A Machine Learning Approach for Identifying Compound Words from
a Sanskrit Text

Premjith B, Chandni Chandran V, Shriganesh Bhat, Soman K.P,
Center for Computational Engineering and Networking (CEN)
Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India
prem. jb@gmail.com and
Prabaharan P
Center for Cybersecurity Systems and Networks
Amrita School of Engineering, Amritapuri, Amrita Vishwa Vidyapeetham, India

Abstract

In this paper, we propose a classification framework for finding the compound words
from a given Sanskrit text. The compound word identification plays a significant role in
learning the elucidations of verses in Ayurveda text books which are written in Sanskrit.
This process was modelled using several classification algorithms and we examined
their efficacy with varying word embedding dimensions. Sanskrit words were vector-
ized using fastText word embedding method. The results show that the performance of
K-Nearest Neighbor is better than other classifiers and the prediction accuracy is 90.38%.

1 Introduction

Compound words (FHH) are abundant in Sanskrit. These words are formed by joining two
or more nominal words together and it is even possible to have a sequence of more than 10
words in a compound word (En.wikipedia.org, 2015). Computational analysis of a compound
word is hard because of its productive nature, unexpressed relationship between the compo-
nent words and the semantics of a compound word often rely on the contexts (Krishna et al.,
2016). Generally, compound words in any language is an open set of words and can be con-
structed by obeying the sandhi rules in that language. However, the sandhi splitting does not
impart the underlying meaning of a compound. To know the meaning of a compound, it is es-
sential to identify the constituent words which in turn helps to learn the relationship between
the words (Kumar et al., 2010) (Kulkarni and Kumar, 2011). This can be achieved with the help
of word segmentation algorithms (Huet, 2009), (Reddy et al., 2018), (Hellwig and Nehrdich,
2018). These algorithms can segment all the words including compound words and it affects
the understanding of texts written in verse (%) form.

Ayurveda has a long history and almost all the texts are written in Sanskrit. Approximately
67% of the compendium were framed in verse form with the motivation to memorize it eas-
ily(Panja, 2013). Despite this advantage, it is difficult for a novice to understand the meaning
of a verse accurately. Usually, most of the students who join for Ayurveda course have little
knowledge in interpreting such verses. In addition to that, a substantial number of words in
each verse belong to the category of compound words. The difficulty level of interpreting the
meaning of a verse again increases due to the presence of these complex words. This hardness
can be lessened by splitting the compound words into its constituents using aforementioned
computational algorithms. However, one can elucidate the whole meaning of a verse only after
achieving the Anvaya (7<) form. When we split the compounds before reordering the words
may lead to the scattering of the constituent words and hence the reader loses the connection
between the words as well as the meaning of the verse. Therefore, a computational tool for
identifying the compound words before performing the word segmentation is required for an
Ayurveda student to learn the concepts and meaning of a verse precisely.

In this paper, we propose a machine learning tool for distinguishing compound words from
non-compound words. This task is modelled as a binary classification problem. Various classi-
fication algorithms (Alpaydin, 2009), (Soman et al., 2006) such as Naive Bayes, K-Nearest Neigh-

bor, Decision Tree, Random Forest, Support Vector Machine, Multi-Layer Perceptron, Logistic
Regression and Adaboost were used for the classification. Input to the classifier is a word or a
sequence of words and output is the class label which is either compound or non-compound.
Input words are represented as vectors using fastText (Bojanowski et al., 2016) word embedding
algorithm. We didn’t use any linguistic features for this classification.

2 Sanskrit compounds and non-compound words

In English, words can be formed in multiple ways like compounding, prefixation, suffixation
etc. (Bauer, 1983), (Rajendran, 2000). However, Sanskrit extensively uses compounding and
affixation methods for the formation of words. Phrasal construction is also commonly used as
a word formation scheme.

A compound is typically formed by combining two or more entities. These entities have their
own existence when they occur independently. Affixation is a different way of word formation
in which morphemes are added to a root word to obtain various word forms and is not a pro-
ductive process. Unlike the components of a compound, constituent morphemes of an affixed
word do not exhibit the properties of a normal word. In addition to that, compound words
have the following characteristics (Kumar et al., 2010),

Single word
* Mono case endings

¢ Mono accent

Fixed component word order

Presence of Sandhi

A subset of these properties such as single word, presence of Sandhi etc. is applicable to non-
compound words also. This poses a difficulty in computationally discriminating compound
words from other words in the language.

