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Abstract

Rule-based machine translation is a ma-
chine translation paradigm where linguistic
knowledge is encoded by an expert in the
form of rules that translate from source to
target language. While this approach grants
total control over the output of the system,
the cost of formalising the needed linguis-
tic knowledge is much higher than training
a corpus-based system, where a machine
learning approach is used to automatically
learn to translate from examples. In this
paper, we describe different approaches to
leverage the information contained in rule-
based machine translation systems to im-
prove a corpus-based one, namely, a neural
machine translation model, with a focus on
a low-resource scenario. Our results sug-
gest that adding morphological information
to the source language is as effective as us-
ing subword units in this particular setting.

1 Introduction

In rule-based machine translation (RBMT), a lin-
guist formalises linguistic knowledge into lexicons
and grammar rules. This knowledge is used by
the system to analyse sentences in the source lan-
guage and translate them. While this approach does
not require any training corpora and grants con-
trol over the translations created by the system, the
process of encoding linguistic knowledge requires
great amounts of expert time. Notable examples
of RBMT systems are the original, rule-based Sys-
tran (Toma, 1977), Lucy LT (Alonso and Thurmair,
2003) and Apertium (Forcada et al., 2011).

Instead, corpus-based machine translation sys-
tems learn to translate from examples, usually in
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the form of sentence-level aligned corpora. On the
one hand, this approach is generally more com-
putationally expensive and offers limited control
over the generated translations. Furthermore, it is
not feasible for language pairs that have little to
no available parallel resources. On the other hand,
it boasts a much higher coverage of the targeted
language pair, depending on the availability of par-
allel corpora. Examples of corpus-based machine
translation paradigms are statistical phrase-based
translation (Koehn et al., 2003) and neural machine
translation (NMT) models (Bahdanau et al., 2015).

In this work, we focused on leveraging RBMT
knowledge for improving the performance of NMT
systems in an under-resourced scenario. Namely,
we used information contained in Lucy LT, an
RBMT system where the linguistic knowledge is
formalised by human linguists as computational
grammars, monolingual and bilingual lexicons.
Monolingual lexicons are collections of lexical en-
tries; each lexical entry is a set of feature-value
pairs containing morphological, syntactic and se-
mantic information. Bilingual lexicon entries in-
clude source-target lexical correspondences and, op-
tionally, contextual conditions and actions. Gram-
mars are collections of transformations to annotated
trees. The Lucy LT system divides the translation
process into three sequential phases: analysis, trans-
fer, and generation. During the analysis phase, the
source sentence is tokenised and morphologically
analysed by means of a lexicon that identifies each
surface form and all its plausible morphological
readings. Next, the Lucy LT chart parser together
with a analysis grammar consisting of augmented
syntactic rules extracts the underlying syntax tree
structure and annotates it. The transfer and gen-
eration grammars are then applied in succession
on that tree, which undergoes multiple annotations
and transformations that add information about the
equivalences in the target language and adapt the
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original source language structures to the appropri-
ate ones in the target language. Finally, the terminal
nodes of the generation tree are assembled into the
translated sentence. We focused on the analysis
phase, with special interest for two of the features
used: the morphological category (CAT) and the in-
flection class (CL) or classes of the lexical entries.

In order to test this approach, we focused on
English-Spanish (both generic and medical do-
main), English-Basque, English-Irish and English-
Simplified Chinese in an under-resourced scenario,
using corpora with around one million parallel en-
tries. Results suggested that adding morphological
information to the source language is as effective
as using subword units in this particular setting.

2 Related work

Sennrich and Haddow (2016) demonstrated the in-
clusion of various linguistic knowledge, such as
morphological features, part of speech (POS) tags
and syntactic dependency labels, as input features
for the English-German and English-Romanian
NMT systems. Baniata et al. (2018) proposed a
multitask-based NMT system with POS informa-
tion for translation between English, modern stan-
dard Arabic and Arabic dialects, i.e. Levantine Ara-
bic and Maghrebi Arabic. The work demonstrated
that the POS information for the low resourced Ara-
bic dialects was beneficial for the translation quality,
specifically if pre-trained FastText models were in-
jected during the NMT training step. Niehues and
Cho (2017) jointly trained several English-German
natural language processing tasks in one system
with shared encoder and one attention model and de-
coder per task. By integrating additional linguistic
resources via multitask learning, the performance
of each individual task was improved. Bastings
et al. (2017) showed that incorporating syntactic
structure such as dependency tree using graph con-
volutional encoders was beneficial for neural ma-
chine translation. Their work focused on exploiting
structural information on the source side by adding
a second encoder. The goal of their work was to
provide the encoder with access to rich syntactic
information without placing rigid constraints on the
interaction between syntax and the translation task

