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Preface from the co-chairs of the workshop

The Workshops on Patent and Scientific Literature Translation (PSLT), beginning as Work-
shops on Patent Translation (WPT), had been held biennially from 2005 to 2017 as parts of
Machine Translation Summits. While patent information is still one of the major application
areas of machine translation, the need for translation of different kinds of scientific literature has
been increasing rapidly. The workshop covers a wide range of topics related to translation of sci-
entific literature including patents, scientific articles, and technical reports, which have common
characteristics as well as their own characteristics.

This year’s workshop hosted three invited talks from various aspects: utilization of machine
translation for patents/scientific literatures, transferring NLP methods across languages by ma-
chine translation techniques, and multilingual NLP in biomedical domains. Each of three invited
speakers (Christof Monz, University of Amsterdam, Yohei Matsutani, Japan Patent Office, and
Aurélie Névéol, LIMSI-CNRS) involves, but not limited to, multiple topics described above, and
thus we believe that these invited talks give us a broader view of the state-of-the-art patent and
scientific literature translation. The workshop also accepted four contributed papers that deal
with interesting topics in line with current trends: three are on neural machine translation by
hybrid model of data parallel approach and model parallel approach, transductive data-selection
algorithms, and a multi-hop attention, respectively, and one is on how patent professionals use
gist machine translation for decision making. We have organized these invited talks and scientific
papers into three sessions. We hope that this workshop will contribute to mutual interaction
and progress of machine translation and the fields applying machine translation.

We express our sincere appreciation to the invited speakers, the authors of the contributed
papers, the Program Committee Members of this workshop, and organizing members of the MT
Summit 2019.
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Profile 

Christof Monz is an associate professor in 

computer science at the Informatics Institute, 

University of Amsterdam. His research interests 

lie in the area of multilingual natural language 

processing and machine translation in particular. 

Prior to joining the University of Amsterdam he 

worked as a lecturer at Queen Mary University of 

London and as a post-doctoral research fellow at 

the University of Maryland Institute for Advanced 

Computer Studies (UMIACS). He received a PhD 

in Computer Science from the University of 

Amsterdam in 2003.  
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improvement of accessibility for Patent Information 

Yohei Matsutani 

Japan Patent Office 

 

  

Profile 

Yohei Matsutani has served as Deputy Director at 

the Patent Information Policy Planning Office, 

Policy Planning and Coordination Department in 

the Japan Patent Office since July 2018. He 

engages in planning policies related to the 

translation of patent information. He joined the 

JPO as a patent examiner in 2004. In his 15 years’ 

career in the JPO, he has been involved in the 

patent examination of medical devices, analytical 

instruments.  
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contribution of multilingual corpus and machine translation 
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Profile 

Aurélie Névéol is a Senior Staff Scientist at the 

Centre National pour la Recherche Scientifique 

(CNRS). She received an MSc in Linguistics in 

2002 and a PhD in Computer Science in 2005. She 

has more than 10 years experience in biomedical 

Natural Language Processing Research and has 

addressed the analysis of biomedical text from the 

literature and from Electronic Health Records in 

French and in English. Recently, she has been 

focusing on clinical NLP for languages other than 

English. She has contributed to the development 

of representations of clinical information to 

support information extraction from EHR text, 

which can then be used for high throughput 

phenotyping. In the course of her work she has 

also contributed to the evaluation of research 

methods and workflows through her participation 

in the H2020 MIROR project and international 

evaluation campaigns such as CLEF eHealth and 

the biomedical task at WMT.  
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Hybrid Data-Model Parallel Training for Sequence-to-Sequence      
Recurrent Neural Network Machine Translation 

Junya Ono        Masao Utiyama        Eiichiro Sumita 

National Institute of Information and Communications Technology 
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0289, Japan 

{junya.ono, mutiyama, eiichiro.sumita}@nict.go.jp 

Abstract 

Reduction of training time is an important 
issue in many tasks like patent translation 
involving neural networks. Data parallel-
ism and model parallelism are two com-
mon approaches for reducing training time 
using multiple graphics processing units 
(GPUs) on one machine. In this paper, we 
propose a hybrid data-model parallel ap-
proach for sequence-to-sequence 
(Seq2Seq) recurrent neural network 
(RNN) machine translation. We apply a 
model parallel approach to the RNN en-
coder-decoder part of the Seq2Seq model 
and a data parallel approach to the atten-
tion-softmax part of the model. We 
achieved a speed-up of 4.13 to 4.20 times 
when using 4 GPUs compared with the 
training speed when using 1 GPU without 
affecting machine translation accuracy as 
measured in terms of BLEU scores. 

1 Introduction 

Neural machine translation (NMT) has been 
widely used owing to its high accuracy. A 
downside of NMT is it requires a long training 
time. For instance, training a Seq2Seq RNN 
machine translation (MT) with attention (Luong et 
al., 2015) could take over 10 days using 10 million 
sentence pairs. 

A natural solution to this is to use multiple 
GPUs. There are currently two common 
approaches for reducing the training time of NMT 
models. One approach is by using data parallel 
approach, while the other approach is through the 
use of the model parallel approach. 

                                                 
1 https://github.com/OpenNMT/OpenNMT 

The data parallel approach is common in many 
neural network (NN) frameworks. For instance, 
OpenNMT-lua (Klein et al., 2017) 1 , an NMT 
toolkit, uses multiple GPUs in training NN models 
using the data parallel approach. In this approach, 
the same model is distributed to different GPUs as 
replicas, and each replica is updated using 
different data. Afterward, the gradients obtained 
from each replica are accumulated, and 
parameters are updated. 

The model parallel approach has been used for 
training a Seq2Seq RNN MT with attention (Wu 
et al., 2016). In this approach, the model is 
distributed across multiple GPUs, that is, each 
GPU has only a part of the model. Subsequently, 
the same data are processed by all GPUs so that 
each GPU estimates the parameters it is 
responsible for. 

In this paper, we propose a hybrid data-model 
parallel approach for Seq2Seq RNN MT with 
attention. We apply a model parallel approach to 
the RNN encoder-decoder part of the Seq2Seq 
model and a data parallel approach to the 
attention-softmax part of the model. 

The structure of this paper is as follows: In 
Section 2, we describe related work. In Section 3, 
first, we discuss the baseline model with/without 
data/model parallelism. Afterward, we present the 
proposed hybrid data-model parallel approach. In 
Section 4, we present a comparison of these 
parallel approaches and demonstrate the 
scalability of the proposed hybrid parallel 
approach. Section 5 presents the conclusion of the 
work. 

2 Related Work 

The accuracy of NN models improves as the 
model sizes and data increases. Thus, it is 
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necessary to use multiple GPUs when training NN 
models within a short turnaround time. 

There are two common approaches for using 
multiple GPUs in training. One is data parallelism, 
involving sending different data to different GPUs 
with the replicas of the same model. The other is 
model parallelism, involving sending the same 
data to different GPUs having different parts of 
the model. 

2.1 Data parallelism 

In this approach, each GPU has a replica of the 
same NN model. The gradients obtained from 
each model on each GPU are accumulated after a 
backward process, and the parameters are 
synchronized and updated. 

The advantage of using this model is that it can 
be applied to any NN model because it does not 
depend on the model structure. In particular, it can 
be applied to many models such as Seq2Seq RNN 
and Inception Network (Abadi et al., 2016). Many 
deep neural network (DNN) frameworks 
implement data parallelism. 

While data parallelism is general and powerful, 
it is subject to synchronization issues among 
multiple GPUs as the model size or the number of 
model parameters increases. Note that when using 
multiple machines, asynchronous updates may be 
used in reducing synchronization costs. However, 
we focus on using multiple GPUs on one machine, 
where synchronous updates are generally better 
than asynchronous updates. 

To reduce the synchronization costs relative to 
all training costs, it is necessary to train models 
using a large mini-batch size. However, the mini-
batch size is bounded by the GPU memory. 
Furthermore, large mini-batch sizes in general, 
make convergence difficult and can worsen 
accuracy of the tasks (Krizhevsky, 2014; Keskar 
et al., 2017). 

Another important factor to be considered is the 
ratio of processing time needed for synchroniza-
tion and forward-backward process on each GPU. 
If synchronization takes much longer than the 
forward-backward process, the advantage of using 
multiple GPUs diminishes. 

In summary, depending on models, data 
parallelism may not work effectively. In such a 
case, there are methods that can be used to achieve 
synchronization after several mini-batches or to 
overlap backward and synchronization process at 
the same time (Ott et al., 2018). However, these 
advanced synchronization methods are out of the 
scope of this study. 

2.2 Model parallelism 

In this approach, each GPU has different parame-
ters (and computation) of different parts of a 
model. Most of the communication occurs when 
passing intermediate results between GPUs. In 
other words, multiple GPUs do not need to syn-
chronize the values of the parameters. 

In contrast to data parallelism, most DNN 
frameworks do not implement automatic model 
parallelism. Programmers have to implement it 
depending on the model and available GPUs. 

Model parallelism needs special care when as-
signing different layers to different GPUs. For ex-
ample, each long short-term memory (LSTM) 
layer may be placed on each GPU in case of 
stacked-LSTMs in encoder-decoder NN. Wu et al. 
(2016) have already proposed similar model par-
allelism for Seq2Seq RNN MT, although they did 
not describe the actual speed-up achieved. 

The scalability of model parallelism is better 
than that of data parallelism when it works effec-
tively. In data parallelism, when we increase the 
number of samples in each mini-batch to N times, 
we expect less than N times speed-up due to syn-
chronization costs. 

In contrast, we can expect more than N times 
speed-up when using model parallelism, owing to 
the following two reasons. First, we can increase 
the mini-batch size as in the case of data parallel-
ism. Second, each GPU is able to compute differ-
ent layers of the model without requiring synchro-
nization. 

2.3 Automatic hybrid parallelism, distrib-
uted training, and Transformer 

While we focus on hybrid data-model parallelism 
for Seq2Seq RNN MT in this paper, Wang et al. 
(2018) have proposed an approach for automati-
cally conducting hybrid data-model parallelism. 
Applying their method to Seq2Seq RNN MT 
would be the focus of our future work. 

While we focus on parallelism on one machine 
in this paper, using multiple machines is also a 
good way of achieving a short turnaround time in 
training. Ott et al. (2018) reported that a signifi-
cant speed-up can be obtained while maintaining 
translation accuracy using data parallelism on 16 
machines. 

While the Transformer model has recently been 
demonstrated to have a superior translation per-
formance to the Seq2Seq RNN MT with attention 
(Vaswani et al., 2017), we focus on how to com-
bine data parallelism and model parallelism in 
Seq2Seq RNN MT with attention. We believe the 
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proposed hybrid parallel approach to be applica-
ble to the Transformer translation model because 
Transformer also has an encoder, decoder, and 
softmax layers. However, we would leave the ap-
plication of the proposed hybrid data-model par-
allel approach to Transformer as a part of our fu-
ture work.  

3 Model Structure and Parallelism 

3.1 Baseline model 

Attention-based NMT has improved translation 
accuracy compared with the sequence-to-se-
quence NMT without attention model (Bahdanau 
et al., 2015; Luong et al., 2015). 

Figure 1 shows our baseline model (Luong et 
al., 2015). The decoder side of this model uses the 
input-feeding approach, where the hidden state of 
attention is concatenated with the target word em-
bedding before being input into the first LSTM 
layer. 

Data parallelism can be applied to this baseline 
model easily. We place each replica of this model 
on each GPU. Next, the input parallel texts are dis-
tributed equally to different GPUs. Finally, syn-
chronization of parameter values is conducted af-
ter each forward-backward process. 
 

 
Figure 1. Our baseline model, the attention-based 
encoder-decoder model (Luong et al., 2015). This 
model consists of stacked-LSTMs containing 4 
layers with the input-feeding approach. The hid-
den state of attention is concatenated with the tar-
get word embedding before being input into the 
first LSTM layer 

 
Figure 2. Model parallelism on 4 GPUs for the 
baseline model of Figure 1. The same depth layer 
in the encoder-decoder part is placed on the same 
GPU. The encoder side allows efficient 
parallelism, while the decoder part does not due to 
input-feeding.  
  

Figure 2 shows an application of model 
parallelism to the baseline model on 4 GPUs. In 
the figure, we assign different layers in the 
encoder-decoder part to different 3 GPUs. We also 
assign the attention and softmax layers to 1 GPU. 
This assignment is based on the fact that the 
attention-softmax part requires a relatively large 
GPU memory. 

The model parallel approach is effective in this 
case because there are many parameters in the 
attention-based encoder-decoder model. Let U be 
a certain value representing the number of 
parameters, the embedding layer has 2U 
parameters, each LSTM layer has 8U parameters 
(a total of 32U parameters), and the attention-
softmax part has 4U parameters. When using 
model parallelism, it is not necessary to 
synchronize these parameters. We only have to 
pass intermediate results between different GPUs. 

Note that the green arrow in Figure 2 is pointing 
to the upper right direction. It indicates that the 
computation of one node can start immediately 
after the left and down nodes finish their 
computation. In this way, in the encoder side, 
GPUs can work without waiting for the 
completion of the computation in the previous 
steps. 

In contrast, the nodes in the decoder side cannot 
start performing their assigned computations until 
all nodes related to the previous target words 
finish their computation. This is due to the input-
feeding approach employed. For instance, the 
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target word embedding of ݕଶ  needs to be 
concatenated with the attentional hidden state of 
 .ଵ before being input into the first LSTM layerݕ

3.2 Proposed model for hybrid parallelism 

Herein, we propose our hybrid parallelism for 
Seq2Seq RNN MT. First, we remove input-
feeding in the decoder side of the baseline model, 
and then we introduce our hybrid parallelism. 
Figure 3 shows our model for hybrid parallelism. 
First, we employ model parallelism in calculating 
the states of hidden nodes for all steps in both 
encoder and decoder sides. Afterward, we apply 
data parallelism in calculating attention scores, 
context vectors, and softmax for getting target 
words.  Note that this is possible because all target 
words are given beforehand in the training phase. 

As stated earlier, we remove input-feeding in 
the decoder of the baseline model (Luong et al., 
2015). While input-feeding has been proposed by 
Luong et al. (2015) and has shown its advantages 
in translation accuracy, it has been found to be 
unsuitable for parallelism. Removing input-
feeding removes the dependency of calculation on 
previous steps in the decoder side. The green 
arrows going to the upper-right direction show 
that the computation of a node can start 
immediately after completion of left and down 
nodes computation in both encoder and decoder 
sides. By comparing Figures 2 with 3, we observe 
that removing input-feeding allows model 
parallelism to perform better parallel computation. 
Note that the proposed NMT model has already 
been proposed by Luong et al. (2015) as a simpler 
model than the baseline model with input-feeding. 
However, in the section on the experimentation, 
we show that removing input-feeding does not 
affect translation accuracy in terms of BLEU 
scores obtained. 