3 Method

The problem of identifying compound words from a Sanskrit document was modelled as a
binary classification problem (Class labels are compound word class and other word class).
Several machine learning algorithms such as Naive Bayes, K-Nearest Neighbor, Decision Tree,
Random Forest, Support Vector Machine, Multi-Layer Perceptron, Logistic Regression and Ad-
aboost classifier were used to model the problem. The major ingredient of any machine learn-
ing algorithm is features. There are various approaches for converting words into vectors of
which word embedding algorithms were used for feature representation. Word embedding al-
gorithms are built over neural network architectures and are said to learn the semantic as well
as syntactic similarities in a corpus. In this paper, fastText was used for embedding words as
vectors. The fastText uses sub word information along with the typical word vectors which
helps the algorithm to learn the character level as well as the sub word level information from a
word. It helps to capture the minute morphological information which are hidden in the words.
It is an important aspect for the computational processing of Indian languages because of their
morphological richness. Apart from the fastText embedding, we didn’t use any linguistic fea-
tures for the representation of Sanskrit words.

Result: 1 - if the word is a compound word or 0 - if the word is not a compound word
Read the data ;
Fill the empty labels with zero (0). Thi label belongs to the class of non-compound words ;
Replace compound word labels with one (1) ;
Tokenize the sentence ;
Apply Fasttext with parameters specified in the Table 4 ;
while Till the last word in the corpus do
if If there are more than one word in the sequence then
Obtain the vector representation for the word sequence by taking the mean of the
individual word vectors;

else

| Take the word embedding for the respective word;
end

end

Split the data into train and test data. 80% of the input data was categorized as train set
and the remaining 20% was considered as test data ;

Use a classification algorithm to train the model with train data and train label;

Evaluate the performance of the model using the testing data ;

if A new text comes then

Tokenize the text;

while For each word do

Get the vector representation;

Predict the class label using the trained mode;

if label == 0 then
| Print "Non-compound word”

else
| Print "Compound word”
end
end
else
end

Algorithm 1: Algorithm for the identification of the compound words in a Sanskit text

4 Experiments and Discussions

The compound word classification problem is a binary class problem and the words were rep-
resented using Fasttext word embedding algorithm. In this paper, we didn’t use any linguistic
information for representing the words.

4.1 Dataset description

We collected the tagged dataset from University of Hyderabad website ! which contained de-
composed compound words along with undecomposed non-compound words. The dataset
contains 32,183 tokens and among which 17,479 are unique. The statistics of the dataset is given
in Table 1 and 2.

4.2 Discussion

The classification problem was modeled using 8 classification algorithms, which were defined
in scikit-learn (Pedregosa et al., 2011) python package, with fastText word embedding. We also
tried with Word2vec and Doc2vec methods for word representation, but they failed to obtain
vector representation for Out-of-Vocabulary (OoV) words which is very crucial in Natural Lan-
guage Processing applications. The classification capability of the machine learning algorithms

1h’c’rp: / /sanskrit.uohyd.ac.in/scl/

Type of word Number of words
Compound word 13,009
Non-compound words 19,174
Total 32,183

Table 1: Number of words in compound word class and non-compound words class.

Type of word Number of unique words
Compound word 12,224
Non-compound words 5,255
Total 17,479

Table 2: Number of unique words in compound word class and other words class.

were evaluated using four metrics - accuracy, precision, recall and f1-score and the performance
scores are given in Table 3. The analysis shows that K-Nearest Neighbor (KNN) algorithm per-
formed better than other classification algorithms in terms of all the evaluation metrics. We
finalized the evaluation scores after 3 runs of each model.

Another trend we observed from the results was the non-linearity in the data. The data was
found to be highly non-linearly separable in the feature space and it causes the linear classifi-
cation algorithms like Support Vector Machine to perform poorly. These classification perfor-
mance of these algorithms didn’t improve further even after the feature mapping of the data
points to an extremely higher dimensional space. Therefore, we came to the conclusion that the
only way to enhance the performance of the classifier is to increase the number of data points in
the corpus otherwise we have to incorporate certain linguistic features. Figure 2 (a) shows the
confusion matrix heat-map. We also executed a 10-fold cross validation over the entire dataset
and the cross validation heat-map is given in Figure 2 (b).