Etchegoyhen et al. (2018) studied NMT, RBMT,
and phrase-based statistical machine translation
approaches for Basque-Spanish. The authors fo-
cus on different subword unit representations, i.e.
linguistically-motivated or frequency-based word

segmentation method. Shi et al. (2016) investi-
gated whether an encoder-decoder translation sys-
tem learns syntactic information on the source side
as a side affect of training the neural models. Sev-
eral syntactic labels of the source sentence were
created and logistic regression models using the
learned sentence encoding vectors or learned word
by word hidden vectors were used to predict these
syntactic labels. Aharoni and Goldberg (2017)
presented a method to incorporate syntactic infor-
mation of the target language in an NMT system,
showing improved word reordering compared to
their baseline system. Eriguchi et al. (2016) pro-
posed an NMT model leveraging syntactic informa-
tion to improve the accuracy for English→Japanese
translation. The phrase structure of the source sen-
tence was recursively encoded in a bottom-up fash-
ion to first produce a vector representation of the
sentence, then decode it while aligning the input
phrases and words with the output. Bastings et al.
(2017) relied on graph-convolutional networks pri-
marily developed for modelling graph-structured
data. These networks used predicted syntactic de-
pendency trees of source sentences to produce rep-
resentations of words that are sensitive to their syn-
tactic neighbourhoods. Nadejde et al. (2017) in-
troduced CCG supertags within the target word
sequence as syntactic information, processed by the
decoder of their NMT system. Their evaluation
showed translation quality improvements for the
German→English and Romanian→English trans-
lation directions. Similarly, their approach outper-
formed multi-tasking approach for the same lan-
guage pairs. Garcıa-Martınez et al. (2016) trained
their NMT model to simultaneously generate the
lemma and its corresponding factors, i.e. POS, gen-
der, and number, demonstrating that factored ar-
chitecture increases the vocabulary coverage while
decreasing the number of unknown words. Ataman
and Federico (2018) described the addition of a re-
current neural network to generate compositional
representations of the input words, obtaining better
results than systems using byte-pair encoding when
translating from morphologically rich languages to
English. Banerjee and Bhattacharyya (2018) com-
pared two different approaches for subword units
when translating from English to Hindi and Bengali,
byte pair encoding and morpheme-based segmen-
tation, showing that the latter approach improves
the translations, and further improvements can be
achieved by combining both.
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("snake" NST ALO "snake" CL (P-S S-01) KN CNT ON CO SX (N) TYN (ANI))
("snake" VST ALO "snak" ARGS ((($SUBJ N1 (TYN CNC LOC C-POT)) ($ADV DIR)))

CL (G-ING I-E P-ED PA-ED PR-ES1) ON CO PLC (NF))

Figure 1: The word snake as a noun (NST) and a verb (VST) in Lucy LT dictionaries. Each entry is composed of a canonical
form, the category (POS), and a list of key-value features, such as the inflection class (CL), the vocalic onset (ON), etc.

S:169

$:[$] CLS:135

NP:97

NO:57

PRN:[I]

PRED:83

VB:60

VST:[own]

NP:130

DETP:61

DET:[the]

NO:62

NST:[house]

PP:107

PREPP:68

PREP:[down]

NP:103

DETP:69

DET:[the]

NO:70

NST:[street]

$:[$]

Figure 2: Example of the parse tree for the English sentence I own the house down the street.

3 Methodology

In this section, we describe the methodology to
leverage rule-based machine translation (RBMT)
information in neural machine translation (NMT).

