nov, 2019. c©2019 Association for Computational Linguistics

173

BERT for Question Generation

Ying-Hong Chan
Department of Computer Science
National Chung Hsing University

Taichung, Taiwan
harry831120@gmail.com

Yao-Chung Fan
Department of Computer Science
National Chung Hsing University

Taichung, Taiwan
yfan@nchu.edu.tw

Abstract

In this study, we investigate the employment
of the pre-trained BERT language model to
tackle question generation tasks. We introduce
two neural architectures built on top of BERT
for question generation tasks. The first one is a
straightforward BERT employment, which re-
veals the defects of directly using BERT for
text generation. And, the second one remedies
the first one by restructuring the BERT em-
ployment into a sequential manner for taking
information from previous decoded results.
Our models are trained and evaluated on the
question-answering dataset SQuAD. Experi-
ment results show that our best model yields
state-of-the-art performance which advances
the BLEU 4 score of existing best models from
16.85 to 21.04.

1 Introduction

Question generation (QG) task, which takes a con-
text and an answer as input and generates a ques-
tion that targets the given answer, have received
tremendous interests in recent years from both in-
dustrial and academic communities (Zhao et al.,
2018)(Zhou et al., 2017)(Du et al., 2017). The
state-of-the-art models mainly adopt neural ap-
proaches by training a neural network based on
the sequence-to-sequence framework. So far, the
best performing result is reported in (Zhao et al.,
2018), which advances the state-of-the-art results
from 13.9 to 16.8 (BLEU 4).

The existing QG models mainly rely on recur-
rent neural networks (RNN) augmented by atten-
tion mechanisms. However, the inherent sequen-
tial nature of the RNN models suffers from the
problem of handling long sequences. As a result,
the existing QG models (Du et al., 2017)(Zhou
et al., 2017) mainly use only sentence-level infor-
mation as context. When applied to a paragraph-
level context, the existing models show significant

performance degradation. However, as indicated
by (Du et al., 2017), providing paragraph-level in-
formation can improve QG performance. For han-
dling long context, the work (Zhao et al., 2018) in-
troduces a maxout pointer mechanism with gated
self-attention encoder for processing paragraph-
level input. The work reports state-of-the-art per-
formance for QG tasks.

Recently, the NLP community has seen excite-
ment around neural learning models that make
use of pre-trained language models (Devlin et al.,
2018)(Radford et al., 2018). The latest develop-
ment is BERT, which has shown significant perfor-
mance improvement over various natural language
understanding tasks, such as document summa-
rization, document classification, etc. In this
study, we investigate the employment of the pre-
trained BERT language model to tackle question
generation tasks. We introduce two neural archi-
tectures built on top of BERT for question gen-
eration tasks. The first one is a straightforward
BERT employment, which reveals the defects of
directly using BERT for text generation. As will
be shown in the experiment, naive employment of
BERT offers poor performance, as, by construc-
tion, BERT produces all tokens at a time with-
out considering decoding results in previous steps.
Thus, we propose a sequential question genera-
tion model based on BERT as our second model
for taking information from previous decoded re-
sults. Our model is simple but effective. We think
this is a feature of BERT, as the power of BERT is
able to simplify neural architecture design for nat-
ural language processing tasks. Our model outper-
forms the existing best models (Zhao et al., 2018)
and pushes the state-of-the-art result from 16.85 to
21.04 (BLEU 4).

The rest of this paper is organized as follows.
First, in Section 2, we review the BERT model
which is the building block for our models. In Sec-

174

tion 3, we introduce two BERT adaptions for QG
tasks. Section 4 provides the performance eval-
uation and Section 5 concludes our findings and
discuss future works.

2 BERT Overview

The BERT model is built by a stack of multi-layer
bidirectional Transformer encoder (Vaswani et al.,
2017). The BERT model has three architecture pa-
rameter settings: the number of layers (i.e., trans-
former blocks), the hidden size, and the number of
self-attention heads in a transformer block. There
are two BERT models with different model size
released.

• BERTbase: 12 layers, 768 hidden dimen-
sions and 12 attention heads (in transformer)
with the total number of 110M parameters.

• BERTlarge: 24 layers, 1024 hidden dimen-
sions and 16 attention heads (in transformer)
with the total number of 340M parameters.