We now present how we alternate model 
parallelism and data parallelism on the same 4 
GPUs. This is the most important point in the 
proposed hybrid parallelism implementation. 

First, we use 4 GPUs for model parallelism. 
The source and target word embedding layers and 
4 LSTM layers are placed on 3 GPUs as shown in 
Figure 3. The remaining GPU (GPU 3 in Figure 
3) stores the hidden states of all steps in the 
encoder-decoder part. 

After the forward process of all hidden states, 
we move to data parallelism. The intermediate 
results of all hidden states for all data in the mini-
batch are distributed equally to 4 GPUs. While all 
GPUs have replicas of the same network structure,  

 
Figure 3. Proposed model for hybrid parallelism. 
  
as shown in Figure 3, we use GPU 0 as the root 
for accumulating and synchronizing all parameter 
values relating to the calculation of attention 
scores, context vectors, softmax, and so on. The 
alternation of data parallelism and model 
parallelism on the backward process goes in a 
similar but opposite direction. 

As mentioned in Section 3.1, the encoder-
decoder part has much more parameters than the 
attention-softmax part. This is the reason why we 
use model parallelism on the encoder-decoder part 
and data parallelism on the attention-softmax part. 

We now describe closely how we obtain the 
attention scores and so on in Figure 3. We omit an 
explanation of model parallelism for stacked-
LSTM layers because it is straightforward. 

Let ࢻ be “attention scores” in Figure 3, it is a 
concatenation of all attention coefficients of all 
decoder steps. We employ the attention coefficient 
defined as global attention (Luong et al., 2015).   

ࢻ ൌ ሺߙଵ,⋯,ߙ௜,⋯,ߙேሻ ൌ Softmaxሺࢻෝሻ	 (1) 
 

ෝࢻ ൌ 	்ࡴ ఈܹ	(2)  ࡿ   

where ࡿ ൌ ൫ ଵܵ,⋯, ௝ܵ,⋯,ܵெ൯  denotes the concatena-
tion of all hidden states of length M in the encoder 
side, ࡴ ൌ ൫ܪଵ,⋯,ܪ௜,⋯,ܪே൯ denotes the concatena-
tion of all hidden states of length N in the decoder 
side, and ఈܹ  denotes a parameter matrix. Note 
that we can calculate ࢻ at once after obtaining the 
hidden states of all steps in the encoder-decoder 
part in the forward process. 

The “context vectors” ࡯  in Figure 3 can be 
defined as   

࡯ ൌ ሺܥଵ,⋯,ܥ௜,⋯,ܥேሻ=	ࢻ ∙  (3) ࡿ
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The “context decoded” ࢉࡴ  in Figure 3 can be 
defined as 
  

ࢉࡴ ൌ ሺܪ௖ଵ,⋯,ܪ௖௜,⋯,ܪ௖ேሻ
ൌ tanhሺ ௖ܹሾࡴ; 	ሿሻ࡯

(4) 

 

where ௖ܹ denotes a parameter matrix. Finally, the 
conditional probabilities ࡼ of the target sentence 
words can be computed as 
  

ࡼ ൌ ሺ ଵܲ,⋯, ௜ܲ,⋯, ேܲሻ ൌ Softmaxሼܨ௖ሺࢉࡴሻሽ	 (5) 
  

௜ܲ ൌ ܲሺݕ௜|ݕଵ,⋯,ݕ௜ିଵ,	࢞ሻ	 (6) 
  

where ܨ௖  denotes a liner function; ࢞  denotes the 
source sentence in the encoder side; ܡ ൌ
ሺݕଵ,⋯,ݕேሻ	  represents the target sentence in the 
decoder side. 

4 Experiments 

We evaluate training speed, convergence speed, 
and translation accuracy to compare the 
performance of the proposed approach as shown 
in Figure 3 (hereafter referred to as HybridNMT) 
with the baseline model shown in Figure 1 
with/without data/model parallelism. We also 
augment the proposed approach in Figure 3 with 
input-feeding (hereafter referred to as 
HybridNMTIF). HybridNMTIF lacks the 
parallelism in the decoder side but has input-
feeding. Consequently, comparing HybridNMT 
with HybridNMTIF clarifies the advantages of the 
proposed hybrid parallelism. 

4.1 Data statistics 

We used datasets of WMT14 (Bojar et al., 2014)2 
and WMT17 (Bojar et al., 2017)3 English-German 
shared news translation tasks in the experiments. 
Both datasets were pre-processed using the scripts 
of the Marian toolkit (Junczys-Dowmunt et al., 
2018)4. Table 1 shows the number of sentences in 
these datasets. For the WMT17 dataset, first, we 
duplicated the provided parallel corpus, and then 
we augmented the parallel corpus with the 
pseudo-parallel corpus obtained using back-
translation (Sennrich et al., 2016a) of the provided 
German monolingual data of 10 million (M) 
sentences. Overall, we used 19 M sentence pairs 
in the training. We also used the word vocabulary 
of 32 thousand (K) types from joint source and 
target byte pair encoding (BPE; Sennrich et al., 
2016b). 

                                                 
2 http://www.statmt.org/wmt14/translation-task.html 
3 http://www.statmt.org/wmt17/translation-task.html 
4 https://github.com/marian-nmt/marian-

 Training (original) 4492K 4561K 
 Training (monolingual) ― 10000K 
 Training (all) 4492K 19122K 
 Development 3000 2999 
 Test 3003 3004 

Dataset
en-de WMT14 WMT17

Sentences

   

Table 1. Datasets of WMT14 and WMT17. 
  

Parameter  Value

 word embedding size  512

 RNN cell type  Stacked-LSTMs
 hidden state size  1024
 encoder/decoder depth  4
 attention type  global
 optimizer  Adam

 initial learing rate  0.001

 learing rate decay  0.7    

Table 2. Model parameters. 
  

4.2 Parameter settings 

Both the baseline model and HybridNMT are 
trained with the same hyperparameters, as shown 
in Table 2. To prevent over-fitting, we set a 
dropout of 0.3 (Srivastava et al., 2014) and used 
Adam (Kingma and Ba, 2015) of the following 
setting: ߚଵ ൌ	0.9, ߚଶ ൌ 0.999, and ϵ ൌ 1e-8. 

All models were subject to the same decay 
schedule of learning rate because the convergence 
speed generally depends on it. In this experiment, 
the learning rate was multiplied by a fixed value 
of 0.7 when the perplexity of the development 
data increased in a fixed interval; an interval of 
5,000 and 20,000 batches for WMT14 and 
WMT17, respectively, reflecting the difference in 
the number of sentences in these training data. 

The machine type used for training had 4 GPUs 
of NVIDIA Tesla V100 and was capable of 
performing direct data transfer among all GPUs 
using NVLink. We implemented the baseline 
model with/without data/model parallelism, 
HybridNMT, and HybridNMTIF in MXNet 
v1.3.0 (Chen et al., 2015) 5 . We also used 
OpenNMT-lua v0.9.2 (Klein et al., 2017) for 
comparing the models because it implements the 
baseline model with/without data parallelism. We 
used the default synchronous mode in OpenNMT-
lua and the SGD optimizer as the default settings 
of the OpenNMT-lua. 

examples/tree/master/wmt2017-uedin 
5 https://github.com/apache/incubator-mxnet 
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4.3 Comparison of training speed 

Table 3 summarizes the main results of our 
experiment. In Table 3, “SRC tokens / sec” 
indicates the number of source tokens processed 
in one second. This is a standard measure for 
evaluating training speed; it is also implemented 
in OpenNMT-lua. “Scaling factor” stands for the 
ratio of “SRC tokens / sec” against that of one 
GPU. The mini-batch sizes were determined by 
the available GPU memories. Note that mini-
batch sizes were about 4 times when using 4 GPUs 
compared with those obtained when using 1 GPU. 

First, the scaling factors of HybridNMT were 
higher than those of data/model parallelism. They 
were 4.13 and 4.20 for WMT14 and WMT17 
datasets, respectively. This indicates that our 
hybrid parallel method for Seq2Seq RNN MT is 
faster than only data/model parallel approaches. 
Note also that these scaling factors were higher 
than the number of GPUs (4). This demonstrates 
the effectiveness of the proposed hybrid parallel-
ism. 

Second, the processing speed and scaling 
factors of OpenNMT-lua and those obtained from 
our implementation were similar. Table 4 shows 
that BLEU scores are comparable. These indicate 
that our implementation is appropriate. 

Third, the scaling factors of model parallelism 
were better than those of data parallelism were. 
For WMT14, the scaling factor of data parallelism 
in our implementation was 1.60 and that of model 
parallelism was 2.32. This indicates that model 
parallelism is faster than data parallelism for 
Seq2Seq RNN MT. We attribute this to the 
synchronization costs of a large number of 
parameters. The number of parameters used in the 
baseline model was 142 M and that for 
HybridNMT was 138 M. 

Finally, the scaling factors of HybridNMTIF 
were between those of HybridNMT and the 
baseline model with model parallelism. This 
indicates that the proposed hybrid data-model 
parallel approach is faster than speed obtained 
when using only model parallelism, even when 
the same network structure is used. Furthermore, 
removing input-feeding allows for faster training 
speed. 

4.4 Comparison of convergence speed 

Figure 4 shows the convergence speed for 
different methods applied to WMT14 and 
WMT17. The horizontal axis represents wall-
clock training time in hours. The vertical axis 

WMT14 WMT17 WMT14 WMT17 WMT14 WMT17

 OpenNMT-lua

   baseline (1GPU) 2979 2757 ― ― 64 64

     w/ data parallelism 4881 4715 1.64 1.71 256 256

 Our implementation

   baseline (1GPU) 2826 2550 ― ― 64 64

     w/ data parallelism 4515 4330 1.60 1.70 256 256

     w/ model parallelism 6570 6397 2.32 2.51 224 224

   HybridNMTIF 9688 9109 3.43 3.57 224 224

   HybridNMT   11672 10716 4.13 4.20 224 224

SRC tokens / sec Scaling factor Mini-batch size

   

Table 3. Results of training speed and scaling fac-
tors. 
   

 
 

 
Figure 4. Convergence speed for different meth-
ods. 
 
represents the perplexity of development data. We 
measured the perplexities at the ends of epochs, 
represented as points in the graphs. 

HybridNMT converges faster compared with 
other methods. This, in addition to Table 3, im-
plies that HybridNMT is better than other methods 
in terms of training and convergence speed. Other 
findings: data parallelism as implemented in both 
OpenNMT-lua and our implementation performed 
poorly as shown in Figure 4 as well as in Table 3. 
The perplexities obtained with model parallelism 
became similar to those of our hybrid parallelism 
after long runs. Finally, the convergence speed of 
HybridNMTIF was between those of HybridNMT 
and the baseline model with model parallelism. 
This indicates that the proposed hybrid data-
model parallel approach is faster than model par-
allelism, and removing input-feeding leads to 
faster convergence. 
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b = 3 b = 6 b = 9 b = 12 b = 15 b = 18 b = 3 b = 6 b = 9 b = 12 b = 15 b = 18

(1.0, 0.0) 21.80 21.83 21.81 21.74 21.65 21.54 31.70 31.86 31.73 31.73 31.65 31.55

(0.8, 0.0) 21.80 21.80 21.77 21.71 21.60 21.47 31.70 31.85 31.73 31.71 31.62 31.53

(0.6, 0.0) 21.77 21.77 21.69 21.63 21.50 21.37 31.68 31.81 31.72 31.68 31.57 31.48

(0.4, 0.0) 21.77 21.75 21.66 21.58 21.44 21.31 31.68 31.79 31.67 31.61 31.49 31.40

(0.2, 0.0) 21.77 21.75 21.65 21.56 21.42 21.28 31.65 31.79 31.64 31.59 31.48 31.38

(0.0, 0.0) 21.75 21.73 21.65 21.54 21.40 21.27 31.63 31.75 31.60 31.57 31.44 31.36

(0.2, 0.2) 21.14 21.08 21.18 21.12 21.10 21.15 30.87 30.94 30.84 30.85 30.79 30.70

b = 3 b = 6 b = 9 b = 12 b = 15 b = 18 b = 3 b = 6 b = 9 b = 12 b = 15 b = 18

1.0 22.43 22.75 22.72 22.75 22.79 22.75 32.23 32.60 32.61 32.73 32.65 32.60

0.8 22.43 22.71 22.63 22.67 22.67 22.63 32.20 32.52 32.59 32.70 32.67 32.62

0.6 22.35 22.62 22.56 22.55 22.54 22.50 32.16 32.44 32.51 32.56 32.55 32.49

0.4 22.29 22.50 22.43 22.38 22.40 22.35 32.10 32.32 32.36 32.38 32.38 32.32

0.2 22.26 22.37 22.29 22.24 22.26 22.20 32.02 32.19 32.25 32.26 32.21 32.16

0.0 22.23 22.27 22.14 22.11 22.13 22.04 32.01 32.11 32.18 32.16 32.09 31.98

length
normalization

OpenNMT-lua WMT 14  development (test2013) WMT 17  development (test2016)

BLEU scores

(length, coverage)
normalization

HybridNMT WMT 14  development (test2013) WMT 17  development (test2016)

BLEU scores

   

Table 4. BLEU scores obtained using different hyperparameters for WMT14 and WMT17 development 
data. The upper half shows the results obtained by OpenNMT-lua whereas the lower half is for the 
proposed HybridNMT. “b” stands for the beam size. 
 

4.5 Translation accuracy 

As mentioned in Section 3, the proposed Hybrid 
NMT uses a simpler model structure than that of 
the baseline model. We have shown in Figure 4 
that the perplexities of HybridNMT are 
comparable and even lower than those of the 
baseline model with data/model parallelism in a 
limited training time owing to its faster 
convergence speed. Herein, we compare the 
translation accuracy as measured by BLEU 
scores. 