3.1 Information acquisition from RBMT

Lucy LT monolingual lexicons are language-pair
independent (i.e. the same English knowledge is
used for all translation pairs including English as a
source or target language) and mainly encode mor-
phological and contextual information. Each entry
has a word or multi-word expression (MWE) along
with several features, such as the part of speech
(POS) and morphological features. The bilingual
lexicons mainly encode word-to-word or MWE-to-
MWE translations and describe which target lan-
guage word should replace each source language
word. Still, the direct usage of the lexicon entries
as a source of information presented a challenge, as
there is no means to determine ambiguous surface
words. For example, in English, most nouns will
also be classified as verbs, as they share the same
surface form; e.g. the word snake can be both a
noun and a verb (Figure 1). For addressing this
problem, we took two different approaches: us-
ing ambiguity classes that describe all the possible
analysis for a given surface word; and using ex-
ternal information (in the form of a monolingual
POS tagger) to disambiguate. For the former ap-
proach, we used a unique tag for each possible CAT
and CL values concatenation; e.g. the categories
NST and VST and all the inflection classes (CL)
for snake (Figure 1). For the latter, we used the
Stanford POS tagger (Toutanova et al., 2003), that
uses the Penn Treebank (Marcus et al., 1994) tag

set for English, and the AnCora (Civit and Martí,
2004) tag set for Spanish, and the IXA pipeline
POS tagger (Agerri et al., 2014) with the Universal
Dependencies POS tag set (Nivre et al., 2018) for
Basque. All POS tag sets were mapped to the tag
set used by Lucy LT. If the tagger provided POS
tag was equivalent to one or more Lucy LT tags,
then the non matching Lucy LT tags were removed.
Otherwise, we kept the set of tags; e.g. if the POS
tag emits noun as the most likely tag, then only NST
and the concatenation of all the inflection classes
for the corresponding entry would be used as ad-
ditional information. As a comparison, we also
evaluated NMT models trained with Stanford or
IXA POS tags as additional information.

3.2 Leveraging Syntactic Tree Information

In addition to the direct use of the linguistic knowl-
edge in lexicon entries, the grammars (monolin-
gual and bilingual lexicons) were indirectly used
by exploring the results of each internal interme-
diate stage of the translation process, which Lucy
LT expresses as annotated trees. For example, the
sentence parsed in Figure 2,

I own the house down the street
is encoded as

⦅I own ⦅the house⦆ ⦅down ⦅the street⦆⦆⦆.1

We use this representation as source text when train-
ing the NMT models, as sequence-to-sequence deep
neural network models do not generally accept hi-
erarchical information. We also used an additional
feature: the linguistic phrase the word belongs to.
This information is present in the grandparent of

1To avoid collisions with parenthesis in the text, we used the
left (⦅, U+2985) and right (⦆, U+2986) white parenthesis.
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Source (English) Target

# of Subwords # of Uniq. Subwords # of Subwords # of Uniq. Subwords # of Lines

English–
–Spanish
(generic)

train 17,919,926 33,212 18,408,749 33,076 1,000,000
validation 180,290 15,714 185,662 18,804 10,000
evaluation 178,841 15,031 181,188 18,810 10,000

English–
–Spanish
(EMEA)

train 14,440,740 27,112 15,872,405 29,290 1,036,058
validation 186,685 11,599 204,174 14,306 10,000
evaluation 219,752 9,412 242,137 10,979 10,000

English–
–Basque

train 11,760,808 30,946 10,309,229 32,369 1,357,475
validation 85,919 9,150 76,532 13,593 10,000
evaluation 85,163 9,283 75,309 13,546 10,000

English–
–Irish

train 15,234,432 31,834 16,983,046 32,183 1,090,418
validation 135,986 12,648 152,224 16,113 10,000
evaluation 140,696 11,613 152,064 16,174 10,000

English–
–Simplified

Chinese

train 27,878,268 31,471 25,199,106 41,458 995,000
validation 138,640 12,451 126,191 14,490 5,000
evaluation 129,440 12,175 119,577 14,431 4,500

Table 1: Statistics on the used training, validation and evaluation datasets.

each node; e.g. in Figure 2 the noun house appears
in a noun phrase (NP).

4 Experimental Setting

In this section, we describe the resources we used
to train and evaluate the systems, along with the
neural machine translation framework used.

4.1 Training and Evaluation Datasets

In this work, we focused on NMT for under-
resourced scenarios. On the one hand, we consider
languages, such as Basque or Irish, which do not
have a significant amount of parallel data neces-
sary to train a neural model. On the other hand, an
under-resourced scenario can be a specific domain,
e.g. medical, where a significant amount of data
exists, but does not cover the targeted domain. The
Table 1 shows the statistics on the used datasets.