For using BERT model, the input is required to
be aligned as the BERTs specific input sequence.
In general, a special token [CLS] is inserted as
the first token for BERT’s input sequence. The fi-
nal hidden state of the [CLS] token is designed
to be used as a final sequence representation for
classification tasks. The input token sequence can
be a pack of multiple sentences. To distinguish
the information from different sentences, a special
token [SEP] is added between the tokens of two
consecutive sentences. In addition, a learned em-
bedding is added to every token to denote whether
it belongs to sentence A or sentence B. For exam-
ple, given a sentence pair (si, sj) where si con-
tains |si| tokens and sj contains |sj | tokens, the
BERT input sequence is formulated as a sequence
in the following form:

X = ([CLS], ti,1, ..., ti,|si|,[SEP], tj,1..., tj,|sj |)

The input representation of a given token is the
sum of three embeddings: the token embeddings,
the segmentation embeddings, and the position
embeddings. Then the input representation is fed
forward into extra layers to perform a fine-tuning
procedure. BERT can be employed in three lan-
guage modeling tasks: sequence-level classifica-
tion, span-level prediction, and token-level predic-
tion tasks. The fine-tuning procedure is performed

Figure 1: The BERT-QG architecture

in a task-specific manner. The details of our fine-
tuning procedure are introduced in the later sub-
sections.

3 BERT for Question Generation

3.1 BERT-QG

As an initial attempt, we first adapt the BERT
model for QG as follows. First, for a given context
paragraph C = [c1, ..., c|C|] and an answer phase A
= [a1, ..., a|A|], the input sequence X is aligned as

X = ([CLS], C,[SEP], A,[SEP])

Let BERT() be the BERT model. We first ob-
tain the hidden representation H ∈ R|X|×h by
H = BERT(X), where |X| is the length of the
input sequence and h is the size of the hidden
dimension. Then, H is passed to a dense layer
W ∈ Rh×|V | followed by a softmax function as
follows.

Pr(w|xi) = softmax(H ·W + b), ∀xi ∈ X

q̂i = argmaxwPr(w|xi)

The softmax is applied along the dimension of
the sequence. All the parameters are fine-tuned
jointly to maximize the log-probability of the cor-
rect token qi. The model architecture is illustrated
in Figure 1. As shown in the figure, we align a
given context paragraph and a given answer as the
input sequence and feed the input sequence into
the BERT model to generate a sequence of tokens
as a generated question.

3.2 BERT-SQG

In text generation tasks, as suggested by
(Sutskever et al., 2014), considering the previ-
ous decoded results has significant impacts on the

175

Figure 2: The BERT-SQG architecture

quality of the generated text. However, in BERT-
QG, the token generation is performed without
previously decoded result information. Due to this
consideration, we propose a sequential question
generation model based on BERT (called BERT-
SQG).

In BERT-SQG, we take into consideration the
previous decoded results for decoding a token.
We adapt the BERT model for question genera-
tion as follows. First, for a given context para-
graph C = [c1, ..., c|C|] and an answer phase A

= [a1, ..., a|A|], and Q̂ = [q̂1, ..., q̂i] the input se-
quence Xi is formulated as

Xi =([CLS], C,[SEP], A,[SEP], q̂1,

..., q̂i,[MASK])

Then, the input sequence Xi is represented by
the BERT embedding layers and then travel for-
ward into the BERT model. After that, we take the
final hidden state of the last token [MASK] in the
input sequence. We denote the final hidden vector
of [MASK] as h[MASK] ∈ Rh. We adapt BERT
model by adding an affine layer WSQG ∈ Rh×|V |

to the output of the [MASK] token. We compute
the probabilities Pr(w|Xi) ∈ R|V | by a softmax
function as follows.

Pr(w|Xi) = softmax(h[MASK] ·WSQG + bSQG)

q̂i = argmaxwPr(w|Xi)

Subsequently, the newly generated token q̂i is
appended into X and the question generation pro-
cess is repeated (as illustrated in Figure 2) with

the new X until [SEP] is predicted. We report
the generated tokens as the predicted question.

4 Performance Evaluation

4.1 Datasets
The SQuAD dataset contains 536 Wikipedia ar-
ticles and around 100K reading comprehension
questions (and the corresponding answers) posed
about the articles. Answers of the questions are
text spans in the articles.

We follow the same data split settings as previ-
ous work on the QG tasks (Du et al., 2017)(Zhao
et al., 2018) to directly compare the state-of-the-
art results on QG tasks. Table 1 summarizes some
statistics for the compared datasets.

• SQuAD 73K In this set, we follow the same
setting as (Du et al., 2017); the accessible
parts of the SQuAD training data are ran-
domly divided into a training set (80%), a de-
velopment set (10%), and a test set (10%).
We report results on the 10% test set.

• SQuAD 81K In this set, we follow the same
setting as (Zhao et al., 2018); the accessi-
ble SQuAD development data set is divided
into a development set (50%), and a test set
(50%).

4.2 Implementation Details
We use the PyTorch version of BERT 1 to train
our BERT-QG and BERT-SQG models. The

1https://github.com/huggingface/pytorch-pretrained-
BERT

176

Table 1: Dataset statistics: SQuAD 73K is the setting
of (Du et al., 2017), and SQuAD 81K is the setting of
(Zhao et al., 2018).