To compare BLEU scores, first, we selected 
the models for the proposed HybridNMT and 
OpenNMT-lua based on the information pro-
vided in Figure 4. In other words, we selected the 
models with the lowest development per-
plexities. 
   Table 4 shows BLEU scores on the 
development data obtained by OpenNMT-lua and 
HybridNMT with diverse hyperparameters. The 
beam size was changed from 3 to 18. OpenNMT-
lua used the same normalization method of 
GNMT (Wu et al., 2016). Its optimal parameters 
for the development data were as follows: the 
beam sizes were 6 and 12 for WMT14 and 
WMT17, respectively; the length normalization 
values were both 1.0; and the coverage 
normalization values were both 0. The proposed 
HybridNMT used the same normalization of 
Marian (Junczys-Dowmunt et al., 2018), which 
simply divided the model score using a length 

WMT14 WMT17

test2014 test2017

 RNNsearch-LV  Jean et al. (2015) 19.4 ―

 Deep-Att  Zhou et al. (2016) 20.6 ―

 Luong  Luong et al. (2015) 20.9 ―

 BPE-Char  Chung et al. (2016) 21.5 ―

 seq2seq  Britz et al. (2017) 22.19 ―

 OpenNMT-lua  Klein et al. (2017) 19.34 ―

 Our experiment 21.85 25.92

 HybridNMT  Our experiment 22.71 26.91

 GNMT  Wu et al. (2016) 24.61 ―

 Nematus (deep model)  Sennrich et al. (2017) ― 26.6

 Marian (deep model)  Junczys et al. (2018) ― 27.7

System Reference

 
   

Table 5. BLEU scores published regarding 
Seq2Seq RNN MT. 
 
normalization factor. Its optimal parameters were 
as follows: the beam sizes were 15 and 12 for 
WMT14 and WMT17, respectively and the 
length penalties were 1.0 for both datasets, 
implying that the model score was divided by the 
number of target words to get the normalized 
score. 

We measured BLEU scores for WMT14 and 
WMT17 test data using the parameters stated 
above. Table 5 shows the BLEU scores together 
with other published results on the same test data 
using Seq2Seq RNN MT for reference. For the 
WMT14 dataset, the proposed HybridNMT 
outperformed all the others but GNMT (Wu et al., 
2016). Note that GNMT used 8 layers for the 
encoder-decoder part, while the proposed 
HybridNMT used 4 layers. Note also that the 
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BLEU score of OpenNMT-lua in this experiment 
was higher than that of Klein et al. (2017). This 
is probably because Klein et al. (2017) used 2 
layers but we used 4 layers in our experiments. 
For the WMT17 dataset, the proposed 
HybridNMT performed comparably with other 
results. The results show that the translation of 
the proposed HybridNMT is accurate com-
parably with other Seq2Seq RNN MT models.  

5 Conclusions 

We have proposed a hybrid data-model parallel 
approach for Seq2Seq RNN MT. We applied 
model parallelism to the encoder-decoder part 
and data parallelism to the attention-softmax part. 
The experimental results show that the proposed 
hybrid parallel approach achieved more than 4 
times speed-up in training time using 4 GPUs. 
This is a very good result compared with data 
parallelism and model parallelism whose speed-
up was around 1.6-1.7 and 2.3-2.5 times when the 
same 4 GPUs were used. We believe the proposed 
hybrid approach can also be applied to the 
Transformer translation model because it also has 
the encoder, decoder, and softmax layers. 
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Abstract

Machine Translation models are trained to
translate a variety of documents from one
language into another. However, models
specifically trained for a particular char-
acteristics of the documents tend to per-
form better. Fine-tuning is a technique for
adapting an NMT model to some domain.
In this work, we want to use this technique
to adapt the model to a given test set. In
particular, we are using transductive data
selection algorithms which take advantage
the information of the test set to retrieve
sentences from a larger parallel set.

In cases where the model is available at
translation time (when the test set is pro-
vided), it can be adapted with a small sub-
set of data, thereby achieving better perfor-
mance than a generic model or a domain-
adapted model.

1 Introduction

Machine Translation (MT) models aim to gener-
ate a text in the target language which corresponds
to the translation of a text in the source language,
the test set. These models are trained with a set of
parallel sentences so they can learn how to gener-
alize and infer a translation when a new document
is seen.

In the field of MT, Neural Machine Translation
(NMT) models tend to achieve the best perfor-
mances when large amounts of parallel sentences
are used. However, relevant data is more useful
than having more data. Previous studies (Silva

c© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

et al., 2018) showed that models trained with
in-domain sentences perform better than general-
domain models.

However, training models for domains that are
distant from general domains, such as scientific
documents, is not always a simple task as paral-
lel sentences are not always available. In addition,
identifying the domain adds complexity if the do-
main of the document to be translated is too spe-
cific. The alternative explored in this work is to
build models adapted to a given test set.

In order to build task-specific models, data se-
lection algorithms play an important role as they
retrieve sentences from the training data. Data se-
lection methods can be classified (Eetemadi et al.,
2015) according to the criteria considered to select
sentences (e.g. select sentences of a particular do-
main, good quality sentences, etc.). In this work,
we use the transductive (Vapnik, 1998) data selec-
tion methods which use the document to be trans-
lated to select sentences that are the most relevant
for translating such text.

In some cases, the organizations in charge of
translating a document are also the owner of the
translation model and training data. Therefore,
knowing the test set is an advantage that can be
helpful for adapting the generic MT model towards
the test set (Utiyama et al., 2009; Liu et al., 2012).

The approaches presented here consist of build-
ing a single NMT model and delay part of the pro-
cess of training data for adapting the model when
the test set is available. Although this implies in-
creasing the time involved in translating a docu-
ment, it also has some benefits.

First, using a single model causes storing mul-
tiple task-adapted models not to be necessary.
Moreover, identifying the domain of the document
(and so, the most appropriate model) before the
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translation is also avoided. In addition, due to the
fine-grained adaptation, other characteristics that
may have not been foreseen (e.g. formal or in-
formal register, technical or literal vocabulary, the
gender of the speaker etc.) are also considered.

This paper presents the performance of three
transductive data selection algorithms (TA), ap-
plied to NMT models, showing how these models
can be improved by adapting them with a small set
of data. The TAs are executed using the test set
as seed, but there are other approaches such as us-
ing an approximated target-side (Poncelas et al.,
2018a; Poncelas et al., 2018c).

The remainder of this paper is structured as fol-
lows. In Section 2, we state the research ques-
tions that we want to investigate. Section 3 con-
tains some insights of other works that are related
to this and Section 4 describes the data selection
methods used in the experiments. In Section 5 we
perform an analysis of fine-tuning and in Section 6
we build the models used as baselines in later ex-
periments. The results of the main experiments are
explained in Section 7 and finally, in Section 8, we
conclude and indicate further research that can be
carried out in the future.

2 Research Questions

In this work, we are using a general-domain data
set to build an NMT model. Then, this model will
be adapted, performing fine-tuning, to two differ-
ent test sets in two domains: news and health. The
data used to adapt the model is retrieved by the al-
gorithms described in Section 4. These methods
will retrieve sentences from: (i) the general do-
main data; (ii) different in-domain datasets; and
(iii) from a concatenation of both the general do-
main and in-domain set. Therefore the research
questions we propose to explore are the following
three:

1. Can a model fine-tuned with a subset of data
outperform the model trained with general
domain data?

The work of Poncelas et al. (2018b) showed
that performing fine-tuning on a subset of
data (used to build the model) yields small
improvements (and not statistically signifi-
cant at level p=0.01). A limitation in their ex-
periments is that, as BPE is not applied, the
vocabulary of the adapted model remains the

same as the general model. As in these exper-
iments we are processing the data using BPE,
the limitation of the vocabulary should disap-
pear (as sub-words are considered rather than
complete words). We are interested in ex-
ploring whether performing fine-tuning with
a subset of the data (in which BPE was ap-
plied) can improve the base model.

2. Can a model fine-tuned with a subset of in-
domain data outperform the model fine-tuned
with the complete data set?

The general uses of fine-tuning (Luong
and Manning, 2015; Freitag and Al-Onaizan,
2016) consist of using in-domain data set to
adapt a model. However, we want to in-
vestigate whether applying data selection in
smaller in-domain set can also lead to im-
provements.

3. Can a model fine-tuned with a dataset mix-
ture of general-domain and in-domain data
outperform the previous-mentioned models?

By considering both datasets (general and
in-domain data), the number of candidate
sentences is increased. This also poses a
challenge to the transductive algorithm as
most of the candidate sentences are not in-
domain. We are interested in exploring
whether these algorithms can successfully re-
trieve sentences that lead to improvements.

3 Related Work

There are several adaptation techniques for NMT.
Chu and Wang (2018) structure them into two
main groups, data centric (techniques which in-
volve augmenting or modifying the training data)
and model centric (techniques which involve mod-
ifying the architecture or the procedure with which
the model is trained). In this paper, we use a com-
bination of both as we use data selection methods
(data centric) and fine-tuning (model centric).

The technique of fine-tuning (Luong and Man-
ning, 2015; Freitag and Al-Onaizan, 2016) con-
sists of training an NMT model with a general do-
main data set until convergence, and then using an
in-domain set for the last epochs.

The work of van der Wees et al. (2017) showed
that training an NMT model using less (but more
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in-domain) data each epoch achieves improve-
ments over a model trained with all data. Their
experiments include weighting the sentences using
Cross Entropy Difference (Axelrod et al., 2011),
and then, each epoch e the top-Ne sentences are
used as training data where N1 ≥ Ne ≥ Nlast

A proposal in which they use the test set to adapt
the model is the work of Li et al. (2018). In
particular, they fine-tune a pre-built NMT model
for each sentence in the test set. They use three
methods to retrieve the sentences that are the most
similar to a sentence of the test set: (i) Leven-
shtein distance (Levenshtein, 1966); (ii) cosine
similarity of the average of the word embeddings
(Mikolov et al., 2013); and (iii) the cosine sim-
ilarity between hidden states of the encoder in
NMT. The main difference with our work is that
they adapt the model sentence-wise (one model for
each sentence) whereas the adaptations presented
here are document-wise (one model for each test
set). Although performing adaptations sentence-
wise gives more fine-grained adaptations, it also
has several disadvantages: (i) the computational
cost is higher as there are several iterations (as
many as sentences in the test set) of selecting data
and fine-tuning; (ii) the usage of the data is less ef-
ficient as a same sentence can be extracted multiple
times (in different iterations); and (iii) using differ-
ent models for each sentence has the potential risk
of performing translations that are not consistent
throughout the entire document.

4 Transductive Data Selection
Algorithms

In this work, we investigate data selection meth-
ods that exploit the information of the test set to
retrieve sentences. These methods select a subset
of from the parallel set (S, T ) used as training data.
In particular, they select sentences based on over-
laps of n-grams between the test set Stest and the
source side of the parallel data S. In this work, we
explore the following three techniques:

TF-IDF Distance Method: Distance methods
measure how close two sentences are by using
metrics as Levenshtein distance (which computes
the minimum number of insertion, deletions or
substitutions of characters that are necessary to
transform one sentence into the other) to score
the similarities. Hildebrand et al. (2005) propose
TF-IDF distance i.e. to use cosine between TF-
IDF (Salton and Yang, 1973) vectors as distance

metric. In their work, for each stest ∈ Stest the
top sentences from S are selected. Although they
are aware that the resulting set contains duplicated
sentences, in their experiments the models contain-
ing duplicated sentences achieve slightly better re-
sults.

TF-IDF measures the importance of the terms
in a set of documents. Each document D can
be represented as a vector of terms wD =
(w1, w2, . . . w|V |), where |V | is the size of the vo-
cabulary. Each wk is calculated as in (1):

wk = tfk ∗ log(idfk) (1)

where tfk is the term frequency (TF) of the k-th
term in D, i.e. the number of occurrences, and
idfk is the inverse document (IDF) frequency of
the k-th term, as in (2):

idfk =
#documents

#documents containing term k
(2)

The similarity between two sentences a and b
is computed as the inverse of the cosine distance
of their TF-IDF vectors, wa and wb, as in Equa-
tion (3):

sim(a, b) = 1− cos(wa,wb) = 1− wa ·wb

|wa||wb|
(3)

In the TFIDF transductive method, each sen-
tence s in the Candidate data S is scored according
to the highest similarity with a sentence r from the
test set Stest computed as in Equation (4):

score(s) = max
r∈Stest

sim(s, r) (4)

Infrequent n-gram Recovery (INR): Parcheta
et al. (2018) propose extracting those sentences
containing n-grams from the test set that are con-
sidered infrequent (Gascó et al., 2012) (so fre-
quent words such as stop words are ignored).

A sentence s is scored according to the number
of infrequent n-grams shared with the set of sen-
tences of the test set Stest. It is computed as in
Equation (5):

score(s) =
∑

ngr∈{Stest
⋂

s}
max(0, t− CL(ngr))

(5)
where CL(ngr) is the count of ngr in the selected
set of sentences L (those that have been selected
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already). t is the number of occurrences of an
n-gram to be considered infrequent. If the num-
ber of occurrences of ngr is above the threshold t
then ngr is considered frequent n-gram (the com-
ponent max(0, t− CS(ngr)) is 0) and it does not
contribute for scoring the sentence. When a sen-
tence is added to the selected pool the count of the
n-gram in the candidate data CL(ngr) is updated
(Gascó et al., 2012).

Feature Decay Algorithms (FDA): Feature De-
cay Algorithms Biçici and Yuret (2011) selects
data trying to maximize the variability of n-grams
in the selected data by decreasing their value as
they are added to a selected pool L, which eventu-
ally becomes the selected data.

In order to do that, the n-grams in the test set
are extracted and assigned an initial value. Each
sentence in the set of candidate sentences has an
importance score (i.e. the normalized sum of the
score of its n-grams) of being selected.

Then, iteratively, the sentence with the highest
score in the candidate data is selected and added to
a set of selected pool L. In addition, the values of
the n-grams of the selected sentence are decreased
to ensure a variability of n-grams. The values are
decreased according to the decay function in Equa-
tion (6):

decay(f) = init(f)
dCL(ngr)

(1 + CL(ngr))c
(6)

where CL(ngr) is the count of the n-gram ngr in
L. c and d are parameters of FDA. By default they
have a value of 0 and 0.5, respectively.

The decay(ngr) function in Equation (6) indi-
cates the score of the feature ngr at a particular
iteration, so it is dependent on the set of selected
sentences L.

The sentence s is scored as a normalized (by
length of the sentence) sum of the scores of the
features. Considering the default values in Equa-
tion (6), the resulting score function is as in Equa-
tion (7):

score(s, L) =

∑
ngr∈Fs

0.5CL(ngr)

# words in s
(7)

where Fs is the set of n-grams in sentence s.
Once the selected pool L contains the desired

amount of sentences, the sentences are retrieved as
selected data.

5 Experimental Setup

The data sets used in the experiments are based on
the ones used in the work of (Biçici, 2013):

We build German-to-English NMT model using
the data provided in the WMT 2015 (Bojar et al.,
2015) (4.5M sentence pairs). We consider this data
set as the general-domain training data to build the
non-adapted NMT (BASE). As development data,
we use 5K randomly sampled sentences from de-
velopment sets of previous years.

The BASE model is adapted to two domains:
news and health. Therefore we also use two test
sets and two in-domain training set (for the re-
search question 2 and 3 explained in Section 2):

• News Domain: We use the test set provided
in WMT 2015 News Translation Task, and
the in-domain rapid20161 data set (1.3M sen-
tence pairs) provided in WMT 2017 News
Translation (Bojar et al., 2017).