For Basque and Irish, we used the available cor-
pora stored on the OPUS webpage.2 We used
OpenSubtitles2018 (Lison and Tiedemann, 2016),3

Gnome and KDE4 datasets (Tiedemann, 2012).
Additionally, the English-Irish parallel corpus is
augmented with second level education textbooks
(Cuimhne na dTéacsleabhar) in the domain of eco-
nomics and geography (Arcan et al., 2016).

In addition to that, we also focused on well re-
sourced languages (Spanish and Simplified Chi-
nese), but limited the training datasets to around
one million aligned sentences. To ensure a broad
lexical and domain coverage of our NMT system,
we merged the existing English-Spanish parallel

2opus.nlpl.eu
3www.opensubtitles.org

corpora from the OPUS web page into one parallel
data set and randomly extracted the sentences. In
addition to the previous corpora, we added Europarl
(Koehn, 2005), DGT (Steinberger et al., 2014), Mul-
tiUN corpus (Eisele and Chen, 2010), EMEA and
OpenOffice (Tiedemann, 2009). To evaluate the
targeted under-resourced scenario within medical
domain, we exclusively used the EMEA corpus.
For Simplified Chinese, we used a parallel corpus
provided by the industry partner, which was col-
lected from bilingual English-Simplified Chinese
news portals.

The corpora were tokenised using the OpenNMT
toolkit, with the exception of Simplified Chinese,
that was tokenized using Jieba,4 and lowercased.

4.2 NMT framework

We used OpenNMT (Klein et al., 2017), a generic
deep learning framework mainly specialised in
sequence-to-sequence models covering a variety
of tasks such as machine translation, summarisa-
tion, speech processing and question answering as
NMT framework. Due to computational complex-
ity, the vocabulary in NMT models had to be lim-
ited. In order to overcome this limitation, we used
byte pair encoding (BPE) to generate subword units
(Sennrich et al., 2016). BPE is a form of data com-
pression that iteratively replaces the most frequent
pair of bytes in a sequence with a single, unused
byte. We also added the different morphological
and syntactic information as word features.

We used the following default neural network
training parameters: two hidden layers, 500 hidden

4github.com/fxsjy/jieba
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LSTM (long short term memory) units per layer,
input feeding enabled, 13 epochs, batch size of 64,
0.3 dropout probability, dynamic learning rate de-
cay, 500 dimension embeddings, maximum vocabu-
lary size of 50,000 subwords, maximum of 32,000
unique BPE merge operations, unlimited different
values for the word features and between 11 and 23
dimension embeddings for word features.5

4.3 Evaluation
In order to evaluate the performance of the different
systems, we used BLEU (Papineni et al., 2002), an
automatic evaluation that boasts high correlation
with human judgements, and translation error rate
(TER) (Snover et al., 2006), a metric that represents
the cost of editing the output of the MT systems to
match the reference. Additionally, we used boot-
strap resampling (Koehn, 2004) with a sample size
of 1,000 and 1,000 iterations, and reported statisti-
cal significance with p < 0.05. We also presented
a box-and-whisker plot with the first, second and
third quartiles as a box, and the first (<0.025) and
last (≥0.975) 40-quantiles as whiskers, correspond-
ing to p < 0.05. In addition, we compared the
performance of our NMT systems with the NMT-
based Google Translate,6 and the translations per-
formed using Lucy LT RBMT; for the latter, only
English-Spanish and English-Basque models are
available.

5 Results

In this section we describe the quantitative and
qualitative evaluation of the different models: the
NMT baseline (Baseline), baseline enhanced with
ambiguous CAT and CL (CAT-CL), baseline with
disambiguated CAT and CL (CAT-CL D), baseline
with external POS tags (POS), baseline with indi-
rect CAT, CL and syntactic information (CAT-CL
L), the hierarchical model (Tree), Lucy LT (RBMT)
and Google Translate (Google).