Train Test Dev
SQuAD 73K 73240 11877 10570
SQuAD 81K 81577 8964 8964

pre-trained model uses the officially provided
BERTbase model (12 layers, 768 hidden dimen-
sions, and 12 attention heads.) with a vocab of
30522 words. Dropout probability is set to 0.1 be-
tween transformer layers. The Adamax optimizer
is applied during the training process, with an ini-
tial learning rate of 5e-5. The batch size for the
update is set at 28. All our models use two TITAN
RTX GPUs for 5 epochs training. We use Dev.
data for epoch model to make predictions and se-
lect the highest accuracy rate as our score evalu-
ation model. Also, in our BERT-SQG model, we
use the Beam Search strategy for sequence decod-
ing. The beam size is set to 3.

4.3 Model Comparison
In this paper, we compare our models with the best
performing models (Du et al., 2017)(Zhao et al.,
2018) in the literature. The compared models in
the experiment are:

• NQG-RC (Du et al., 2017): A seq2seq ques-
tion generation model based on bidirectional
LSTM.

• PLQG (Zhao et al., 2018): A seq2seq net-
work which contains a gated self-attention
encoder and a maxout pointer decoder to en-
able the capability of handling long text in-
put. PLQG model is the state-of-the-art mod-
els for QG tasks.

4.4 Evaluation Results
Table 2 shows the comparison results using
sentence-level context and Table 3 shows the re-
sults on paragraph level context. We compare the
models using standard metric BLEU and ROUGE-
L ((Papineni et al., 2002)).

We have the following findings to note about the
results. First, as can be observed, BERT-QG of-
fers poor performance. In fact, the performance
of BERT-QG is far from the results by other mod-
els. This result is expected as BERT-QG generates
the sentences without considering the previous de-
coded results. However, when taking into account

the previous decoded results (BERT-SQG), we ef-
fectively utilize the power of BERT and yield the
state-of-the-art result compared with the existing
RNN variants for QG. As shown in Table 2, BERT-
SQG outperforms the existing best performing
model by 2% on both benchmark datasets.

Second, the results in Table 3 further show that
BERT-SQG successfully processes the paragraph-
level contexts and further push the state-of-the-art
from 16.85 to 21.04 in terms of BLEU 4 score.
Note that NQG-RC and PLQG both use the RNN
architecture, and the RNN-based models all suf-
fer from the issue of consuming long text input.
We see that the BERT model based on transformer
blocks effectively addresses the issue of process-
ing long text. The results of our BERT-SQG model
are consistent in two data set and have achieved
the best score at the paragraph level.

5 Conclusion

In this paper, we demonstrate that BERT can be
adapted to question generation tasks. We concede
that our BERT-SQG model is simple. However,
we think this is a feature of BERT, as the power of
BERT is able to simplify neural architectures de-
sign for specific tasks. While our model is simple,
our model achieves state-of-the-art performance at
both sentence-level and paragraph-level input and
provides strong baselines for future research.

Acknowledgments

This work is supported in part by the Ministry of
Science and Technology, Taiwan, under grant No:
107-2221-E-005-064-MY2.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to ask: Neural question generation for reading
comprehension. arXiv preprint arXiv:1705.00106.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-

177

Table 2: Comparison between our model and the published methods using sentence level context

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L
NQG-RC 43.09 25.96 17.50 12.28 16.62 39.75

PLQG 43.47 28.23 20.40 15.32 19.29 43.91
SQuAD 73K BERT-QG 34.17 15.52 8.36 4.47 14.78 37.60

BERT-SQG 48.38 33.15 24.75 19.08 22.43 46.94
PLQG 44.51 29.07 21.06 15.82 19.67 44.24

SQuAD 81K BERT-QG 34.18 15.51 8.57 4.97 14.57 37.65
BERT-SQG 50.18 35.03 26.60 20.88 23.84 48.37

Table 3: Comparison between our model and the published methods using paragraph level context

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L
NQG-RC 42.54 25.33 16.98 11.86 16.28 39.37

PLQG 45.07 29.58 21.60 16.38 20.25 44.48
SQuAD 73K BERT-QG 37.49 18.32 10.47 6.10 16.80 41.01

BERT-SQG 50.00 34.54 25.98 20.11 23.88 48.12
PLQG 45.69 30.25 22.16 16.85 20.62 44.99

SQuAD 81K BERT-QG 32.61 14.50 7.70 4.08 14.18 37.94
BERT-SQG 50.89 35.49 26.87 21.04 24.25 48.66

standing by generative pre-training. URL https://s3-
us-west-2. amazonaws. com/openai-assets/research-
covers/languageunsupervised/language under-
standing paper. pdf.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3901–3910.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study.
In National CCF Conference on Natural Language
Processing and Chinese Computing, pages 662–671.
Springer.