• Health Domain: German-to-English parallel
text from the European Medicines Agency
(EMEA)2 (Tiedemann, 2009) (361K sen-
tence pairs). For health domain test set
we use the Cochrane 3 dataset provided in
WMT 2017 biomedical translation shared
task (Yepes et al., 2017).

Note that the general-domain set contains sen-
tences from a corpus such as Europarl (Koehn,
2005) which causes the domain to be closer to the
news domain.

All data sets are tokenized, truecased and Byte
Pair Encoding (BPE) (Sennrich et al., 2016) is
applied with 89500 merge operations (the num-
ber of operations used in the work of Sennrich
et al. (2016)). The models have been built using
OpenNMT-py (Klein et al., 2017). We keep the
default settings of OpenNMT-py: 2-layer LSTM
with 500 hidden units, vocabulary size of 50000
words for each language.

We use different evaluation metrics to evaluate
the performance of the models built in the experi-
ments. These models are evaluated on the test sets
using several evaluation metrics: BLEU (Papineni
et al., 2002), TER (Snover et al., 2006) and ME-
TEOR (Banerjee and Lavie, 2005). The scores as-
signed by this metrics indicate an estimation of the
1https://tilde.com/
2http://opus.nlpl.eu/EMEA.php
3http://www.himl.eu/test-sets
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quality of the translation (compared to a human-
translated reference). Higher scores of BLEU and
METEOR indicate better translation quality. TER
is an error metric, therefore lower scores indicate
better performance.

In each table, scores that are better than the base-
line are shown in bold. Furthermore, scores that
constitute a statistically significant improvement at
level p=0.01 over the baseline are marked with an
asterisk. This was computed with multeval (Clark
et al., 2011) using Bootstrap Resampling (Koehn,
2004).

6 Baseline Results

6.1 Baseline Results with General-domain
Data

BASE12 BASE13
BLEU 26.16 26.34
TER 54.41 54.41
METEOR 30.00 30.09

Table 1: Results of the model BASE12 and BASE13 evalu-
ated on the news test set.

BASE12 BASE13
BLEU 33.29 33.14
TER 46.11 46.79
METEOR 34.62 34.57

Table 2: Results of the model BASE12 and BASE13 evalu-
ated on the health test set.

Table 1 presents the results evaluated with the
news test set evaluated in the 12th epoch of
the base model (BASE12) and the 13th epoch
(BASE13). Similarly, Table 2 presents the re-
sults evaluated with the test set in the health do-
main. These results help to confirm that the mod-
els trained for 12 epochs are close to convergence:
In Table 1 the increment in performance from the
12th to the 13th epoch is just of 0.0018 BLEU
points and in Table 2 the performance is worse in
the 13th epoch.

6.2 Baseline Results With In-domain Data

Following the work of Luong and Manning (2015;
Freitag and Al-Onaizan (2016) we adapt the base
system (BASE12) by performing the 13th iteration
in a different, smaller, in-domain data set. We cre-
ate two new models, one adapted to the domain of

BASE12 BASE12 +
rapid2016

BLEU 26.16 24.05
TER 54.41 55.86
METEOR 30.00 28.74

Table 3: Results of the model BASE12 fine-tuned with the
in-domain news set.

BASE12 BASE12 +
EMEA

BLEU 33.29 34.69
TER 46.11 44.43
METEOR 34.62 34.99

Table 4: Results of the model BASE12 fine-tuned with the
in-domain health set.

news (BASE12 + rapid2016) and another one to
the health domain (BASE12 + EMEA).

We see, in Table 4, how using in-domain data
for fine-tuning can increase the performance with
more than 2 BLEU points. However, the data set
chosen for performing fine-tuning is important, as
in Table 3 we see the performance of the model be-
comes worse after fine-tuning with the rapid2016
dataset. This also indicates that the addition of new
data is not necessarily good.

7 Main Experiments

In order to answer the questions in Section 2, we
perform three set of experiments: fine-tune the
BASE12 model with a subset of the general do-
main data (Section 7.1), with a subset of in-domain
data (Section 7.2), and with a subset of data re-
trieved from both general domain data and in-
domain data (Section 7.3).

We use the default configuration of the data se-
lection methods. We use d = 0.5, c = 0 and 3-
grams as features in FDA (Equation (6)).

In the INR method we also use 3-grams as ngr
(in Equation (5)). In order to find a value of the
threshold for the experiments, in this paper we ex-
ecute several runs of INR using different values of
t, multiplying by two in each execution (we try 10,
20, 40, 80 ...). In the experiments we use the high-
est value of t that fulfills one of the following crite-
ria: (i) the execution time should be under 48 hours
or (ii) the number of sentences retrieved at least
500K. Accordingly, the value of t in news domain
is 80 (230K sentences retrieved) and in health do-
main 640 (275K sentences retrieved).
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7.1 Results of Models Trained in a Subset of
General-Domain Data

BASE13 BASE12
+
TFIDF

BASE12
+ INR

BASE12
+ FDA

100K lines
BLEU 26.34 26.41 26.49 26.49
TER 54.41 54.45 54.19 54.21
MET. 30.09 30.14 30.21* 30.21*

200K lines
BLEU 26.34 26.33 26.44 26.55*
TER 54.41 54.41 54.35 54.17*
MET. 30.09 30.03 30.12 30.24*

500K lines
BLEU 26.34 26.44 - 26.40*
TER 54.41 54.40 - 54.47
MET. 30.09 30.11 - 30.10*

Table 5: Performance on the news test for the BASE12
model, fine-tuned with subsets of the training data.

BASE13 BASE12
+
TFIDF

BASE12
+ INR

BASE12
+ FDA

100K lines
BLEU 33.14 33.95* 33.52* 33.68*
TER 46.79 45.99* 45.92* 45.97*
MET. 34.57 34.96* 34.77 34.71

200K lines
BLEU 33.14 33.97* 33.88* 33.96*
TER 46.79 46.03* 45.90* 45.64*
MET. 34.57 34.89* 34.94* 35.01*

500K lines
BLEU 33.14 34.14 - 33.75*
TER 46.79 45.60* - 45.92*
MET. 34.57 34.96* - 34.92*

Table 6: Performance on the health test for the BASE12
model, fine-tuned with subsets of the training data.

In order to investigate the first question men-
tioned in Section 2 we select a subset of sentences
of the general-domain data (the data set used to
build BASE12). We extract subsets of three dif-
ferent sizes: 100K, 200K, and 500K lines. The
only exception is the INR method which, with the
established configuration, retrieves at most 230K
sentences and 275K sentences using the news and
health test, respectively. The BASE12 model is
fine-tuned for a 13th epoch using the subset of data
extracted.

In Table 5 and Table 6 we show the performance
of the base model in the first column (BASE13 col-
umn) and then the model in which the last epoch is
fine-tuned using data selected by one of the three
data selection algorithms. As we can see, fine-
tuning the model with the selected data leads to
improvements for most of the experiments (num-
bers in bold).

The vocabulary considered in the fine-tuning is
the same used for building the BASE12 model.
However, as BPE has been applied, this restriction
is less strict. For example, in the sentence of the
news test set “das Bildungsministerium teilte mit,
etwa ein Dutzend Familien sei noch nicht zurück-
gekehrt.” (according to the reference, “the Educa-
tion Ministry said about a dozen families still had
not returned.”) the word “Bildungsministerium”
(“Education Ministry”) would have been left out
(even if in the selected data there are several occur-
rences) if BPE was not applied because it is infre-
quent in the general domain set. As in these exper-
iments we use BPE, the adapted models achieves
improvements in terms of fluency.

The non-adapted, BASE13 model translates the
above-mentioned sentence as “the Ministry of Ed-
ucation said, for example, that a dozen families did
not return.”. In this sentence, the phrase “for ex-
ample” has been added. The model adapted using
TFIDF (100K lines) generates a similar sentence
(i.e. “the Ministry of Education said, for example,
that a dozen families had not returned.”), but this
problem is corrected by the model adapted using
INR and FDA (100K lines) as both of them gen-
erate the same translation: “the Ministry of Ed-
ucation said, about a dozen families have not re-
turned.”. Here the phrase “for example” added by
BASE13 model is removed.

7.2 Results of Models Trained with a Subset
of In-Domain Data

In order to answer the second research question
stated in Section 2, we also execute the same trans-
ductive algorithms (using the same configuration)
in the in-domain set (i.e. rapid2016 and EMEA).
We retrieve the same amount of sentences: 100K,
200K and 500K lines for news domain; and 100K
and 200K for the health domain (as EMEA only
has 361K sentences).

In Table 7 we show in the first column,
BASE12+rapid2016, the performance of the
model fine-tuned with the complete in-domain
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BASE12
+
rapid2016

BASE12
+
TFIDF
rapid2016

BASE12
+ INR
rapid2016

BASE12
+ FDA
rapid2016

100K lines
BLEU 24.05 25.05* 25.39* 25.46*
TER 55.86 55.67 55.52* 55.41*
MET. 28.74 29.07* 29.50* 29.49*

200K lines
BLEU 24.05 24.76* - 25.12*
TER 55.86 55.77 - 54.76*
MET. 28.74 28.91 - 29.54*

500K lines
BLEU 24.05 24.59* - 24.75*
TER 55.86 55.67 - 55.10*
MET. 28.74 28.85 - 29.33*

Table 7: Performance on the news test for the BASE12
model, fine-tuned with subsets of the rapid2016 data set.

BASE12
+
EMEA

BASE12
+
TFIDF
EMEA

BASE12
+ INR
EMEA

BASE12
+ FDA
EMEA

100K lines
BLEU 34.69 35.11 35.22 35.18
TER 44.43 45.09 43.60 44.94
MET. 34.99 35.17 35.25 35.15

200K lines
BLEU 34.69 35.55 - 35.11
TER 44.43 44.18 - 43.66
MET. 34.99 35.70* - 35.28

Table 8: Performance on the health test for the BASE12
model, fine-tuned with subsets of the EMEA data set.

rapid2016 set (also presented in Table 3). The
other columns contain the evaluation scores af-
ter fine-tuning BASE12 model with subsets of
rapid2016. Similarly, Table 8 indicates the per-
formance of the model fine-tuned with theEMEA
dataset and different subsets (evaluated with health
test). Note also that the number of sentences re-
trieved by INR (using the same configuration as
in the previous section) is less than 200K lines, so
those experiments are not executed.

Using a subset of in-domain data can improve
the performance as again, most of the scores in
Table 7 and Table 8 are marked in bold. We
see that the impact of the models evaluated in the
news domain (Table 7) is higher as all experiments
achieve statistically significant improvements at
level p=0.01 for at least one evaluation metric. De-
spite that, none of the models improve the BASE13
model (column BASE13 in Table 1).

7.3 Results of Models Trained with a Mixture
of General-Domain and In-Domain Data

As we have seen in previous sections, applying
fine-tuning with subsets of data can perform bet-
ter than using the complete dataset. In this section,
we aim to explore the performance of models fine-
tuned on data retrieved from a mixture of the two
datasets used in previous sections: data used for
building the BASE12 model, and in-domain data
(rapid2016 or EMEA datasets). These experiments
are particularly interesting in the case of news test
because using an external dataset led to worse re-
sults.

TFIDF INR FDA

news test
100K lines 52% 89% 86%
200K lines 50% 88% 87%
500K lines 46% - 86%

health test
100K lines 27% 67% 69%
200K lines 29% 70% 71%
500K lines 31% - 74%

Table 9: Percentage of base training data lines retrieved.

In Table 9 we present the percentage of lines
from the general domain dataset present in the se-
lected data. We observe that in the news domain
(the first subtable in Table 9) the percentages are
higher than in the health domain (the second sub-
table). This indicates how these transductive meth-
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ods are capable of identifying better sentences. As
shown in Table 3, the sentences from the base
dataset are more useful for the news test as us-
ing the rapid2016 set for tuning the model leads
to worse results.

If we perform a (column-wise) comparison of
the three methods, we can observe that the INR
and FDA methods retrieve a similar amount of sen-
tences from the base set. By contrast, the TFIDF
method seems to retrieve a smaller amount of sen-
tences from the general domain data (the percent-
ages in column TFIDF of Table 9 are much lower
than the other columns).

BASE13 BASE12
+
rapid2016

BASE12
+ TFIDF

BASE12 +
INR

BASE12 +
FDA

100K lines
BLEU 26.16 24.05 26.42 26.56 26.65*
TER 54.41 55.86 54.57 53.92* 54.23
MET. 30.09 28.74 30.06 30.21 30.25*

200K lines
BLEU 26.16 24.05 26.14 26.40 26.59
TER 54.41 55.86 54.72 54.25 54.22
MET. 30.09 28.74 29.95 30.13 30.13

500K lines
BLEU 26.16 24.05 26.24 - 26.23
TER 54.41 55.86 54.53 - 54.27
MET. 30.09 28.74 29.99 - 30.02

Table 10: Performance on the news test for the BASE12
model, fine-tuned with subsets of a combination of the BASE
and rapid2016 data sets.

BASE13 BASE12 +
EMEA

BASE12 +
TFIDF

BASE12 +
INR

BASE12
+ FDA

100K lines
BLEU 33.29 34.69 34.48 34.96 34.89
TER 46.11 44.43 45.28 44.68 44.95
MET. 34.62 34.99 35.30 35.35 35.21

200K lines
BLEU 33.29 34.69 35.57 35.56 35.59
TER 46.11 44.43 44.23 44.59 45.54
MET. 34.62 34.99 35.59 35.77* 35.54

500K lines
BLEU 33.29 34.69 36.79* - 35.78
TER 46.11 44.43 43.30* - 44.88
MET. 34.62 34.99 36.05* - 35.99

Table 11: Performance on the health test for the BASE12
model, fine-tuned with subsets of a combination of the BASE
and EMEA data sets.

In Table 10 and Table 11 we show two base-

lines: (i) column BASE13 shows the model
built performing 13 epochs; and (ii) column
BASE12+rapid2016 and BASE12+EMEA present
the results observed in Table 3 and Table 4, respec-
tively. In those tables we indicate in bold those
scores that are better than both baselines.

The models adapted to the news test (Table 10)
using INR and FDA tend to perform better than
both the BASE13 and the BASE12+rapid2016
models. This is especially true for smaller datasets
(the adaptation with 100K lines achieves statisti-
cally significant improvements at p=0.01) but be-
comes closer to BASE13 when more sentences are
retrieved (500K lines subtable). For the TFIDF
method, despite the fact that it achieves better re-
sults than the BASE12+rapid2016 model, most of
the scores are worse than the BASE13 model. As
mentioned earlier, TFIDF tends to retrieve more
sentences from the rapid2016 set (Table 9), and as
we saw before using more sentences from this set
leads to worse performing models.