The receiver operating characteristic curves of all the algorithms are shown in Figure 1. It
also shows the superiority of KNN over other classification algorithms in the identification of
compound words. We also tested the performance of the algorithms with various embedding
sizes. The analyses showed that the classification accuracy was better when the embedding
dimension was 500. The increase in embedding beyond 500 didn’t increase the performance of
the algorithms to a significant level.

Classifier Accuracy (in %) Precision Recall Fl-score
Naive Bayes 65.23 0.6837 0.6822 0.6523
K-Nearest Neighbor 90.38 0.8999 09162 0.9023
Decision tree 84.37 0.8390 0.8329 0.8356
Random forest 86.78 0.8644 0.8583 0.8610
SVM 60.15 0.3008 0.5000 0.3756
MLP 75.75 0.7511 0.7340 0.7392
Logistic Regression 60.20 0.8009 0.5006 0.3769
AdaBoost 78.14 0.7720 0.7755 0.7736

Table 3: Performance Evaluation of various classification algorithms.

The optimal parameters for the KNN algorithm and fastText are shown in Table 4. A grid
search method was used to fix the optimal parameters of KNN whereas the fastText hyper
parameters were determined after a series of runs with varying embedding dimensions.

Even though the training dataset contains segmented compounds, the classification model
was able to pick out the compounds words from a set of words, which are not decomposed,

Value
5
Uniform
30
500
1
1

Parameters
Number of neighbors
Weights

Leaf size

Word embedding dimension

Context Window size
Minimum count

Table 4: Parameters and their values used with KNN classifer and Fasttext word embedding

algorithms.
10 — 10 I_,_ S -
- e / .
08 ~ - 08 f -
-7 | -7
v L u | e
el -] / -
= 06 - = 06 { L
u . u { .
2 e =} f s
i i
8 .7 8 / I
f 04 . y 04 II‘.' .
= - = | -
- - .I - F
02 e o2}/ .7
L7 f .-
s | ~— ROC curve {area = 0.68) | . ‘ — ROC curve {area = 0.92)
00 00
0.0 02 0.4 0.6 0.8 10 00 02 04 06 0.8 10
False Positive Rate False Positive Rate
(a) Naive Bayes (b) K-Nearest Neighbor
10 — 10 —
7__7__,——*-"___ B e 7__7__,——*-"___7__7 -
08 Ir_,_-——-*"" .t 08 Ir-‘" P
u II‘ - ’ u / - -
2 | P & { -
= 06 / - = 06| | L
B / e H i i
£ / . =] / .
i { - 2 { -
= o4t | e =04l -
g™ - iy .-
= { L = i -7
/ . / .
02}/ P 0z P
/ - | -
- | .
/. | ~— ROC curve (area = 0.83) [.~ ‘ — ROC curve (area = 0.86)
00 00
0.0 02 0.4 0.6 0.8 10 00 02 0.4 06 0.8 10
False Positive Rate False Positive Rate
(c) Decision Tree (d) Random Forest
10 10 —
—
—— ~
08 08 '_,.,-""' L
g y _— I
T & 06 I e
v w / -
H H / -
B 5 / e
g 04 T 0s / -
2 2 / -
= = / -
/ -
/ -
02 oz2f / e
[
‘-—- ROC curve {area = 0.50) ’,f - ‘ ~— ROC curve {area = 0.73)
00 0
0.0 02 0.4 0.6 0.8 10 00 02 04 06 0.8 10
False Positive Rate False Positive Rate
(e) Support Vector Machine (f) Multi-Layer Perceptron
10 10 —
— .7
— — -
08 08 _— -
I P
o] / e
£ 06 2 06 / -
2 : / e
= =1 / .
Fi] / -
o 04 o 04 / L .
E] 3 / .
E - = / -
/ -
/ -
02 oz2r / L
/.
‘ ~— ROC curve {area = 0.50} j e ‘ — ROC curve (area = 0.78)
00 Xi]
0.4 0.6 0.8 10 00 02 04 06 0.8 10
False Positive Rate