5.1 Quantitative results
The quantitative results of the evaluation are pre-
sented in Figure 3. All the models tested signifi-
cantly outperformed the RBMT system Lucy LT
both when using BLEU and TER as evaluation
metrics. Even when trained with only around a
million sentences, the NMT baseline model for
English-Basque and English-Irish performed better
5The size of the embedding for word features depend on the
number of unique values for the feature.
6translate.google.com retrieved March 2019.

than Google Translate with generic domain corpora,
and were not statistically significantly different for
English→Simplified Chinese. Unsurprisingly, the
in-domain medical domain English-Spanish mod-
els outperformed Google Translate. Conversely,
Google Translate was significantly better than
the NMT baselines only for the English-Spanish
generic domain, excluding English→Spanish TER.
While some of the feature-enriched models ob-
tained slightly better results in terms of BLEU and
TER compared to the baseline, no model obtains
scores that are statistically significantly different
than the baseline subword model. We also observed
that the kind of information we added to the system
in the form of CAT and CL features can also be
learned by NMT models based on subword units,
that may split the root from the rest of the word. In
case of the tree model, the results were consistently
lower than the rest. Finally, we learned that the
system could not cope with this complex represen-
tation with the amount of data available.

5.2 Qualitative results

Table 2 analyses a sentence translated using all dif-
ferent models from Spanish to English. The anal-
ysis showed that, even when RBMT makes some
grammatical mistakes, the sentence still conveyed
the correct message. Nevertheless, it was the only
hypothesis with a BLEU of 0, as it shared no four-
gram with the reference, and was the hypothesis
with the highest TER. The baseline model hypothe-
sis was tied for the best TER score and the second
best BLEU score, but it failed to convey the proper
message, as it lacked translation for easing of price
increases.

6 Conclusions and future work

In this work we explored the use of rule-based
machine translation (RBMT) knowledge to im-
prove the performance of neural machine transla-
tion (NMT) models in an under-resourced scenario,
showing that adding morphological information to
the source language is as effective as using subword
units in this particular setting. We also found that
RBMT translations were often adequate but both
BLEU and TER poorly reflected this, often scoring
worse than incorrect NMT-generated translations.

One of the paths of our future work will further
focus on the extraction of RBMT knowledge and
the inclusion of transfer rules to improve the perfor-
mance of the NMT model. A second improvement
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Figure 3: Results for the evaluation for English-Spanish, both for generic and medical (EMEA) domains, English-Basque,
English→Irish and English→Simplified Chinese. No RMBT models are available for Irish and Simplified Chinese in Lucy LT.
Models marked with ∗ are significantly better than the NMT baseline, and models marked with △ are significantly better than
Google Translate. All models are statistically significantly better than RBMT.

Source Pese a que los incrementos de los precios fueron menores en el segundo semestre de 2008 , los precios siguen siendo muy
elevados .

BLEU TER

Reference Despite an easing of price increases in the second half of 2008, prices remain at very high levels.

Baseline Despite the increases in prices in the second half of 2008, prices remain very high. 47.48 0.35
CAT-CL Although price increases were minor in the second half of 2008, prices remain very high. 47.48 0.35
CAT-CL D Although increases in prices were lower in the second half of 2008, prices remain high. 44.50 0.45
POS Despite the fact that price increases were lower in the second half of 2008, prices remain very high. 48.25 0.35
CAT-CL L Although price increases were lower in the second half of 2008, prices remain very high. 47.48 0.35
Tree Although prices of prices were lower in the second half of 2008 prices remain very high. 45.51 0.40
RBMT Even though the increases of the prices were smaller in the second semester of 2008, the prices keep being sky-high. 0.00 0.70
Google Although the price increases were lower in the second half of 2008, prices are still very high. 41.81 0.40

Table 2: Qualitative analysis of a sentence translated by all models for Spanish to English translation. Fragments in bold face
are translation mistakes, and fragments in italics are translation alternatives that, while being penalised by TER and BLEU, can
be considered correct.

path would be using multiple encoders. This ap-
proach has been used to improve the performance
NMT (Zoph and Knight, 2016), but, in our scenario,
one of the inputs would be the output of the RBMT
system. As previously mentioned, corpus-based
machine translation gives limited control over the
output to the user, specially when dealing with ho-
mographs and terminology; instead, RBMT gives
total control. Combining the source sentence with

the RBMT output that contains the user-selected
translations might lead to improvements in domain-
specific or low resource scenarios.

Finally, we also plan to leverage information
contained in other freely available RBMT systems,
such as Apertium. While Apertium is a shallow-
transfer system, meaning that there is less syntactic
information, features similar to the ones used in this
work are available in Apertium.
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Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van
Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars
Wallin, Jing Xian Wang, Jonathan North Washing-
ton, Seyi Williams, Mats Wirén, Tsegay Wolde-
mariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
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