In the health domain (Table 11), by contrast,
TFIDF performs slightly better (the only exper-
iment that achieves statistically significant im-
provements at p=0.01 for the three evaluation met-
rics).

8 Conclusion and Future Work

In this work, we have shown how general domain
models can be adapted to a test set by fine-tuning
not only to a particular domain but also to a special
subset of sentences (retrieved from in-domain or
out-of-domain data) that are closer to a test set and
achieve better results.

We have seen that fine-tuning a model using a
subset of data can achieve better performance than
the model trained with the full training set. This
is also applicable when using an additional set of
in-domain sentences. Nonetheless, the best results
are observed when augmenting the candidate sen-
tences (i.e. combining general and in-domain sen-
tences) as presented in Section 7.3.

FDA offers a good balance in performance and
speed. INR achieve results similar to FDA, but the
execution time is dependent on the configuration
(i.e. value of the threshold t) and it may cause to
exceed several hours (FDA requires less than one
hour for the same execution). The configuration
also restricts the amount of sentences retrieved. In
the experiments performed, we retrieved no more
200K sentences to evaluate INR whereas for the
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other TA we could retrieve 500K parallel lines.
Moreover, in this work we have used the same val-
ues of t for all the experiments, which have been
determined following the most restrictive assump-
tion of not knowing the in-domain data. In the
future, we want to evaluate the models fine-tuned
with data retrieved from INR using different values
of t.

TFIDF technique, although achieving compara-
ble results, we find to be the weakest of the TA ex-
plored. The main differences with the other two is
that is not a context-dependent (i.e. it does not con-
sider the selected pool to retrieve new sentences)
and in addition, each sentence is considered in-
dependently. This caused that for larger test set
such news, the improvements tend to be smaller or
not to find statistically signifficant improvements
at p=0.01 (e.g. tables 5 and 10).

The experiments carried out in this paper can
be further expanded using different language pairs,
different domains and different selected-data sizes.
Moreover, other configurations of data selection
algorithms could be investigated. For example, us-
ing n-grams of higher order, executing INR with
different values of t, in Equation (5), or FDA with
different values of d and c, in Equation (6) (Pon-
celas et al., 2016; Poncelas et al., 2017).

The techniques explored here can also be used
in combination with other approaches aiming to
adapt models towards a particular domain. The
models presented in Section 7.3 can be further ex-
panded by adding a tag in the source sentences in-
dicating the domain explicitly (Chu et al., 2017;
Poncelas et al., 2019b), using a target-side seed
or using synthetic sentences (Chinea-Rios et al.,
2017; Poncelas et al., 2019a).
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Abstract

Among recent progresses of neural ma-
chine translation models, the invention of
the Transformer model is one of the most
important progresses. It is well-known that
the key technologies of the Transformer
include multi-head attention mechanism.
This paper introduces the multi-head atten-
tion mechanism into the traditional RNN-
based neural machine translation model.
Moreover, inspired by the existing multi-
hop architectures such as end-to-end mem-
ory networks and convolutional sequence
to sequence learning model, this paper pro-
poses an RNN based NMT model with a
multi-hop attention mechanism. The pro-
posed multi-hop attention model has two
heads, where for each head, a context vec-
tor is calculated based on the states of the
encoder and the decoder. Then, in the
second turn of the context vector calcu-
lation, those context vectors are updated
depending not only on one’s own con-
text vector but also on the context vec-
tor of the other head. Experimental re-
sults show that the proposed model signifi-
cantly outperforms the baseline in BLEU
score in Japanese-to-English/English-to-
Japanese machine translation tasks with
and without extended context.

1 Introduction

RNN encoder-decoder model (Bahdanau et al.,
2015; Luong et al., 2015; Sutskever et al.,

© 2019 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

2014) was the state-of-the-art in machine trans-
lation. However, it is outperformed by non-
recursive encoder-decoder models such as Trans-
former (Vaswani et al., 2017) and Convolutional
Sequence-to-Sequence (Gehring et al., 2017) in re-
cent years. However, RNN is not considered to be
inferior to Transformer in all respects. For exam-
ple, according to Tran et al. (2018), it is reported
that Transformer is not good at decoding sentences
whose length is not included in the training data
and it is weak to long distance dependency. In
other words, it is weak against long sentence trans-
lation. It seems that Transformer became more
powerful than RNN by increasing the number of
parameters, but it became weak to long sentences
for the same reason.

We propose an RNN based source-to-target at-
tention mechanism where the number of parame-
ters increases by repeating the calculation of multi-
head attention for a single-source encoder like
multi-hop attention in end-to-end memory net-
works (Sukhbaatar et al., 2015). In the proposed
mechanism, those increased number of parameters
are well-tuned so that the overall translation accu-
racy improves, in particular, for long sentences.
The proposed multi-hop attention mechanism is
based on the hierarchical attention (Libovický and
Helcl, 2017) for multi-source encoders, although,
in the hierarchical attention (Libovický and Helcl,
2017), the number of parameters for one input does
not increase, unlike in the proposed multi-hop at-
tention mechanism.

In evaluation, we compared the performance of
the proposed method with Transformer and RNN
encoder-decoder using OpenSubtitles 2018 (Lison
et al., 2018) and Asian Scientific Paper Excerpt
Corpus (ASPEC) (Nakazawa et al., 2016). To test
the power of translating long sentences, we also
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(a) Baseline RNN-based model (b) Multi-head RNN model

(c) Hierarchical attention model (d) Proposed method: Multi-hop attention model

Figure 1: Baseline attention and proposed attention

made a context-aware translation model, called 2-
to-2 (Bawden et al., 2018; Tiedemann and Scher-
rer, 2017) for OpenSubtitles 2018. In the Japanese-
to-English translation of the ASPEC corpus, the
proposed method achieved a significantly better
score than the Transformer for long sentences with
more than 120 tokens.

In the following sections, we first show pre-
vious works on baseline RNN and multi-head
RNN encoder-decoders in Section 2. We then de-
scribe the proposed multi-hop method in Section 3.
We then show the performance for Japanese-to-
English and English-to-Japanese translation tasks,
focusing on long sentences in Section 4.

2 Neural Machine Translation

2.1 RNN based sequence to sequence NMT

There are two distinctive features in sequence-to-
sequence model (Bahdanau et al., 2015; Luong et
al., 2015) using RNN (Figure 1(a)). One point is
that its encoder and decoder can naturally handle
time series and the other point is that it can decide
which encoder states in the time series the decoder
should pay attention to by introducing a mecha-
nism called source-target attention (Bahdanau et
al., 2015; Luong et al., 2015).

In other words, the source-target attention of
RNN is designed to deal with time series compared
with the self-attention of Transformer where time
series are artificially represented using positional
embeddings (Vaswani et al., 2017). In this paper,
considering this point, we propose a novel model

suitable for long sentences by efficiently increas-
ing the number of parameters for source-target at-
tention.

2.2 Multi-head Attention

In this paper, we define multi-head attention with
N heads as follows, where k (= 1, . . . , N ) denotes
the index of the k-th head and i (= 1, . . . , I) de-
notes the index of the i-th word.

s
(k)
i = W (k)

a di (1)

c
(k)
i = softmax(s

(k)
i HT)H (2)

In equation (1), the output of RNN decoder di

is duplicated and converted differently with the
weights into multi-head. W

(k)
a is a learnable pa-

rameter, which duplicated and converted di to s
(k)
i .

In equation (2), dot product attention (Luong et
al., 2015; Vaswani et al., 2017) is used to calcu-
late the context vector c

(k)
i between k-th head of a

decoder state s
(k)
i and encoder states H .

When the model has two heads (N = 2), the
equation (1) and the equation (2) becomes as fol-
lows.

s
(1)
i = W (1)

a di (3)

s
(2)
i = W (2)

a di (4)

c
(1)
i = softmax(s

(1)
i HT)H (5)

c
(2)
i = softmax(s

(2)
i HT)H (6)
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Figure 2: Proposed method detail

As shown in the equation (5) and the equation (6),
by using multiple parallel attention via the param-
eters W

(k)
a , we expect that each head will attend to

a different part of the encoder states.
Chen et al. (2018) attempted to incorporate the

various mechanisms of the Transformer into RNN
encoder-decoder. They used multi-head attention
as shown in Figure 1(b) in source-target attention.
Our method becomes the same as their method
when we use single-hop attention.

3 Multi-Hop Attention RNN

3.1 Multi-Hop Dependent Attention
To the best of our knowledge, multi-hop at-
tention is first used in end-to-end memory net-
work (Sukhbaatar et al., 2015) to extend the ex-
pressive power of RNN. To introduce multi-hop at-
tention into translation, we refer to hierarchical at-
tention (Libovický and Helcl, 2017) in multimodal
translation, which combines the context vector ob-
tained from the text and the intermediate expres-
sion vector for an image obtained using CNN.

e
(k)
i = vT

b tanh(Wbs
(k)
i + U

(k)
b c

(k)
i ) (7)

β
(k)
i =

exp(e
(k)
i )

∑N
n=1 exp(e

(n)
i )

(8)

c
′(k)
i = β

(k)
i U (k)

c c
(k)
i (9)

Equation to compute context vector is defined as
equation (7), equation (8), and equation (9). Fig-
ure 2 is a detailed diagram of the proposed method.

Table 1: Difference between the proposed method and previ-
ous studies

Method source head hop
Baseline RNN single single single

Multi-head RNN single multi single
Hierarchical attention multi single multi

Proposed method single multi multi

To illustrate the difference, the proposed method
and hierarchical attention are shown in Figure 1(d)
and Figure 1(c) and their difference is summarized
in Table 1.

In hierarchical attention, since attention is cal-
culated between states of each encoder for multi-
ple source and states of a single decoder, it uses
a single-head for each source. On the other hand,
our method uses multiple heads for a single source,
where attention is directed to different parts of
the source sentence and each head influences each
other to learn better feature representation. In
equation (7), we calculate the attention score be-
tween a decoder state s

(k)
i and output of the head

of the previous hop c
(k)
i using Multi Layer Percep-

tron (MLP) attention (Luong et al., 2015).
The reason for adopting the MLP attention for

the second hop instead of the dot product atten-
tion used in the first hop (equation (2)) is that the
weight of each head can be shared. Since the pa-
rameters Wb and vb in the equation (7) and Fig-
ure 2 are shared by all heads, we expect each head
can influence each other. According to the report
of Vaswani et al. (2017), it is said that dot product
attention is superior to MLP attention. However,
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since it has no parameters to be shared, we assume
it is not suitable as an attention mechanism for the
second hop.

The equation (8) normalizes the attention score
of each head to β

(k)
i by softmax where n ranges

over all heads1. Finally, a new context vector c
′(k)
i

is calculated by learnable parameter U
(k)
c , β

(k)
i ,

and c
(k)
i .

When the number of heads N is 2, the above
calculation procedure becomes the following:

e
(1)
i = vT

b tanh(Wbs
(1)
i + U

(1)
b c

(1)
i ) (10)

e
(2)
i = vT

b tanh(Wbs
(2)
i + U

(2)
b c

(2)
i ) (11)

β
(1)
i =

exp(e
(1)
i )

exp(e
(1)
i ) + exp(e

(2)
i )

(12)

β
(2)
i =

exp(e
(2)
i )

exp(e
(1)
i ) + exp(e

(2)
i )

(13)

c
′(1)
i = β

(1)
i U (1)

c c
(1)
i (14)

c
′(2)
i = β

(2)
i U (2)

c c
(2)
i (15)

Finally, we concatenate the N context vectors c
′(k)
i

with the RNN decoder state di to obtain the predic-
tion of the output word distribution p(yi|yi−1, X)
where Wo is a learnable parameter.

oi = tanh(Wo[di; c
′(1)
i ; ...; c

′(k)
i ]) (16)

p(yi|yi−1, X) = softmax(oi) (17)

When the number of heads N is 2, equation (16)
becomes the following:

oi = tanh(Wo[di; c
′(1)
i ; c

′(2)
i ]) (18)

3.2 Multi-Hop Independent Attention

In the multi-hop dependent attention described in
the previous subsection, we use the information of
other heads and share parameters of MLP atten-
tion (Wb and vb) over all heads (equation (7)) to
1Haddow et al. (2018) evaluated a similar multi-head
and multi-hop attention mechanism, although Haddow et
al. (2018) employed the vector concatenation over the multi-
ple heads in stead of normalization. Haddow et al. (2018) also
reported that the multi-head and multi-hop attention mecha-
nism outperformed the baseline RNN model in the evaluation
of the language pairs of CS-EN, EN-CS, ET-EN, EN-ET, FI-
EN, and EN-FI, where the length of the training sentences is
limited to 50 words or less. In this paper, on the other hand,
in the evaluation of the language pairs of JA-EN and EN-JA,
the proposed multi-head and multi-hop attention mechanism
outperformed the Transformer when the number of tokens is
120-129.

calculate the secondary context vector c
′(k)
i (equa-

tion (9)).
We also implemented multi-hop independent at-

tention, where the secondary attention is calculated
by feed forward neural networks whose parame-
ter is U

(k)
c without using MLP attention. In this

method, equation (9) is changed as follows.

c
′(k)
i = U (k)

c c
(k)
i (19)

In this method, since there are no parameters to
be shared among heads and no scaling parameters
such as β

(k)
i in equation (8), information of other

heads are not used in the secondary attention.

4 Evaluation

In order to confirm the usefulness of the proposed
method, this section describes experimental eval-
uation results in Japanese-to-English/English-to-
Japanese machine translation tasks with and with-
out extended context. we used BLEU (Papineni et
al., 2002) as the evaluation measure.

4.1 Data
We used the Japanese-English parallel corpora
obtained from OpenSubtitles 2018 (Lison et al.,
2018) and Asian Scientific Paper Excerpt Corpus
(ASPEC) (Nakazawa et al., 2016).

In OpenSubtitles 2018, the total 2,083,576 par-
allel sentences are divided into 90.0% training
data (1,872,077 sentence pairs), 5% development
data (102,724 sentence pairs), and 5% test data
(108,775 sentence pairs). OpenSubtitles 2018 is
a parallel corpus composed of movie subtitles,
and their sentences are ordered along the line of
the story of the movie. Therefore, in addition to
the data used in machine translation tasks with-
out extended context, we created data for context-
aware translation according to Tiedemann and
Scherre (2017) as follows.