False Positive Rate

(g) Logistic Regression

(h) Adaboost

Figure 1: Receiver operating characteristic curves

3200
2800
Noun-compound words 2400 Noun-compound words
2000
1600
1200
Compound words BOO Compound werds

400

&
o
&

(a) With 80% of the training data (b) With 10-fold cross validation

Compound words e compound words | 20 3

=
58 &E88388

MNon-compound words Non-compound words |

£

o

o4 &
& S
«

(c) Identification of Samasa from Ash- (d) Identification of Samasa from Ash-
tanga Hridayam text using KNN tanga Hridayam text using Sanskrit her-
itage reader

Figure 2: Confusion matrix heat map for the Compound word identification

taken from Ashtanga Hridayam (3T€T§&€qd). 136 words were selected for testing the potential of
the trained model. This test dataset contained 43 compound words and 93 were non-compound
words. The model was able to identify 41 compound words correctly, but it failed to classify the
non-compounds properly with a prediction accuracy of 61.29%. The confusion matrix heat-map
is shown in Figure 2 (c). We also used Sanskrit heritage engine to identify the compound words
from the above mentioned test data. This engine was able to pick non-compound words with
an accuracy of 98.92%, but at the same time failed to identify the compound words correctly
(prediction accuracy = 46.51%). The confusion matrix is depicted in 2 (d).

5 Conclusion

In this paper, we proposed a machine learning approach for compound word identification
from a Sanskrit text. Compound words can be constructed by joining two or more independent
words and the resulting word conveys a common meaning which may or may not be related to
the meanings of the component words. The identification of the compound words is important
in learning verses in Ayurveda texts. In this paper, we investigated the implication of various
machine learning algorithms with fastText word embedding algorithms in the classification
of Sanskrit words into compound and non-compound words. We observed that, K-Nearest
Neighbor classifier achieved the highest accuracy of 90.38% for an embedding dimension of
500. We also noticed that data is highly non-linearly separable which is the reason for SVM to
give poor results. For this reason, the current model can be upgraded by adding more train-
ing examples. Moreover, the classification accuracy can further be increased by incorporating
linguistic information which are specific to compounds and non-compounds.

References

Ethem Alpaydin. 2009. Introduction to machine learning. MIT press.
Laurie Bauer. 1983. English word-formation. Cambridge university press.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors
with subword information. arXiv preprint arXiv:1607.04606.

En.wikipedia.org. 2015. Sanskrit compound. https://en.wikipedia.org/wiki/Sanskrit_compound.
[Online; accessed 19-May-2019].

Oliver Hellwig and Sebastian Nehrdich. 2018. Sanskrit word segmentation using character-level recur-
rent and convolutional neural networks. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 2754-2763.

Gérard Huet. 2009. Sanskrit segmentation. South Asian Languages Analysis Roundtable XXVIIL, Den-
ton, Ohio (October 2009).

Amrith Krishna, Pavankumar Satuluri, Shubham Sharma, Apurv Kumar, and Pawan Goyal. 2016. Com-
pound type identification in sanskrit: What roles do the corpus and grammar play? In Proceedings
of the 6th Workshop on South and Southeast Asian Natural Language Processing (WSSANLP2016),
pages 1-10.

Amba Kulkarni and Anil Kumar. 2011. Statistical constituency parser for sanskrit compounds. Pro-
ceedings of ICON.

Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010. Sanskrit compound processor. In International
Sanskrit Computational Linguistics Symposium, pages 57-69. Springer.

Asit Panja. 2013. A critical review of rhythmic recitation of charakasamhita as per chhanda shastra.
Ayu, 34(2):134.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg,]. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-
2830.

S Rajendran. 2000. Types of word formation in tamil. Linguisticoliterary, pages 323-343.

Vikas Reddy, Amrith Krishna, Vishnu Dutt Sharma, Prateek Gupta, Pawan Goyal, et al. 2018. Building
a word segmenter for sanskrit overnight. arXiv preprint arXiv:1802.06185.

KP Soman, Shyam Diwakar, and V Ajay. 2006. Data mining: theory and practice [with CD]. PHI
Learning Pvt. Ltd.