First, given a single pair of a source sentence
and a target translated sentence, the source sen-
tence and its immediately preceding sentence are
concatenated with a ⟨CONCAT⟩ token, and sim-
ilarly, the target sentence and its immediately
preceding sentence are also concatenated with a
⟨CONCAT⟩ token. By translating the concatenated
source sentence pair, a pair of translated target sen-
tences concatenated with a ⟨CONCAT⟩ token is
obtained. Then, only the second sentence after
the ⟨CONCAT⟩ token is extracted and evaluated.
In context translation, this 2-to-2 (Tiedemann and
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Table 2: Evaluation Result

OpenSubtitles 2018 ASPEC OpenSubtitles 2018
with context

Model head hop ja→en en→ja ja→en en→ja ja→en en→ja
RNN baseline 1 1 12.12 9.27 26.41 36.39 13.85 10.24

Multi-head RNN
(single-hop attention)

2 1 12.38‡ 9.36† 26.63 36.60† 14.14‡ 10.32
3 1 12.42‡ 9.55‡ 26.98† 36.55 14.28‡ 10.53‡

Proposed Method
(multi-hop

independent attention)
2 2 12.47‡ 9.61‡ 26.95† 36.31 14.16‡ 10.18

Proposed Method
(multi-hop

dependent attention)

2 2 12.87‡ 9.89‡ 27.33‡ 36.91‡ 14.41‡ 10.74‡
2 3 12.88‡ 9.87‡ 27.39‡ 37.41‡ 14.79‡ 10.79‡
3 2 13.03‡ 9.83‡ 27.27‡ 37.54‡ 14.83‡ 10.55‡
3 3 13.03‡ 9.76‡ 27.21‡ 37.49‡ 14.52‡ 10.76‡

Transformer 4 1 15.20 10.95 27.50 38.25 15.98 11.44
Proposed methods that significantly outperform the RNN baseline are indicated by †(p ≤ 0.05) and ‡(p ≤ 0.01).

[1]ja→en [2]en→ja

Figure 3: BLEU per sentence length (ASPEC)

Scherrer, 2017) method is a major and increases
the number of length per sentence. So, context
translation faces long sentence translation.

For ASPEC, among the 3,000,000 training sen-
tence pairs, 1,000,000 sentence pairs with the
highest sentence alignment scores were used.
Other than the training sentence pairs, 1,790 sen-
tence pairs as the development data as well as
1,812 sentence pairs as the test data are provided
by Nakazawa et al. (2016). Also, held out sentence
pairs other than those training/development/test
data sets are used for the evaluation per sentence
length in Section 4.3.

For ASPEC, we conducted an evaluation per
sentence length. The widths of the sentence length
are segmented with the intervals of 10 words such
as 0-9 words, 10-19 words, . . ., etc. Each subset
for a range of the sentence length is constructed
by collecting sentences within that range accord-
ing to the criterion that the total number of word

tokens within each subset is kept as 20,000. Here,
for several subsets of short sentences as well as
long sentences, held out development sentence
pairs with the highest sentence alignment scores
are used so as to keep the total number of word
tokens within each subset as 20,000. We do not
set any upper bound of sentence length in train-
ing/development/test. This is for the purpose of
evaluating the capability of the proposed method
against long sentences.

For tokenization, we used the SentencePiece
tool (Kudo and Richardson, 2018) to set the vo-
cabulary size of 32,000 each for both Japanese and
English in order to avoid unknown words. Before
splitting into subword units by SentencePiece, tok-
enization is performed by the morphological anal-
ysis tool MeCab2 for Japanese, and by Moses To-
kenizer (Koehn et al., 2007) for English3.

2http://taku910.github.io/mecab/
3By performing tokenization before splitting into subword
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Table 3: BLEU per sentence length (ASPEC ja→en)

sentence length 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100-109 110-119 120-129 130-139
number of sentences 1594 1248 810 579 457 372 315 272 238 214 192 176 162 151

RNN baseline 5.94 18.47 27.10 27.16 25.44 22.97 23.71 21.70 21.34 20.96 23.14 21.18 19.78 18.73
multi-hop dependent

(head2, hop2) 6.40‡ 19.43‡ 27.62 27.78 26.49† 24.08‡ 25.02‡ 22.42 22.74‡ 22.72‡ 23.11 20.62 20.56†† 20.62‡††

Transformer 7.50 19.70 27.29 28.83 25.67 23.62 24.31 22.39 22.34 21.90 22.89 20.80 17.88 17.36

Proposed methods that significantly outperform the RNN Baseline are indicated by †(p ≤ 0.05) and ‡(p ≤ 0.01). Proposed

methods that significantly outperform the Transformer are indicated by †(p ≤ 0.05) and ††(p ≤ 0.01).

Table 4: BLEU per sentence length (ASPEC en→ja)

sentence length 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100-109 110-119 120-129 130-139
number of sentences 2531 1303 823 591 458 373 314 272 239 213 193 177 162 108

RNN baseline 24.44 32.41 36.60 36.16 35.58 33.29 31.75 28.65 29.72 28.43 27.14 25.21 20.82 16.86
multi-hop dependent

(head2, hop2) 24.90† 32.83 37.03 37.28‡ 35.91 33.17 33.40‡ 30.12† 30.54 28.52 26.33 25.43 24.18‡†† 20.01†

Transformer 25.06 34.41 38.79 38.69 37.09 34.10 33.95 31.49 32.35 29.49 27.00 24.43 21.90 18.22

4.2 Experimental Setup

The baseline is the bidirectional sequence-to-
sequence model (Luong et al., 2015) using Long
Short-Term Memory (LSTM) which is a kind of
RNN. We used fairseq (Gehring et al., 2017) for
implementation.

As training, we used Nesterov’s Accelerated
Gradient (Sutskever et al., 2013) as optimizer with
a learning rate of 0.005. The embedding size was
512, the hidden size was 1024, and the encoder and
the decoder are of one layer each. For compari-
son, we also conducted evaluation with the Trans-
former, where the number of heads was set to 4
according to the default setting4 of fairseq, and its
learning rate was set to 0.0001 following the re-
sult of investigating the value at which its loss con-
verged. For all the models, the number of epochs
in training was 20. The number of tokens per batch
was 2,000 and two GPUs were used in parallel5.

4.3 Result

Evaluation results are shown in Table 2. Hereafter,
as the proposed method without any specific no-
tice, we refer to the model with two heads and two
hops of multi-hop dependent attention, which is
the model described in Section 3 and Figure 2.

In the evaluation of Japanese-to-English transla-
tion of ASPEC, the BLEU of the proposed method
was 27.33, which significantly outperforms 26.41
BLEU of RNN baseline. And English-to-Japanese

units by SentencePiece, it is guaranteed that any subword unit
concatenating over tokenization boundaries is avoided.
4Its embedding size is 512, its hidden size is 512, the opti-
mizer used is adam, the encoder and the decoder are of 6 lay-
ers each.
5The speed of the decoder of the proposed multi-head and
multi-hop dependent attention model is roughly two-thirds of
that of the baseline RNN model where the numbers of heads
and hops are 2.

translation of ASPEC, the BLEU of the proposed
method was 36.91, which significantly outper-
forms 36.39 BLEU of RNN baseline. In addi-
tion to that, when we measured BLEU for each
sentence length, the proposed method significantly
outperforms Transformer when the sentence length
was between 120 and 129 tokens both direction
(Figure 3 [1], Table 3, Figure 3 [2], Table 4). Also,
there is no long sentence which has over 120 to-
kens in the English side of the training corpus.

In multi-hop dependent attention, each head
used the information of another head when calcu-
lating secondary attention, and two heads shared
their parameters. We also evaluated the multi-
hop independent attention, where their two heads
do not share any information. According to AS-
PEC’s Japanese-to-English translation, the multi-
hop dependent attention model achieved the BLEU
of 27.33, while the BLEU of the multi-hop in-
dependent attention model was 26.95. In the
English-to-Japanese translation, the dependent
model achieved the BLEU of 36.91, while that of
the independent model was 36.31. Both differ-
ences are significant at the level of 1% respectively.

In addition, the single-hop attention refers to
a model that introduces multi-head attention into
source-target attention of RNN and simply in-
creases the number of heads. In the single-hop
model with two heads, the BLEU in the eval-
uation of Japanese-to-English translation of AS-
PEC was 26.63, which was lower than that of the
proposed multi-hop dependent attention model as
27.33. The single-hop attention model is infe-
rior to the proposed multi-hop dependent atten-
tion model for all the data sets and both translation
directions. Thus, this result supports the useful-
ness of the proposed multi-hop dependent attention
model.
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Table 5: Model Parameters

Model head hop Parameter
RNN baseline 1 1 68,460,544

Multi-head RNN
(single-hop attention)

2 1 70,557,696
3 1 72,654,848

Proposed Method
(multi-hop

independent
attention)

2 2 72,654,848

Proposed Method
(multi-hop
dependent
attention)

2 2 75,800,576
2 3 81,043,456
3 2 79,994,880
3 3 87,334,912

Transformer 4 1 81,604,608

5 Related Works

Dehghani et al. (2019) proposed Universal Trans-
former for solving the problems of Transformer
including the weakness for long distance depen-
dency. Although it has a mechanism to repeat up-
dating the states for each word with parameters
shared, it requires a larger number of parameters
than Transformer. There could be an approach
like BERT (Devlin et al., 2019) where the number
of parameters is increased significantly to make a
more powerful Transformer model. Our approach,
on the other hand, improves the strength of RNN
with a little increase of parameters as shown in Ta-
ble 5. Moreover, Iida et al. (2019) also applied the
multi-hop attention mechanism to the Transformer
and reported that the Transformer augmented with
the multi-hop attention mechanism significantly
outperformed the Transformer. Among other ex-
isting approaches to neural machine translation, it
is known that ConvS2S (Gehring et al., 2017) is
equipped with multiple decoder layers where each
decoder layer has a separate attention module. The
attention of each of those multiple layers is com-
puted and is then fed to another layer, which then
takes the fed information into account when com-
puting its own attention etc. The way those multi-
ple attentions are computed is similar to the multi-
head and multi-hop attention mechanism proposed
in this paper.

6 Conclusion

We proposed a novel multi-hop and multi-head at-
tention mechanism for RNN encoder-decoder in
which each head depends on each other repeat-
edly. We found that the proposed method sig-
nificantly outperforms the baseline attention-based

RNN encoder-decoder. We also found that it out-
performs Transformer when the input sentence is
very long.

As we showed in Table 2, among the numbers
of multi-head and multi-hop, the pair of the num-
bers of multi-head and multi-hop with the highest
BLEU score varies according to the data sets. Con-
sidering this fact, one future work is to study how
to estimate the pair of the numbers of multi-head
and multi-hop with the optimal BLEU score by in-
troducing a held-out development data set.
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 Abstract 

This is the first study on how patent pro-

fessionals use gist machine translation 

(MT) in their work. Inductive, qualitative 

research methods were adopted to explore 

the role of gist MT specifically in deci-

sion-making. Results show that certain de-

cisions by patent professionals rely on gist 

MT, that the decision to involve human 

translation is often based on a risk assess-

ment, and that certain factors in the patent 

environment give affordances for the use 

of gist MT. The study contributes to the 

body of knowledge on patent MT users 

and on gist MT users in general. 

1 Introduction 

Machine translation (MT) for patents has been 

developed for a few decades and a broad body of 

research is devoted to the technologies and 

techniques for producing patent MT. The 

professionals who work with patents – patent 

attorneys, counsels, examiners, etc. – use this MT 

in its raw, unedited form to obtain a basic 

understanding, or gist, of patent documents that 

they need but that are in languages they do not 

understand. Although their use of this raw MT 

(termed gist MT in this article) has been 

widespread for approximately a decade, very little 

research has been conducted on these MT users. 

In fact, while the number of studies on one group 

of professionals who use MT in their work, 

translators, has increased in recent years, research 

on other professional groups who use the 

technology remains scarce.  
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The main objective of this article is to provide 

the first study focused specifically on the users of 

patent MT. The article presents the results of a 

qualitative, exploratory study based on interviews 

with a small group of patent professionals who use 

MT in their daily work. Three themes were inves-

tigated for the article: the types of decisions patent 

professionals make based on machine-translated 

information, the risk assessment they use when 

deciding between relying on gist MT or opting for  

human translation, and finally, the environmental 

factors that appear to give affordances for the use 

of gist MT in this context.  

Two important aspects of patent MT are not in 

the scope of this study. First, the article does not 

focus on the issue of quality of MT output, as that 

has already been studied in numerous other arti-

cles. Instead, I wanted to concentrate on exploring 

other factors that influence gist MT use. Second, 

another key application of patent MT is its use by 

professional post-editors to enhance their transla-

tion process. These users are not included in the 

scope of this study. 

The article will help to inform research and so-

lution development in the patent MT field. It will 

also contribute to studies of different professions’ 

use of gist MT and to a general understanding of 

gist MT users. Better knowledge of how MT is 

used in different contexts and what contributes to 

successful use will help us to define what makes a 

potential use case good, or conversely poor, for 

gist MT use. In addition, research on experienced 

users of this form of artificial intelligence can give 

us insights into the needs of users of other AI tech-

nologies.  
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The structure of the article is as follows: the 

next section contains a review of related work.  

This is followed by a description of the data and 

methods used in this study. Section 4 discusses the 

types of decisions that patent professionals report 

making based on gist MT. Section 5 describes the 

risk assessments that informants appeared to un-

dertake when deciding on ordering human trans-

lation. Section 6 focuses on the factors in the work 

environment that appear to support the use of gist 

MT. Final conclusions and suggestions for further 

studies are presented in Section 7. 

2 Related work 

To the best of my knowledge, thus far no studies 

have been conducted on how patent professionals 

use gist MT in their everyday work. A few 

experimental studies have been done. Larroyed 

(2018) and Tinsley et al. (2012) describe 

evaluation experiments in which one evaluation is 

performed by real patent professionals. A number 

of studies describe technical solutions for patent 

MT, and some of those include discussions of 

some aspects of MT in patent professionals’ work, 

for example, Tinsley (2017), Rossi and Wiggins 

(2013), and List (2012). In addition to these, a few 

studies that focus on patent searchers also allude 

briefly to MT in patent search, including Joho et 

al. (2010) and McDonald-Maier (2009). 

To date there is only a small body of research 

on professional areas where gist MT is used. Pro-

fessional translation has been studied to some ex-

tent, though in that industry MT is predominantly 

used for dissemination and not for gisting. Indus-

tries with reported use of gist MT include cus-

tomer support, academia, medicine and the legal 

field. Customer support groups began to offer 

multilingual access to knowledge base articles 

through gist MT in the early 2000s. However, al-

though several articles describe these solutions 

(e.g. Stewart et al., 2010; Dillinger and Gerber, 

2009), very little user experience research has 

been undertaken, as stated in one of the few stud-

ies on actual users (Burgett, 2015: 30). A growing 

body of research focuses on the use of MT in aca-

demia. Much of this focuses on the effects of MT 

on education and students, but some of the studies 

also cover educators’ viewpoints, such as Bowker 

and Eghoetz’s (2007) study on the acceptability of 

MT in a university setting and Bowker and Bui-

trago’s (2019) book on using MT in research. 

Health care is another field where gist MT is be-

ginning to be researched. Liu and Watts (2019) 

give a good overview of current studies on mobile 

MT use in health care. Most recently, John Tinsley 

describes the emergence of new use cases for gist 

MT in two different industries: legal and life sci-

ences (Beninatto and Stevens, 2019). Both cases 

are similar to the patent case in that MT is mainly 

used to sift through large numbers of documents 

to categorize and then locate the ones that need 

further scrutiny and possibly human translation.   

Work in the area of risk and translation has ex-

amined risk assessment and management strate-

gies either as part of the individual translator’s 

work (Pym, 2015; Pym and Matsushita, 2018), or 

from the perspective of the translation process and 

service provider (Canfora and Ottmann, 2018). 

Canfora and Ottmann (2016) present a model for 

risk management for internal translation pro-

cesses, including a risk matrix combining the 

probability of risk and the potential consequences. 

A recent paper by Nitzke, Hansen-Schirra and 

Canfora (2019) introduces a model for assessing 

the risk associated with using post-edited or gist 

MT. Nonetheless, the focus of that study is primar-

ily the post-editing context, while scenarios in-

volving unedited MT remain mostly unexplored. 

3 Methods 

The main data for this study was gathered through 

interviews with nine patent professionals working 

in Scandinavia. The term patent professional in 

this study refers to professionals in the intellectual 

property rights (IPR) field who use their expertise 

in patents to assist and guide others (internal or 

external groups) in their IPR processes. These 

professionals hold a variety of titles, such as 

Patent Counsel, Patent Attorney, and Patent 

Examiner. The informants for the study are 

presented in Table 1. 

 
Type of informant N 

Patent professionals working in compa-

nies that are active in filing and prose-

cuting patent applications  

5 

Patent professionals working in an IPR 

service provider 

2 

Patent professionals working in a  

government patent office 

2 

Total  9 
Table 1. Informants interviewed for the study 

I included informants from the key areas where 

patent professionals work: private companies, IPR 

service providers, and governmental 

organizations. The largest group consisted of 

professionals working in companies that file 

patent applications. This is somewhat reflective of 
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the 2010 survey by Joho et al., in which 88% of 

respondents reported working predominately with 

internal clients (Joho et al., 2010: 16), which 

indicates that they worked in patent-filing and 

prosecuting companies. In addition to the 

interviews, I gathered background information 

through talking to people involved in creating and 

maintaining patent MT solutions. 

The average age of the informants was 47 and 

the average length of experience in the IP field 

was considerable, 17 years. The group was highly 

educated; all had at least a master’s level educa-

tion and four of the nine held a PhD degree. This 

is similar to the educational levels reported in 

Joho et al. (2010).  

The interviews were all semi-structured discus-

sions that occurred either at informants’ work-

places or through Skype audio calls. They were 

conducted in the time frame of April 2018 to Feb-

ruary 2019. The two themes of context and trans-

parency were explored in the interviews. I used a 

variety of sources in the development of the ques-

tions. ISO standard 9241-210:2010 (ISO, 2010) 

defines context of use through the broad catego-

ries of users, goals and tasks of users, and envi-

ronment, and this was a good starting point. I re-

lied on descriptions of patent processes in official 

documents (PRH, 2018; EPO, 2018) and other 

sources (Alberts et al., 2017; Oesch et al., 2014; 

Joho et al., 2010) to identify the touchpoints users 

might have with MT and to develop questions 

around those touchpoints. The questions also de-

veloped somewhat over the course of the data-

gathering phase. 

Most of the interviews were recorded, tran-

scribed with the aid of automatic transcription 

tools, and then post-edited. One interview was not 

recorded due to technical difficulties, so the data 

from that interview consisted of my notes taken 

during the interview. A total of 12 hours of inter-

viewing was conducted, and 229 pages of tran-

scription and note data compiled for analysis. 

The data was analyzed by closely following the 

thematic analysis method outlined by Braun and 

Clarke (2013, 2006, n.d.) with additional guidance 

from Merriam and Tisdell (2016). The data was 

approached from a semantic perspective, wherein 

“coding and theme development reflect the ex-

plicit content of the data” (Braun and Clarke, n.d.) 

rather than searching for underlying meanings in 

the data. One reason for this was that the topic of 

the use of technology at work was fairly straight-

forward. Also, the focus was on the context, as de-

scribed by informants, instead of each informant’s 

personal experiences.  

At a point later in the analysis process, a sum-

mary of findings was compiled and a member 

check performed by three of the informants. They 

were asked to compare the results against their 

own experiences and to comment on any incon-

gruences they may detect. These comments were 

then reviewed and incorporated into the analysis. 

A qualitative method was chosen for this study 

for specific reasons. First, it was necessary be-

cause this is the first study on how this group uses  

gist MT, and research at such an early stage often 

requires inductive, exploratory methods. When 

designing the study, there simply was not enough 

knowledge on these users to allow for the crafting 

of a quantitative study such as a survey. A second 

reason was that the small body of research on gist 

MT users in general tends to rely on surveys and 

laboratory experiments. I believed there was a 

need for in-depth studies that would give us a 

more nuanced view of the use of gist MT. I se-

lected interviewing for data-gathering because it 

proved difficult to persuade exceedingly busy pa-

tent professionals to participate in a study using 

more time-consuming qualitative methods such as 

diaries. The interviews required a commitment of 

only 1.5 hours, which seemed to be more tenable.  

4 Decisions that rely on gist MT  

Rossi and Wiggins (2013: 116) argue that “In the 

patent field, MT is used as a support tool for 

performing novelty, validity, infringement or 

state-of-the-art searches, and to provide a first 

understanding of the content of retrieved 

publications.” However, is gaining a “first 

understanding” really the only way patent 

professionals use MT, or do they actually make 

decisions based on gist MT? For example, Henisz-

Dostert’s study of scientists’ use of MT to 

understand Russian scientific articles reported 

that, contrary to predictions by early scholars that 

MT would be used only for scanning, scientists 

used MT “more as a tool of information than as a 

tool for the selection of information.” (Henisz-

Dostert, 1979: 180). One goal of this study was to 

explore the ways in which patent professionals 

use gist MT and the decisions they make with its 

help. 

4.1 Relevance  

One of the primary uses for patent MT, as defined 

by Tinsley (2017: 411) is “[to] provide an on-

demand ‘gist’ translation of foreign patents for 

information purposes to determine relevance.” 

The primacy of using gist MT for this purpose was 
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also found in this study. Informants described how 

they used gist MT when searching for ‘prior art’ 

(patent documents that show that an invention is 

not new and therefore present an obstacle to 

patenting it). For each patent document (either a 

patent or a patent application) found in their 

search, they need to decide whether it is relevant 

to the IPR process they are working on or not. 

Informants discussed four main IPR processes in 

which they use machine-translated information to 

determine relevance: (1) the patenting process 

(Does this invention show enough novelty that it 

could be patented?), (2) freedom to operate (Can 

we launch our products in this market or are there 

patents that we would be infringing on if we 

launched?), (3) monitoring (Is this patent 

application sufficiently relevant to our work that I 

should monitor its progress?), and (4)  

infringement (Is this patent infringing on one of 

our patents or are we in danger of infringing on 

someone else’s patent?).  

The results of this study reveal that the decision 

on relevance is very often made without the help 

of human translation. Therefore, the first decision 

made is not whether or not a patent document 

should be sent for human translation, but whether 

or not it appears to be relevant, and that is deter-

mined largely on the basis of gist MT: 

I would say it’s [the use of MT] successful in 90 

percent of the time because the conclusion is, 

this is not relevant…So rejecting things from fur-

ther analysis I think is done 9 out of 10 reviews 

of the machine translated documents. (PP4) 1 

It is important to note that the decision on 

relevance is not as minor a decision as it may 

seem. The consequences of mistakenly discarding 

a patent document that seems irrelevant can be 

considerable, as was reported by informants: 

...for example I can decide about a patent that it 

is not in any way relevant for us, which is a 

pretty strong decision, because then we shut it 

out completely, the whole followup of the patent, 

and we just think that that won’t be harmful, but 

then it could be that if there’s a mistake in the 

translation then it turns out that it really is harm-

ful. But those are the kinds of decisions I make. 

(PP1) 2  

At work we talk about how most mistakes take 

place because someone overlooks a relevant pa-

tent…when a mistake happens, it is most likely 

to be caused by that. But mistakes can come from 

                                                 
1 Here and elsewhere: PP = Patent Professional.  

Also, quotes have been edited for fluency. 

other reasons than the machine translation. 

There are just so many patents to go through. 

But putting it into the ‘not interesting’ pile is a 

risk. (PP3) 

4.2 Monitoring 

A second type of decision that is very often made 

based solely on gist MT is the decision to tag a 

patent application for monitoring. If an 

application is deemed relevant, patent 

professionals may decide to follow its progress 

throughout its prosecution. Besides being used to 

determine enough relevance for monitoring, Gist 

MT is also used to understand communications on 

the application’s prosecution or to review changes 

in the application. Tagging an application for 

monitoring also often means that the decision on 

human translation is postponed, because the 

application will most likely change before it is 

granted: 

…if it’s about pending patents then the claim 

scope is changing all the time, so therefore even 

if you would translate it and get it kind of right 

in the beginning, it’s something different when 

it’s granted…so therefore there's no point maybe 

to get it human translated at the early stage 

(PP2) 

4.3 Patenting and opposition 

A third area in which informants reported using 

gist MT in decision-making was during the 

patenting process. Within the European context, 

the role of MT in the examination process is 

explained in official guidelines: 

In order to overcome the language barrier con-

stituted by a document in an unfamiliar non-of-

ficial language, it might be appropriate for the 

examiner to rely on a machine translation of 

said document…A translation has to serve the 

purpose of rendering the meaning of the text in 

a familiar language…Therefore mere grammat-

ical or syntactical errors which have no impact 

on the possibility of understanding the content 

do not hinder its qualification as a translation. 

(EPO, 2018, Part G, Chap. IV-4)  

Patent examiners typically share the results of 

their patentability search with patent applicants, 

and any relevant patent document that is in 

another language is provided in machine-

translated form. Unless the applicant decides it is 

so important that they will provide a human 

2 Some quotes and passages translated by author. 
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translation, prosecution proceeds based on the 

machine translation. MT is occasionally used in 

opposition proceedings as well: 

PP9: I mean normally in opposition cases at the 

EPO, European Patent Office, you can use ma-

chine translations.  

Interviewer: OK. And in the Finnish patent of-

fice as well?  

PP9: Yes you can do that. I have never been 

asked to provide a human translation about any 

of these. 

5 Deciding on human translation: an  

exercise in risk assessment  

As far as translation is concerned, the most 

important decision patent professionals or patent 

applicants make is whether to rely on gist MT for 

understanding a relevant document or to have it 

translated by a human. Nitzke et al. (2019) 

proposes that this type of decision involves risk 

and that an assessment of those risks should be 

part of the process of decision-making. Evidence 

of such a risk assessment emerged in this study, 

with patent professionals weighing various factors 

before deciding on gist MT or human translation. 

The factors that supported human translation of a 

patent document included the riskiness of the IPR 

process in which the document would be used, the 

assumed relevance and importance of the other-

language document, and the potential 

consequences if a misunderstanding would occur 

due to an error in the gist MT. The factors 

supporting the use of gist MT were lower costs, 

quicker access to information, and trust that the 

patent document is adequately understood. This 

assessment was summarized by some informants: 

…the more important decision, the less you do 

the decision based only on the machine transla-

tion. (PP8) 

…if the context is clear then it’s OK as I see it, I  

trust the machine translations enough, but some-

times when we are in borderline decisions it’s 

required to have a proper human transla-

tion…So it’s more a question of the uncertainty 

margin of the translation with respect to what we 

are deciding. (PP4) 

Each side of this assessment is examined more 

closely below. 

5.1 Arguments for human translation 

One of the top considerations for triggering 

human translation was the IPR process the other-

language relevant document would be used in, 

with some processes being seen as more high-risk 

than others. Cases that involved infringement or 

freedom to operate might involve considerable 

costs and legal involvement, and these were 

consequently cited as cases in which human 

translation is often needed: 

It depends on the costs involved in the case…if 

you are in a patent battle, if there is an infringe-

ment case…there's a lot of money involved. If 

you want to be absolutely sure then you have to 

have a human translator. (PP9) 

If, based on the gist MT, a patent document 

appears to be highly relevant and important to a 

case, that would also serve as a strong argument 

for triggering human translation: 

…probably that also depends a little bit on the 

case. If it is highly important then I would 

choose immediately to get it translated, or 

claims or parts of it, translated with human 

translation. (PP2) 

Informants also mentioned potential 

consequences as a factor in the decision on human 

translation: 

If we make the wrong decision and allow a prod-

uct to the market which does not have freedom 

to operate, there is a risk of using time and 

money and goodwill in a court case and poten-

tially being responsible to cover the damages of 

a client. (PP4) 

5.2 Arguments for relying on gist MT 

The main arguments for using gist MT are clearly 

that translation is very quick and does not generate 

extra costs. MT is provided at no cost by various 

national and international patent offices such as 

the Japan Patent Office and the EPO, and it is 

commonly included by default in commercial 

patent search tools. Its use is also made easy 

through tight integration to patent search tools and 

processes.  

A complete understanding of the arguments for 

relying on MT in the risk assessment, however, re-

quires consideration of another important ele-

ment: how strong is the patent professional’s trust 

that they have a sufficient understanding of a pa-

tent document? Much of this depends on the qual-

ity of the machine translation, of course. However, 

past studies have shown that other factors can en-

hance users’ abilities to understand MT, and those 

were reported as helpful in this study as well. Two 

factors appeared to contribute to trust in under-

standing in this case study: the fact that patent pro-

fessionals rely on other resources than the gist 
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MT, and the background knowledge that patent 

professionals possess. These are discussed further 

in the following subsections. 

Understanding does not depend on MT alone  

The understanding of the machine translation of a 

patent document can be seen as a process of trying 

different alternatives until a sufficient level of 

understanding is achieved. The first alternative is 

to combine the gist MT with other resources, such 

as drawings and chemical formulas in the 

original-language patent documents, to enhance 

understanding. This combining of MT and 

auxiliary, often multimodal, information to obtain 

an understanding of other-language texts has been 

reported in other studies on MT users (Nitzke et 

al., 2019; Pituxcoosuvarn et al., 2018; Suzuki and 

Hishiyama, 2016; Way, 2013; Gaspari, 2004; 

Henisz-Dostert, 1979). Auxiliary information had 

a clear role in patent professionals’ reports of their 

work in this study as well: 

When it's good enough that I can see that it's rel-

evant? It’s a combination of understanding the 

figures and understanding the machine trans-

lated text. (PP6) 

Oh yeah then you have to look at the original 

because it doesn’t translate any of those chemi-

cal formulas…And then if they are totally differ-

ent then it could be that I don’t even make any 

translation because then I know that, well, they 

are talking about totally different things. (PP7) 

A second alternative patent professionals resort to 

are alternative machine translations from other 

MT tools, a practice that has been noted in earlier 

studies (Gao et al., 2015; Tinsley et al., 2012). At 

least one commercial patent search tool offers 

users access to both their own MT solution and the 

alternative of Google Translate in the same 

window. Although a few informants mentioned 

using a general tool such as Google Translate for 

alternative translations, a more common method 

was to try the MT tools provided by specific 

governmental patent offices: 

I do the EPO machine translation first and if 

that’s not more understandable then I go directly 

to the patent office that the publication came 

from, so Chinese or Japanese. (PP5) 

…for instance if it’s a Chinese document I go to 

Chinese Patent Office website and try to find the 

same application there…and usually it’s a dif-

ferent machine translation and that actually 

helps sometimes, when you have two machine 

translations you can read them at the same time 

and maybe it gives you a better impression. 

(PP6) 

The next alternative professionals can turn to are 

the other patent professionals they collaborate 

with. Instead of ordering a human translation of a 

text that is not sufficiently understood, they can 

ask the patent professionals who work more 

closely with the inventors (for example, the patent 

professionals in the country which the patent 

originates from) to clarify unclear passages for 

them.  

Background knowledge aids understanding 

As mentioned previously, the informants of this 

study were both highly experienced in the IPR 

field and well educated. Their contextual 

knowledge and competences in languages 

appeared to be important factors in helping them 

understand and use machine-translated 

information effectively.  

The importance of MT users’ knowledge of 

context in helping them understand machine-

translated texts has been reported in a number of 

studies. Henisz-Dostert (1979) found that a user’s 

familiarity with the subject matter was seen as the 

main factor in determining the understandability 

of machine-translated texts. Other studies that 

have highlighted the importance of contextual 

knowledge include Bowker and Buitrago (2019), 

Yasouka and Björn (2011), Yamashita et al. (2009) 

and Smith (2003).  

In the patent context, contextual knowledge is 

often divided between the patent professionals, 

who know the patent genre, and the inventors or 

researchers behind the patents, who know the sub-

ject matter better. These competences, their role in 

helping to understand machine-translated patents, 

and the division of expertise between patent pro-

fessionals and inventors were a common theme in 

the interviews.  

And when you understand…if we’re talking 

about patent publications there’s a certain 

structure and there’s a certain format that 

they’re in, then it's in a way easy easier to follow. 

(PP2) 

Several previous studies have examined the role 

of users’ language competence in gist MT 

scenarios (Nurminen and Papula, 2018; 

Nurminen, 2016; Henisz-Dostert, 1979). In the 

current study, this background competence also 

appeared to be a factor in successful use of MT. 

Although none of the informants spoke English as 

their native language, all used English daily in 

their work. Their MT use was mainly from other 
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languages into English, not into their native 

languages. Besides English, all informants had 

varying levels of competence in other languages, 

with German being the most often mentioned, 

followed by French, Spanish, Swedish, Italian, 

Dutch, and Japanese. Several informants 

indicated that competence in the source language 

helped them to understand texts that were 

machine-translated from those languages: 

And quite often I actually combine a machine 

translation and original reading…the comple-

mentarity of understanding the structure of the 

language better than the machine, and the ma-

chine understanding more words than I do, is a 

good complementarity. (PP4) 

However, the reality is that the major languages 

patent documents are translated from are Chinese, 

Japanese, and Korean because these countries are 

significant producers of patents. China became 

the world’s largest patent producer in 2011. By 

2017, China had filed 1.3 million patent 

applications, more than double the number filed 

by the second country, the U.S. (WIPO, 2018: 40). 

The predominance of China was mentioned in all 

interviews. We can assume from this that 

competence in the three major patent languages of 

Chinese, Japanese, and Korean would be 

particularly useful for patent professionals. 

6 Affordances in the patent context  

Thus far this article has presented a scenario in 

which patent professionals can and do use gist MT 

to make certain decisions. The article has also 

discussed the factors involved in their decisions to 

rely on gist MT or to order human translation. 

However, in the analysis of this study’s data, 

certain contextual factors emerged which 

appeared to make affordances for the use of gist 

MT. These affordances must be considered when 

discussing this specific case because they appear 

to play an important role in making the use of gist 

MT tenable, and an understanding of this 

ecosystem’s use of gist MT is incomplete without 

them. The following sections explore two factors 

of affordance, risk tolerance and legitimacy.  

6.1 Risk-tolerant environment 

In the book titled Translation Quality Assessment, 

Andy Way states that MT systems need to be 

evaluated with the knowledge of what the system 

would be used for. Way also notes that “[o]f 

course, some objectives could be more tolerant of 

MT errors than others” (Way, 2018: 170). Certain 

features of the patent environment, while perhaps 

not fully error-tolerant, appeared to make 

affordances for the risks and potential errors tied 

to the use of gist MT. 

The patenting process is long and iterative, with 

multiple parties often reviewing the same or sim-

ilar texts. Different stakeholders may have differ-

ent interpretations of a patent application’s scope 

and claims. To address these issues, the process 

contains space for discussion and mechanisms for 

stakeholders to examine and challenge each 

other’s work. One of these is explained in the 

Finnish Patent and Registration’s Patent Guide: 

Even though inventions must show absolute nov-

elty, it is not possible for patent authorities to 

clarify all public information when examining 

an application. For this reason, the examination 

process is augmented by the third-party obser-

vation and opposition processes, in which third 

parties, for example competitors, can bring to 

the attention of the authorities issues that did not 

emerge during the examination of the patent ap-

plication. (PRH, 2018: 19)  

The nature of this process means that there are 

also multiple stages where errors in the 

understanding of gist MT can be detected and 

corrected. This was described by one informant:  

Well of course you can get the wrong impression 

of the subject matter in the document, but I don’t 

see that it’s a really big risk because the patent 

application process is a long process, so if my 

interpretation of some kind of document based 

on the machine translation is wrong, I can 

change my mind later, if I see it. It takes usually 

over two years to get a patent so we get the an-

swer from the applicant and we probably write 

another office action and then the applicant re-

plies again, so it’s a conversation. So during the 

process there’s many times when these things 

can be dealt with. (PP6) 

Another informant described a case when parties 

examined and challenged each other’s MT work: 

We’ve had these cases where the examiner used 

Google Translate and we translate it using 

EPO’s official site and then we can explain to 

them that ‘now we would like to kindly point out 

that the translation used by the examiner con-

tained a mistake in this spot, and that we have 

this in that same spot, and our version uses the 

terms in this way.’ And we rely on the [machine] 

translation completely…the examiner doesn’t 

understand Japanese and we don’t understand 

Japanese. We are both relying on machine trans-

lation and there is nothing else. (PP1) 
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Besides the risk tolerance present in processes, 

the informants in this study displayed a tendency 

to accept the risk involved with using MT and 

making decisions based on it. One reason for this 

might be that the informants were vastly experi-

enced. Another reason might be that the IPR field 

contains other risks besides the use of gist MT, so 

the organizations they work in might have a 

higher willingness to take risks, or “risk appetite” 

as defined by Nitzke et al. (2019). Finally, the ac-

ceptance of risk might be an acknowledgement 

that the risk is simply necessary due to the impos-

sibility of relying on human translation for the 

large volumes of documentation they regularly 

encounter, as voiced by one informant: 

Yes, there is always risk involved. But we have 

so many patents to go through. Hundreds and 

hundreds at a time. It would be impossible if all 

of those had to be translated by a human. Always 

a risk though. (PP3) 

6.2 Legitimacy of MT 

One aspect of the use of MT in the patent 

environment that I did not expect when I began 

my research was the legitimacy that it enjoys. One 

of Merriam-Webster’s definitions for legitimate 

best reflects what it means in this context: 

“conforming to recognized principles or accepted 

[emphasis by author] rules and standards.”3 Three 

different themes in this study illustrated this 

legitimacy: MT use was transparent, the 

boundaries of its legitimacy were documented and 

generally agreed upon by users, and its users had 

a relatively high level of ‘MT literacy.’  

Transparency 

Transparency in gist MT use has been addressed 

in a few reports, most recently in a 2019 Globally 

Speaking Radio podcast in which John Tinsley 

reported that the legal profession is beginning to 

use MT for e-discovery, and that its use is fully 

transparent in that context: “So you go into the 

court and say to the judge, ‘We are taking this 

position on the basis of a machine translation of 

this document into English,’ and that’s legally 

defensible” (Beninatto and Stevens, 2019).  

At least in the European context of this study, 

the first sign of transparency was the inclusion of 

MT in EPO guidelines. Second, descriptions by 

study informants depicted an environment in 

which the role of MT is transparent to all. They 

                                                 
3 https://www.merriam-webster.com/dictionary/ 

legitimate 

also reported that MT is transparent to secondary 

users of patent MT, the internal and external cli-

ents the patent professionals work with. The re-

sults of searches these clients receive from patent 

professionals often include documents that are 

machine-translated. These are clearly marked as 

machine translations and they often also include 

the date and MT tool that produced the text. Patent 

professionals discuss MT with the secondary us-

ers, as in this example: 

I would point out that this is a machine transla-

tion and, depending on if the client is a knowing 

patent engineer, then I would maybe give my 

opinion if we need a proper translation or not, 

but then ask what they think. (PP8) 

Boundaries of legitimacy  

An important aspect of legitimacy is that it is 

bound to a specific scope. The ‘recognized 

principles or accepted rules and standards’ 

referred to in the definition provided earlier are 

agreed upon by a certain group for a certain 

purpose, and the boundaries of applicability are 

recognized by the participants. In this study, the 

boundaries of legitimacy for MT were sometimes 

mentioned during answers to other questions: 

“For information purposes, it’s fine. For use as a 

legal text, no.” (PP3) But in the interviews I also 

asked directly, “In what situations is it not OK to 

use machine translation?” The responses 

indicated some agreement on the areas in which 

MT should not be used, such as when filing patent 

applications: 

…when you’re translating your application to 

other languages – like we have seen some kind 

of, I think they are usually applicants from Asia, 

that file an application here and usually they ap-

ply in English, but you can really see that their 

application is machine translated from the Chi-

nese version – not OK. (PP6) 

There was very clear agreement that MT should 

not be used in legal settings, as in this example in 

which an informant described a process involving 

another company’s potential infringement of their 

patent: 

We would start with searching prior art and use 

MT. Our aim is to see if there’s overlap with our 

patent or not. If we find something that looks in-
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teresting, then we would order human transla-

tion of it. We would not just go ahead on that 

with machine translated information. (PP3) 

MT literacy  

In 1993 Church and Hovy defined six 

“desiderata” for a good use case for MT. Among 

the six were: “it should set reasonable 

expectations” and “it should be clear to the users 

what the system can and cannot do” (Church and 

Hovy 1993: 257). Bowker and Buitrago (2019) 

expanded this idea by coining the term MT 

literacy, and then applying it to the case of MT use 

in academic work. On the basis of their definition, 

I described MT literacy for the context of this 

study as a patent professional’s ability to: (1) 

comprehend the basics of how machine 

translation systems process texts, (2) understand 

how machine translation systems are or can be 

used (by oneself or others working with patents) 

to find and read patent documents within the 

context of IPR processes, and (3) appreciate the 

wider implications associated with the use of 

machine translation. Based on this definition, the 

informants in this study displayed a generally high 

level of MT literacy. They appeared to understand 

the basics of MT technologies, knew how to 

access different MT tools, and were aware of the 

possibility and consequences of translation errors. 

They also had experience with different types of 

MT tools and noticed improvements in quality 

over time: 

They all [languages] have become better, and es-

pecially nowadays if you make a machine trans-

lation for some ‘normal’ language, for German 

or French, they are really good. (PP9) 

Perhaps one of the clearest signs of the high level 

of general MT literacy was an observation I made 

throughout the study: the hype issues currently 

visible in other spheres (for one example, see 

Hassan et al., 2017 followed by Toral et al., 2018) 

do not seem to be occurring in patent MT. In the 

present study, MT was considered to be one tool 

among others and people were aware of its uses 

and limitations. I heard no reports of overreaching 

claims on MT capabilities.  

7 Conclusions 

The main objective of this study was to explore 

the types of decisions patent professionals make 

based on machine-translated information, the risk 

assessment they use when deciding between 

relying on gist MT or using human translation, 

and the environmental factors that appear to 

support the use of gist MT in this context. The 

results revealed that patent professionals routinely 

make decisions on relevance and monitoring 

based on gist MT, and that the patenting process 

also relies on it. In the key decision of initiating 

human translation, patent professionals tend to 

weigh the riskiness of the IPR process in which 

the translated patent document would be used, the 

assumed relevance and importance of the 

document, and the potential consequences of 

misunderstanding against the lower costs, quicker 

access to information, and trust in a good enough 

understanding of the patent document. That 

understanding is often based not only the gist MT, 

but also other factors, such as auxiliary 

information sources and patent professionals’ 

contextual and linguistic knowledge. The 

environmental factors of risk tolerance and 

legitimacy for gist MT also support the use of MT. 

The study contributes to our knowledge of how 

people, and specifically professional groups, use 

gist MT. It explores factors that can enhance the 

use of gist MT, and this understanding will help us 

to define the characteristics of good, as well as 

poor, contexts for gist MT use. In addition, this 

analysis contributes to the growing body of re-

search on users of various types of artificial intel-

ligence. 

This study had certain limitations. The group of 

informants was small and somewhat homogene-

ous, and this influenced the results. Data was gath-

ered through only one method, interviewing. The 

results also focused on patent work in one geo-

graphical area and one specific point in time, and 

the results cannot be considered representative of 

the larger population of patent professionals. Nev-

ertheless, as the first exploratory study of this very 

experienced group of MT users, it fulfilled one of 

the main purposes of inductive research in that it 

uncovered new themes and hypotheses on how a 

specific group uses gist MT and on the contextual 

factors that contribute to their use of it.  

Further studies on this gist MT user group could  

target an expanded group of informants, including 

more diverse participants, other patent MT user 

groups, and less experienced patent MT users. 

Studies incorporating other methods such as con-

textual inquiry, diaries, or quantitative methods 

such as surveys could verify some of the findings 

of this study and might reveal further insights on 

this user group. In addition, it is hoped that we will 

see a growth in the research, and number of re-

searchers, devoted to studying all types of users of 

gist MT. 
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